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Supplementary Figure 1. Characterization of cg-QDs. a, Photoluminescence (PL) (red line) 
and linear absorption (black line) spectra of the cg-QDs prepared as a toluene solution. b, An 
exemplary transmission electron microscopy image of the cg-QDs. 

 

 

 

Supplementary Figure 2. PL dynamics of the cg-QDs. a, PL dynamics of the stirred cg-QD 
solution sample measured at the excitation level which correspond to the average per-dot excitonic 
occupancies áNñ = 0.03 (black line) and 3.6 (blue line). The sample is excited using 100 fs, 400-
nm pulses with the pulse repetition rate of 250 kHz. The two traces are ‘tail normalized’ to match 
long-time (>30 ns) decays.  Based on these measurements, the single-exciton lifetime (tX) is 13.4 
ns, which yields 𝛾!,# = 1/tX = 0.075 ns-1. b, The dynamics obtained by subtracting the two traces 
in panel a (symbols) yield information on biexciton recombination (initial fast decay with the time 
constant tXX) and charged exciton recombination (slower, follow-up decay; tX*). Based on the 
double-exponential fit (red line), tXX = 1.2 ns and tX* = 4.7 ns. 

a b
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Supplementary Figure 3. The analysis of the initial ‘slow’ bias-dependent red shift of the EL 
spectra. a, The dependence of the 1S EL peak energy on j for the ‘planar’ (green triangles) and 
‘current-focusing’ (blue squares and red circles) LEDs under d.c. (green triangles and blue squares) 
and pulsed (red circles) biases. b, The bias induced shift of the band-edge EL feature (symbols) is 
plotted as a function of electric field (F) using a log-log representation. These data were collected 
for a current-focusing device operating under pulsed excitation with the pulse duration tp = 1 μs 
(Fig. 2, of the main article). At low F, the log-log slope of the observed dependence is 2 (line) 
which is a signature of the ‘quadratic’ Stark effect1,2. Based on these data, the polarizability of the 
cg-QDs is 2.0 × 10-6 meV cm2 kV-2.   

 

 

 

Supplementary Figure 4. Pump-intensity dependence photoluminescence spectra of cg-QDs. 
PL spectra of cg-QDs in solution under fs-pulse excitation with pump fluences that correspond to 
áNñ = 4.1 (blue) and áNñ =0.2 (red). These spectra were collected using 400-nm excitation from a 
frequency-doubled, amplified femtosecond laser. The pulse-to-pulse interval was 100 µs to ensure 
complete relaxation of the QD medium between excitation events. 

 

a b
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Supplementary Figure 5. Elucidation of the temperature dependence of the cg-QD bandgap. 
a, Temperature-dependent PL spectra of a cg-QD film. The sample is prepared as a close-packed 
film deposited onto a ZnMgO/glass substrate. b, The measured PL peak energy as a function of 
temperature, T (squares). Based on the linear fit (dashed line), dEg/dT = 0.365 meV K−1.  

 

 

 

 

Supplementary Figure 6. EL spectra of cg-QDs as a function of current density (j). a, 
Normalized EL spectra of a planar LED driven by a d.c. bias as a function of j. b, Same for a 
current-focusing LED, also for a d.c. bias. 
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Supplementary Figure 7. The ratio of the 1P and the 1S EL band intensities as a function of 
average per-dot excitonic occupancy (áNñ). The comparison of the calculated 1P/1S intensity 
ratio (Supplementary Note 2) with the measurements (symbols) is used to infer the average QD 
excitonic occupancy from the recorded EL spectra. The pink and green shadings show the ranges 
of 1S and 1P optical gain, respectively (Supplementary Note 3). 

 

 

 

