Inactivation of the Hippo Tumor Suppressor Pathway Promotes Melanoma

Marc A. Vittoria¹, Nathan Kingston^{2,} Kristyna Kotynkova¹, Eric Xia¹, Rui Hong⁴, Lee Huang³, Shayna McDonald¹, Andrew Tilston-Lunel², Revati Darp⁵, Joshua Campbell⁴, Deborah Lang³, Xiaowei Xu⁶, Craig Ceol⁵, Xaralabos Varelas² and Neil J. Ganem^{1,4}

¹Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA

²Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA

³Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA

⁴Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.

⁵Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA

⁶Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA

Supplementary Information

Supplemental Figure 1: Hyperactive MAPK Signaling Activates the Hippo Pathway (a) Relative expression of indicated genes from RT-PCR in dox-inducible BRAF^{V600E} Mel-ST and HEK293A cells treated with control siRNA (siC) or YAP and TAZ siRNAs (siYAP/TAZ) without dox (n = 3 independent experiments, graph shows mean ± SEM, two-tailed unpaired t test). (b) Representative IB of dox-inducible wild-type BRAF (BRAF^{WT}) in HEK293A, Mel-ST, and BJ fibroblast cell lines with intensity quantification of YAP phostag below (n = 3 independent experiments, graphs show mean relative intensity \pm SEM, two-tailed unpaired t test). (c) IB of dox-inducible BRAF^{WT} MeI-ST clones cultured \pm dox for 24 h (n \ge 3 independent experiments, graph shows mean relative intensity \pm SEM, two-tailed unpaired t test). (d) Relative expression of indicated genes from RT-PCR in $BRAF^{WT}$ Mel-ST clones cultured \pm dox for 24 h (n = 3 independent experiments, graph shows mean \pm SEM, two-tailed unpaired t test). (e) Left, representative immunofluorescence image of BRAF^{WT} Mel-ST clone stained for YAP/TAZ (green) alone or merged with DNA (DAPI, blue) and actin (Phalloidin, magenta); Right, quantification of nuclear to cytoplasmic ratio of mean YAP/TAZ fluorescence (n > 300 cells from three independent experiments, graph shows mean \pm SEM, scale bar = 25 μ m, two-tailed Mann-Whitney test). (f) Representative IB of dox-inducible BRAF^{V600E} HEK293A and BJ cell lines with intensity quantification of YAP phos-tags (n = 3 independent experiments, graphs show mean ± SEM, two-tailed unpaired t test). (g) Left, representative IB of dox-inducible NRAS^{Q61R} Mel-ST clones cultured \pm dox for 24 h; Right, intensity quantification of YAP phos-tag (n = 3 independent experiments, graph shows mean ± SEM, two-tailed unpaired t test). Source Data are provided as a Source Data file.

Supplemental Figure 2: Detailed Analysis of GSE154679 (a) UMAP of all single-cells from nevus containing murine skin from GSE154679 displaying relative expression of melanocyte markers *Mlana, Mitf, Tyr, Sox10.* (b) Bar graphs of melanocyte subcluster composition dependent upon animal age (top) or genotype (bottom). (c) Log expression of indicated genes across melanocyte subclusters. (d) UMAP of *Cdkn2a* log expression across melanocyte subclusters (n = 589). (e) Hippo component VAM score plotted by melanocyte subcluster (n = 589). (f) Hippo component VAM score comparing nevus (clusters 0, 1) and other melanocytes (clusters 2, 3, 4) (nevus n = 408, other n = 181, two-tailed Mann-Whitney test). (g) YAP/TAZ VAM score according to indicated melanocytic subcluster and genotype. Source Data are provided as a Source Data file.

Merge

b

Supplemental Figure 3: A Subset of Human Melanoma Demonstrates Hippo Pathway Inactivation (a) Representative phase-contrast images of a dox-inducible $BRAF^{V600E}$ Mel-ST clone \pm dox for 48 h at 4X magnification; Right, 10X magnification (scale bar = 100 µm). (b) Percent EdU positive dox-inducible $BRAF^{V600E}$ Mel-ST cells \pm dox for indicated time (n > 200 cells per condition from 2 independent experiments, graph shows mean \pm SEM, two-tailed unpaired t test). (c) Plot of log₂ copy number values from TCGA-SKCM for indicated genes (n = 367, bars represent median with interquartile range). (d) Same data as Figure 3F from TCGA-SKCM with purple circles representing tumors with indicated mutations; bottom left percent is frequency of *LATS1/2* co-heterozygous loss that occurs with indicated mutations. (e) Representative immunofluorescence staining of indicated proteins in panel of human melanoma tissue (scale bar = 25 µm). Source Data are provided as a Source Data file.

