Niche partitioning between planktivorous fish in the pelagic Baltic Sea assessed by DNA metabarcoding, qPCR and microscopy

Supplementary material

Andreas Novotny^{1,3,4}, Kinlan Mehdi Goulwen Jan^{1,4,*}, Jan Dierking², and Monika Winder¹

¹Department of Ecology, Environment, and Plant Sciences, Stockholm University,

Stockholm, Sweden.

²GEOMAR, Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.

³Present address: Institute for the Oceans and Fisheries, The University of British Columbia,

Vancouver, Canada.

⁴These authors contributed equally: Andreas Novotny and Kinlan Mehdi Goulwen Jan

*email: kinlan.jan@su.se

Content

Supplementary figures

Supplementary Figure S1	3
Supplementary Figure S2	4
Supplementary Figure S3	5

Supplementary tables

Supplementary Table S1	6
Supplementary Table S2	7
Supplementary Table S3.	7

Supplementary Figure S1. Prey composition of the larval fish species sprat (*Sprattus sprattus*) shown as relative abundance of A) *18S rRNA* and B) *COI* sequence count per prey taxa. The bars represent unique biological replicates.

Supplementary Figure S2. Alpha diversity (Shannon Index) of prey communities for all fish species based on the *18S* and *COI* barcodes.

Supplementary Figure S3. Rarefaction curves showing the observed alpha diversity (left) and

Shannon index (right) for 18S (A) and COI (B).

~							
Gene	Prey Pairs		Estimate	SE	Z ratio	P value	
region							
18S	Pseudocalanus	Herring – Sprat	-0.067	0.1	-0.667	0.7824	
		Herring – Stickleback	0.453	453 0.09 5.121 9.08 1		9.08 10 ⁻⁷	
		Sprat – Stickleback	0.519	0.08	6.724	5.32 10-11	
	Rotifers	Herring – Sprat	-0.004	0.01	-0.416	0.909	
		Herring – Stickleback	-0.314	0.05	-6.311	8.32 10-10	
		Sprat – Stickleback	-0.31	0.05	-6.231	1.39 10 ⁻⁹	
	Temora	Herring – Sprat	0.028	0.04	0.785	0.713	
Herring – Stickleback		-0.161	0.07	-2.454	0.038		
		Sprat – Stickleback	-0.189	0.06	-3.056	0.0064	
	Mertensia	Herring – Sprat	-0.027	0.04	-0.616	0.812	
		Herring – Stickleback	0.029	0.04	0.673	0.779	
		Sprat – Stickleback	0.056	0.04	1.309	0.39	
COI	Pseudocalanus	Herring – Sprat	-0.193	0.08	-2.334	0.051	
		Herring – Stickleback	0.464	0.08	5.722	3.16 10 ⁻⁸	
		Sprat – Stickleback	0.657	0.07	9.862	2.84 10-14	
	Synchaeta	Herring – Sprat	5.1 10-5	0.02	0.002	0.999	
		Herring – Stickleback	-0.341	0.07	-4.753	5.97 10-6	
		Sprat – Stickleback	-0.341	0.07	-4.769	5.54 10-6	

Supplementary Table S1. Beta regression output for the prey contributing to more than 70% of the Bray-Curtis distance between all fish species. P values < 0.05 are shown in bold.

Supplementary Table S2. Pairwise permANOVAs of Bray-Curtis distances among fish gut content based on the *18S* and *COI* gene regions.

Gene region	Pairs	df	F	R ²	P values
18S	Sprat -Herring	1;22	0.225	0.010	0.822
	Sprat – Stickleback	1;19	26.455	0.582	0.001
	Herring - Stickleback	1;15	16.502	0.524	0.001
COI	Sprat -Herring	1;21	1.754	0.077	0.187
	Sprat – Stickleback	1;19	29.853	0.611	0.001
	Herring - Stickleback	1;16	14.551	0.476	0.001

Supplementary Table S3. Fish trawl sampling information, including site, date and time,

depth and sample size (n) for each fish species (herring, sprat, and stickleback) and

methodological approach (metabarcoding, qPCR, and microscopy).

				Metabarcoding (n)			qPCR (n)			Microscopy (n)		
STATION ID Basin name	Latitude Longitude	Date Start-Stop	Sampling depth (m)	Herring	Sprat	Stickleback	Herring	Sprat	Stickleback	Herring	Sprat	Stickleback
BB07 Bornholm Basin	55°37.10'N 16°00.15'E	2019-04-25 13:34-14:00	73	2	4	0	2	4	0	1	3	0
BB40 Bornholm Basin	54°47.91'N 15°29.76'E	2019-04-28 10:06-10:28	74	4	4	0	3	4	0	3	4	0
GB79 Gotland Basin	55°58.87'N 18°59.50'E	2019-04-22 13:07-13:45	75	0	2	0	0	4	0	0	2	0
GB82 Gotland Basin	55°52.46'N 18°10.92'E	2019-04-22 06:18-06:48	63	0	0	7	0	0	4	0	0	6
H22 Arkona Basin	54°56.01'N 13°14.78'E	2019-04-18 14:05-14:35	47	4	4	0	4	4	0	2	4	0