Supplementary Figure 8. The 1S EL peak shift (DhvEL) of the current focusing LED driven 
by short voltage pulses with the repetition rate (fp) from 30 – 10,000 Hz. The 1S EL peak shift 
versus applied voltage (V) for pulse duration tp = 1 µs and fp varied from 30 to 10,000 Hz (symbols). 
The dashed line is the projected contribution due to the Stark effect (Supplementary Fig. 3b).  
There is no significant difference in the EL peak shift for rates between 30 Hz and 100 Hz, which 
implies that the generated heat dissipates almost completely between the voltage pulses. For higher 
repetition rates (3,000 and 10,000 Hz), in addition to V, DhvEL depends also on fp, which indicates 
that the generated heat does not fully dissipate between the applied pulses. 
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Supplementary Figure 9. EL spectra of traditional (nongraded) QDs incorporated into a 
current-focusing LED driven by a pulsed bias (tp = 1 μs). a, Normalized EL spectra of type-I 
nongraded CdSe/CdZnS for j up to 723 A cm-2. b, Same for quasi-type-II nongraded CdSe/CdS 
QDs for j up to 765 A cm-2. Despite extremely high current densities, neither of these samples 
shows a noticeable 1P EL, suggesting that the essential condition for realizing two-band (1S and 
1P) EL is radial grading of the QD composition leading to strong suppression of Auger decay.  

 

Supplementary Figure 10. Atomic-force-microscopy (AFM) measurements of the thickness 
of the cg-QD active layer. a, AFM scans across the edge of the cg-QD film indicate that its 
thickness increases in proportion with the number of the spin-coating cycles. b, The increments in 
the cg-QD film thickness are consistent with the QD size (~20 nm).  
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Supplementary Figure 11. EL spectra of LEDs made of a different number (1 to 4) of cg-QD 
layers. a, EL spectra of the LED made of the single cg-QD layer as a function of j. The device is 
driven by 1-μs pulses at a 100-Hz repetition rate. b-d, Same for devices containing 2 (b), 3 (c), 
and 4 (d) cg-QD layers. 
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Supplementary Figure 12. Reproducibility and stability studies of short-pulse, current 
focusing LEDs. a, The j−Vtotal	characteristics do not show any hysteresis between the forward 
and the reverse scan. Here Vtotal is the total applied bias, which is a sum of the LED bias and the 
voltage drop across the connecting indium tin oxide (ITO) line (Supplementary Fig. 16). The 
hysteresis is also absent in the measurements of the EL intensity (L) versus 	Vtotal.  b, Multiple 
scans show good reproducibility of the measured current density and EL intensity versus 	Vtotal. c, 
Current density (bottom) and L/L0 (top; L0 is the initial EL intensity) as a function of time of device 
operation (t). d, The EL spectra as a function of t. In all measurements, the LEDs were driven by 
1-μs pulses at the 100 Hz repetition rate.  
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Supplementary Figure 13. Reproducibility tests of ultra-high-j LEDs. a-h, The EL spectra of 
8 devices containing two cg-QD layers plotted as a function of j. The EL intensities are normalized 
at the position of the 1S emission peak. Seven devices out of the tested group showed jmax greater 
than 1 kA cm-2. i, Histogram of the maximal 1P-to-1S intensity ratios realized for the tested devices. 
The observed ratio varied from 0.75 to 1.35 and on average was ~1. As discussed in the main 
article, this corresponds to the average per-dot excitonic occupancy of 6.8.  
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Supplementary Figure 14. a, 1S gain (G1S) of cg-QDs as a function of total QD volume (VQD) 
varied primarily through the thickness of the compositionally graded CdZnSe shell. The optical 
gain measurements were conducted in the regime of gain saturation using a variable stripe length 
technique applied to cg-QD films (~300 nm thickness) spin-coated onto glass slides. The measured 
values of G1S,mat scale approximately as inverse of the QD volume. This indicates that G1S is 
directly proportional to the QD packing density. b, Absorbance spectra of  films of standard indium 
tin oxide (ITO, black) and low-index ITO (L-ITO, red) for identical film thicknesses.   

 

 

 

 

 

Ab
so

rb
an

ce
(m

OD
)

ITO

L-ITO

Wavelength (nm)

a b
1S

 g
ai

n 
(1

/c
m

)

1/VQD (nm-3) 10-310-4



 11 

 