Supplemental Figure 4: Oncogenic BRAF Promotes Mitotic Dysfunction (a) Representative still fluorescence and phase-contrast images from a live-cell video of H2B-GFP (green) expressing dox-inducible *BRAF^{V600E}* HEK293A cells cultured \pm dox (scale bar = 25 µm, hh:mm). (b) Plot of mitotic duration and fate of individually tracked mitoses from (a) (n > 120 mitoses per condition from two independent experiments, dots represent individually tracked mitoses, black p-value represents mitotic length significance, two-tailed unpaired t test, blue p-value represents significance for difference in frequency of whole-genome doubling events, two-sided Fisher's exact test). (c) IB of dox-inducible *BRAF^{V600E}* MeI-ST cells treated with Thymidine 2.5 mM or RO-3306 7 µM; Right, intensity quantification of YAP phos-tag (n = 3 independent experiments, graph shows mean \pm SEM, two-tailed unpaired t test). Source Data are provided as a Source Data file.

Supplemental Figure 5: Oncogenic BRAF Promotes Hippo Pathway Activation (a) IB of dox-inducible $BRAF^{V600E}$ HEK293A cells treated with indicated drugs for 24 h; Right, intensity quantification of YAP phostag (n = 3 independent experiments, graph shows mean ± SEM, one-way ANOVA with Dunnett's multiple comparisons test). (b) IB of indicated dox-inducible $BRAF^{V600E}$ MeI-ST clone treated with or without dox for 24 h then subsequently treated with indicated drugs for time course of 2 to 24 h; Below, intensity quantification of YAP phostag (n = 3 independent experiments, graph shows mean ± SEM, one-way ANOVA with Dunnett's multiple comparisons test). (c) Representative maximum intensity projections of confocal z-stacks of dox-inducible $BRAF^{V600E}$ BJ Fibroblasts stained for phalloidin and DAPI. Top, white arrow denotes stress fiber; Bottom, red arrow denotes lack of stress fibers (n = 2 independent experiments, scale bar = 25 µm). (d) Quantification of large stress fibers per cell in Figure S5C (n > 140 cells per condition from 2 independent experiments, box is 25th to 75th percentile with line representing median, whiskers plotted via Tukey method, no dox: minima 0, 25th 1, median 2, 75th 4, maxima 6; dox: minima 0, 25th 0, median 1, 75th 2.0, maxima 10). Source Data are provided as a Source Data file.

Publication	Strain	4-HT Induction Technique	Time to Melanoma Formation	developed / total n	Time to Nevus Formation	developed / total n
	Tyr::CreER ^{T2} , Braf ^{CA/+} , Pten ^{+/+}	Topical	Aged to > 800 days without tumor formation	0/22	~21-28 days	22/22
Dankort et al, 2009, <i>Nature</i> <i>Genetics</i>	Tyr::CreER ^{T2} , Braf ^{+/+} , Pten ^{lox4-} ^{5/lox4-5}	Topical	Aged ~18 months without tumor formation	0/20	None observed	0/20
	Tyr::CreER ^{T2} , Braf ^{CA/+} , Pten ^{lox4-} _{5/+}	Topical	Not reported; Mice required euthanasia between 100 - 200 days	5/5	Not reported	5/5
	Tyr::CreER ^{T2} , Braf ^{CA/+} , Pten ^{lox4-} ^{5/lox4-5}	Topical	Not reported; Mice required euthanasia between 25-50 days	22/22	Pigmented lesions rapidly became malignant	
Ruiz-Vega et al, 2020, e <i>Lif</i> e	Tyr::CreER ^{T2} , Braf ^{CA/+}	Topical	Length of aging not reported, no tumor formation noted	none, n not reported	~14-21 days	all mice, n not reported

Tyr::CreER^{T2}, Lats 1/2^{-/-}

SOX10
YAP/TAZ
pERK 1/2

Image: CreeRt of the second second

е

d

Tyr::CreER^{T2}, Lats1/2-/-

Supplemental Figure 6: Characterization of *Lats1/2^{-/-}***Melanoma (a)** Table of publications with rate of nevus or melanoma formation in various *Braf^{CA}*-expressing mice. (b) Representative IHC of indicated proteins, scale bar = 40 µm (n ≥ 2 independent mice with similar results). (c) Representative images of spontaneous *Braf^{V600E}/Lats1/2^{-/-}* or *Lats1/2^{-/-}* mouse tumors, scale bars = 0.5 cm. (d) Representative IHC of indicated proteins in *Lats1/2^{-/-}* tumor (left of dotted line) and normal adjacent tissues (right of dotted line), scale bar = 40 µm, n ≥ 3 mice with similar results. (e) Representative IHC of indicated proteins of *Lats1/2^{-/-}* mouse skin treated with 4-HT prior to tumorigenesis; right is a hematoxylin and eosin staining of a serial section, scale bar = 40 µm, n = 1 mouse. (f) Time from IP injection of tamoxifen to a study endpoint of mice with indicated genotypes. (g) Representative IHC of indicated proteins including secondary antibody only control, scale bar = 40 µm, n ≥ 2 mice with similar results. Source Data are provided as a Source Data file.