Supplementary Figure 15. Numerical calculations of the 1S and 1P EL intensities using the 
‘correlated injection’ model. The measured 1S (blue circles) and 1P (red circles) EL intensities 
of the pulsed LED (same as in Fig. 3b of the main article) in comparison to calculations using the 
biexcition lifetime (t2) of 1.2 ns (solid line), 1.5 ns (dashed line) and 1.9 ns (dashed-dotted line) 
as a function of injection rate (g, top axis). Using b  = 1.37×107 C-1 cm2, we are able to match the 
calculations and the measurements. The corresponding current density obtained from g = sej/e is 
shown on the bottom axis (here e is the elementary charge and se is the cg-QD electrical cross-
section). The modeling conducted for t2 = 1.5 ns provides the best description of the measured 1S 
and 1P EL intensities. This value is close to that inferred from the measured PL dynamics (t2 = 
1.2 ns; Supplementary Fig. 2b).  
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Supplementary Figure 16. Electrical schemes used in the j−V measurements. a, In the case of 
d.c. measurements, a Keithley source meter was used to bias a device and to measure its j−V 
characteristics. b, In pulsed-excitation measurements, a high-voltage amplifier controlled by a 
function generator was used to generate a driving bias. An oscilloscope was used to read the 
voltage pulse. The current was inferred from a voltage drop across a 50 Ω resistor connected with 
the device in series. The cathode and anode probes were connected to the centers of the ITO and 
the Al pads, respectively. For both the d.c. and pulsed regimes, we obtained the voltage across the 
device by subtracting the voltage drops across the ITO line (from the cathode contact point to the 
device injection area) and the 50 Ω resistor from the applied voltage.  
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Supplementary Figure 17. A schematic illustration of the ‘correlated injection’ model. This 
model accounts for neutral (horizontal solid lines) and singly charged (horizontal dashed lines) 
excitonic states. The black arrows show the transitions between these states due to electron (rate 
ke) and hole (rate kh) injections. The grey and coloured arrows show recombination pathways due 
to Auger decay (grey arrow; rate gA) and radiative transitions involving the 1Se (red arrow; rate 
g1S) and 1Pe (blue arrow; rate g1P) states. 
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Supplementary Figure 18. The structure of optical transitions in cg-QDs. a, The positions of 
the four lowest optical transitions (2.023, 2.063, 2.145, and 2.238 eV labeled as ‘a’ through ‘d’, 
respectively) inferred from the 2nd-derivative of the linear absorption spectrum of the cg-QDs used 
in the present study. b, The features observed in a are assigned to the 1Se-1Shh, 1Se-1Slh, 1Se-2Shh, 
and 1Pe-1Phh transitions. c, Calculated occupation factors of the electron (black) and hole (red) 
states shown in b as a function of per-dot number of electrons (Ne) and holes (Nh).  
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Supplementary Table 1. The parameters used in the modeling of the EL spectra. Lifetimes, 
emission rates, and emission quantum yields of excitonic states with multiplicities (m) from 1 to 
8. These include the total lifetime (t), the radiative and Auger lifetimes (tr and tA, respectively), 
the 1S and 1P emission rates (g1S,r and g 1P,r, respectively), the total emission rate (gr  = g1S,r + 
g1P,r), the 1S and 1P emission quantum yields (Q1S and Q1P, respectively), and the total emission 
quantum yield (Q = Q1S + Q1P). The emission rates are normalized to that of a single exciton (g1,r 
= gX,r = 1/13.4 ns-1).  

 1X 2X 3X 4X 5X 6X 7X 8X 
t 

(ns) 13.4* 1.2* 0.57 0.34 0.22 0.16 0.12 0.09 

tr 
(ns) 13.4 3.69 2.11 1.42 1.04 0.79 0.63 0.52 

tA 
(ns)  1.78 0.79 0.45 0.28 0.20 0.15 0.11 

g1S,r 1 3.55 5.24 6.57 7.75 8.82 9.79 10.7 

g1P,r 0 0 1.12 2.86 5.19 8.07 11.5 15.3 

gr 1 3.55 6.36 9.43 12.9 16.9 21.3 26.0 

Q1S 1 0.32 0.22 0.17 0.13 0.11 0.088 0.072 

Q1P 0 0 0.05 0.07 0.08 0.09 0.10 0.10 

Q 1 0.32 0.27 0.24 0.21 0.20 0.19 0.17 
 

* Time constants obtained from the experiment (Supplementary Fig. 2). 

  



 16 

Supplementary Table 2. Calculated mode confinement factors (G) for various layers of cg-
QD LEDs studied in this work. 

Layer 
(Thickness) 

Γ  (%) 

(𝜆= 620 nm) 

Glass 
(Substrate) 10.1 

ITO (150 nm) 56.1 

ZnMgO (15 nm) 6.47 

QD (80 nm) 23.2 

TCTA (60 nm) 4.02 

MoO3 (10 nm) 0.08 

Al (100 nm) 0.03 

Sum 100 
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Supplementary Note 1. Modeling of device overheating 

To treat the problem of heat accumulation in an operating light emitting diode (LED) based on 

colloidal quantum dots (QDs), we consider the interplay between heat generation due to a passing 

electric current (Joule heating) and heat dissipation due to thermal exchange with the environment. 

Since in the regime of high current densities (j > 10 A/cm2), a wall-plug efficiency (Poptical/Pelectrical) 

of our devices is fairly low (<1%), we can assume that all electrical power, P = jAV (here V is 

applied bias), is converted to heat3. Further, we neglect temperature gradients within an active 

device volume, which allows us to characterize it by a spatially uniform temperature Td.  To 

describe heat outflow, we will treat a surrounding environment is an ideal heat sink with 

temperature T0, which in our case is room temperature, that is,  T0 = 300K.  

In a steady state, heat generation is balanced by heat dissipation, that is,  

                                                𝐴𝑗𝑉 = 𝐾Δ𝑇,																																																																										(1) 

where ΔT = Td−T0, K is a heat exchange constant, and A is a charge injection area of the device. 

Based on Supplementary Equation (1), the device overheating in the steady-state regime can be 

computed from 

Δ𝑇 = 𝐴𝑗𝑉𝐾$%.																																																																					(2) 

This expression suggests that the effect of overheating can be reduced by decreasing the injection 

area (that is, via ‘current focusing’) and/or boosting the heat exchange constant. The first of these 

measures reduces the overall amount of generated heat, and the second, enhances heat dissipation.    

In the case of short-pulse excitation (pulse duration tp), the device temperature does not reach a 

steady state during an electrical pulse. In this situation, the evolution of device temperature can be 

described by  
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𝐶
𝑑Δ𝑇
𝑑t = 𝐴𝑗𝑉 − 𝐾Δ𝑇,																																																																		(3) 

where C is a heat capacity of the active device volume. Based on Supplementary Equation (3), the 

time-dependent device temperature is given by  

𝛥𝑇(𝑡) =
𝐴𝑗𝑉
𝐾 :1 − 𝑒$

&
'(<.																																																											(4) 

Using Supplementary Equation (4), we obtain that the device temperature at the end of the pump 

pulse is                                                      	

𝛥𝑇>𝜏)@ =
𝐴𝑗𝑉
𝐾 A1 − 𝑒$

*!
*"B,																																																								(5) 

where tT = C/K is a characteristic heat dissipation time.  In the long-pulse limit (tp ≫ tT), 

Supplementary Equation (5) converges to that derived for the steady-state case (Supplementary 

Equation (2)). In the short-pulse limit (tp ≪ tT), it yields 

𝛥𝑇>𝜏)@ =
𝐴𝑗𝑉
𝐾

𝜏)
𝜏+
	.																																																																							(6) 

This suggests that using short-pulse excitation, one can, in principle, reduce device overheating by 

a factor of tp/tT compared to steady-state excitation.   

Supplementary Note 2. Modeling of two-band electroluminescence 

To model j-dependent two-band electroluminescence (EL) spectra (see, e.g., Fig. 3a of the main 

article), we use a correlated injection model introduced in ref. 4. A key premise of this model is 

that the electron and hole injections are mutually dependent. In particular, the presence of an 

electron in a QD facilitates the injection of a hole due to electron-hole attraction which lowers an 

injection barrier. Simultaneously, the Coulombic electron-electron repulsion impedes the injection 
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of an additional electron. As a result, QD excitation occurs preferentially as a sequence of 

correlated electron and hole injection steps.  Based on this model, in our numerical calculations, 

we take into account only neutral and singly charged exciton and multiexciton states 

(Supplementary Fig. 17).  

To calculate probabilities of neutral (Pm) and charged (𝑃,- and 𝑃,$) m-exciton states, we solve a 

system of coupled rate equations. For example, the temporal evolution of probability Pm (neutral 

m-exciton) is described by (Supplementary Fig. 17):  

𝑑𝑃,
𝑑𝑡 = −𝛾,𝑃, − (𝑘. + 𝑘/)𝑃, + 𝑘.𝑃,$%- + 𝑘/𝑃,$%$ + 𝛾,-%𝑃,-%,																	(7) 

where gm is the m-exciton total decay rate, and ke and kh are the electron and hole injection rates, 

respectively. Similarly, the rate equations for positively and negatively charged m-excitons (𝛾,- 

and 𝛾,$	decay rates, respectively) can be presented as  

𝑑𝑃,-

𝑑𝑡 = −𝛾,-𝑃,- − 𝑘.𝑃,- + 𝑘/𝑃, + 𝛾,-%- 𝑃,-%- ,																																												(8) 

 

𝑑𝑃,$

𝑑𝑡 = −𝛾,$𝑃,$ − 𝑘/𝑃,$ + 𝑘.𝑃, + 𝛾,-%$ 𝑃,-%$ .																																												(9) 

The total decay rates are computed as a sum radiative and nonradiative Auger rates (denoted by 

subscripts ‘r’ and ‘A’, respectively): 

 𝛾, = 𝛾,,0 +	𝛾,,1,     (10) 

 𝛾,- = 𝛾,,0- +	𝛾,,1- ,     (11) 

𝛾,$ = 𝛾,,0$ +	𝛾,,1$ .     (12) 
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To calculate individual rates that appear in the right-hand side of Supplementary Equation (10 –

12), we characterize each state considered in the modeling in terms of the corresponding number 

of electrons (Ne) and holes (Nh). In particular, for a neutral m-exciton state Ne = Nh = m, while for 

the positively and negatively charged m-exciton, Ne = Nh – 1 = m and Nh = Ne – 1 = m, respectively. 

Next, we apply a scaling law discussed, for example, in refs 4-6. Based on the ‘quadratic’ scaling 

observed for CdSe QDs 6, the Auger rate of the (Ne, Nh) state can be presented as  

𝛾1(𝑁. , 𝑁/) =
𝛾2,1
4 𝑁.𝑁/	,																																																													(13)	

where g2,A is the biexciton Auger rate derived from the measurements. For our cg-QDs, g2,A = 1.78 

ns-1 (derived from the overall biexciton lifetime of 1.2  ns and the radiative lifetime of 13.4 ns; 

Supplementary Fig. 2). 

The radiative rate of the (Ne, Nh) state can be found via summation of rates of the participating 

dipole-allowed transitions. In our modeling, we consider the situation when the per-dot excitonic 

number does not exceed 8, which allows us to limit the summation to the 1Se – 1Shh, 1Se – 1Slh, 

and 1Pe –1Phh transitions (Fig. 2a, inset; main article). We further characterize the contributions 

from the S-type transitions by a single rate  

𝛾%3,0(𝑁. , 𝑁/) = 2𝛾!,#𝑔3𝑓.,%3	(𝑓/,%3/	 + 𝑓/,%35	),																																									(14)	

and present the 1P-transtion radiative rate as 

𝛾%6,0(𝑁. , 𝑁/) = 2𝛾!,#𝑔6𝑓.,%6	𝑓/,%6/	.																																														(15)	

In the above two equations, gS = 2 and gP = 6 are the degeneracies of the S- and P-type states due 

to spin and azimuthal quantum number multiplicities and 𝛾!,# =	𝛾%,# is the single-exciton radiative 
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rate, which is assumed to be 0.075 ns-1 based on the measured photoluminescence (PL) dynamics 

(Supplementary Fig. 2).  

Quantities fe,i and fh,j are the occupation factors of individual quantized states with a certain 

combination of spin (up or down), principal (n = 1, 2, 3…), orbital angular momentum (L = 0, 1, 

2, … for S, P, D…), and azimuthal (M = 0 for L = 0, M = -1, 0, +1 for L = 1, etc.) quantum numbers. 

These combinations are denoted by ‘i’ for electrons [e.g., i = (up, 1, Se, 0) for the spin-up 1S 

electron] and ‘j’ for holes [e.g., j = (up, 1, Shh, 0) for the spin-up 1S heavy hole]. The values of fe,i 

and fh,j are computed for given Ne and Nh from Supplementary Equations (21) and (22) 

(Supplementary Note 3) using a Fermi-Dirac distribution function which accounts for the thermal 

distribution of carriers across the QD quantized states.   

After computing the radiative rates of individual transitions, we find the overall radiative rate 

𝛾0(𝑁. , 𝑁/) from  

𝛾0(𝑁. , 𝑁/) = 𝛾%3,0(𝑁. , 𝑁/) + 𝛾%6,0(𝑁. , 𝑁/).																																				(16)	

Then, we obtain probabilities of various neutral and charged excitonic states from Supplementary 

Equations (7–9) and use them to calculate the intensities of the 1S and 1P EL features (I1S and I1P, 

respectively) from  

𝐼%3 =R S𝑃,𝛾%3,0(𝑚,𝑚) + 𝑃,-𝛾%3,0(𝑚,𝑚 + 1) + 𝑃,$𝛾%3,0(𝑚 + 1,𝑚)U
7

,8%
+ 𝑃9𝛾%3,0(8,8), (17) 

𝐼%6 = 𝑃2$𝛾%6,0(3,2) +R S𝑃,𝛾%6,0(𝑚,𝑚) + 𝑃,-𝛾%6,0(𝑚,𝑚 + 1) + 𝑃,$𝛾%6,0(𝑚 + 1,𝑚)U
7

,8:

+ 𝑃9𝛾%6,0(8,8),																																																																																																														(18) 

where 𝛾%3,0(𝑁. , 𝑁/)	and 𝛾%6,0(𝑁. , 𝑁/) are computed using Supplementary Equation (14) and (15), 

respectively.   
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To relate these calculations to the EL measurements, we follow ref. 4 and assume that the hole and 

electron injection rates are equal to each other and, further, are proportional to the current density 

(j) passing through the device, that is,  

ke = kh = k = b j,      (19) 

 where b  is a proportionality constant.   

Here, we apply the above formalism to model the j-dependent 1S and 1P EL intensities (Fig. 3b of 

the main article and Supplementary Fig. 15). In our modeling, the emission rates are calculated 

from Supplementary Equations (14–16) based on the measured single-exciton radiative rate 

(Supplementary Table 1), and b  and t2 are used as adjustable parameters. We observe the best 

correspondence between the experiment and the modeling for b  = 1.37×107 C-1 cm2   and t2 = 1.5 

ns (Supplementary Fig. 15). Importantly, the biexciton lifetime obtained from the calculations is 

close to that inferred from the measured PL dynamics (t2 = tXX = 1.2 ns; Supplementary Fig. 2b).  

Supplementary Note 3. Modeling of optical gain thresholds  

The gain threshold for the transition, which couples the i-electron and the j-hole states, can be 

found from condition  

 fe,i + fh,j = 1,        (20) 

there fe,i and fh,j are  state’s occupation factors calculated according to the Fermi-Dirac distribution 

function:  

  and ,     (21) fe,i =
1

1+ e
Ee,i−µe
kT

fh, j =
1

1+ e
Ee, j−µh
kT
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where T is the temperature, Ee,i and Eh,j are the electron and hole state energies, and µe and µh are 

the corresponding chemical potentials. In the case when a QD is occupied with Ne electrons and 

Nh holes, µe and µh can be found from:  

 and ,     (22) 

where the summation extends over states with different principle and orbital angular momentum 

numbers (e.g., 1Se, 1Shh, 1Slh, etc.). The summation over states with different azimuthal and spin 

quantum numbers is accounted for by the degeneracy factors ge,i and gh,j that are equal to 2 and 6 

for the S- and P-type states, respectively.  

Applying this approach to cg-QDs with the electronic states depicted in Supplementary Fig. 18, 

we obtain the following room temperature gain thresholds expressed in terms of the per-dot 

average excitonic occupancy: áNñth,gain = 1.35 (1Se – 1Shh), 1.79 (1Se – 1Slh), 3.84 (1Pe – 1Shh), 5.23 

(1Pe – 1Slh), 5.32 (1Pe – 1Phh). In addition to the allowed transitions (1Se – 1Shh, 1Se – 1Slh, and 1Pe 

–1Phh), in these calculations, we have also considered nominally forbidden 1Pe – 1Shh and 1Pe – 

1Slh transitions. The population inversion of the 1Pe – 1Shh occurs before that of the 1Pe –1Phh 

transition, and, as was observed in ref. 4, it determines the optical gain threshold for the cg-QDs. 

Due to optical selection rules, the 1Pe – 1Shh transition is in principle forbidden. However, as was 

invoked previously, this transition can become weakly allowed due to parity violation caused, for 

example, by the electric field associated with multiexciton states, leading to mixing of the S and P 

states4,7.  

 

 

Ne = ge,i
i
∑ fe,i Nh = gh, j

j
∑ fh, j
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