NAME	SIZE	ES	NES	NOM p-val	FDR q-val
CORDENONSI_YAP_CONSERVED_SIGNATURE	57	0.642258	2.051217	0	0
WANGETAL_YAPTAZ_TARGET_SCORE	22	0.764397	2.0402122	0	0
YAP1_UP	45	0.45573	1.4316236	0.054347824	0.11726231
REACTOME_YAP1_AND_WWTR1_TAZ_STIMULATED_GENE_EX PRESSION	15	0.336619	0.84074897	0.68662953	0.86892515
REACTOME_RUNX3_REGULATES_YAP1_MEDIATED_TRANSC RIPTION	8	0.347339	0.7453292	0.7538226	0.8074144

NAME	SIZE	ES	NES	NOM p-val	FDR q-val
CORDENONSI_YAP_CONSERVED_SIGNATURE	57	0.55971074	1.9228522	0	0
WANGETAL_YAPTAZ_TARGET_SCORE	22	0.66323537	1.866832	0.001477105	5.03E-04
YAP1_UP	45	0.48710054	1.5982525	0.005633803	0.01708542
REACTOME_RUNX3_REGULATES_YAP1_MEDIATED_TRANSC RIPTION	8	0.5892833	1.3134943	0.14194578	0.16061561
REACTOME_YAP1_AND_WWTR1_TAZ_STIMULATED_GENE_EX PRESSION	15	0.22996822	0.598145	0.95348835	0.9587438

f

Cdkn2a^{-/-} Lkb1^{-/-} Braf^{v600E}

С

d

Cdkn2a^{,,}/Braf^{v600E}

Supplemental Figure 7: YAP/TAZ Activation is Enriched in Animal Melanoma Models (a) Table of GSEA results from Figure 6A, see methods for full statistical analysis. (b) GSEA performed on GSE61750 comparing enrichment of YAP/TAZ signatures in melanoma to benign, proliferating melanocytes in indicated genotypes (see Figure S7D). (c) Table of GSEA results from Figure S7B. (d) GSEA heatmap results of gene expression from Figure 6A and S7B (red indicates higher expression, blue lower). (e) Percent relative viability decrease in indicated cell lines treated with siRNA targeting YAP (siYAP), TAZ (siTAZ) or a combination (siYAP/TAZ) for 4 days compared to control siRNA treated cells (n = 3 independent experiments with \geq 5 technical replicates, graph shows mean \pm SEM, two-tailed unpaired t test). (f) Relative viability of D4M.3A or Mel-ST cells treated with 10 µM TEAD inhibitor MGH-CP1 (n = 3 independent experiments with \geq 5 technical replicates, graph shows mean \pm SEM, two-tailed unpaired t test). Source Data are provided as a Source Data file.

Supplemental Figure 8: Murine Melanomas Lack Significant Aneuploidy (a) Representative copy number plots of ULP-WGS copy number analysis of control skin (*Tyr::CreER*^{T2-/-}) or tumors from indicated genotypes (control n = 1, *Lats1/2*^{-/-} n = 3, *Braf*^{V600E}/*Lats1/2*^{-/-} n = 2, *Braf*^{V600E}/*PTEN*^{-/-} n = 3). Source Data are provided as a Source Data file.

Supplementary Table 1: YAP/TAZ Gene Set				
Gene	Derived from:	Gene	Derived from:	
AGFG2	Cordenonsi	IGFBP3	Wang et al. 2018	
AMOTL2	Cordenonsi / Wang et al. 2018	ITGB2	Cordenonsi	
ANKRD1	Cordenonsi / Wang et al. 2018	ITGB5	Cordenonsi	
ARHGEF17	Wang et al. 2018	LATS2	Wang et al. 2018	
ASAP1	Cordenonsi / Wang et al. 2018	LHFPL6	Cordenonsi	
AXL	Cordenonsi / Wang et al. 2018	MARCKS	Cordenonsi	
BICC1	Cordenonsi	MDFIC	Cordenonsi	
BIRC5	Cordenonsi	MYOF	Wang et al. 2018	
CAVIN2	Cordenonsi	NDRG1	Cordenonsi	
CCDC80	Wang et al. 2018	NT5E	Wang et al. 2018	
CDC20	Cordenonsi	NUAK2	Wang et al. 2018	
CDKN2C	Cordenonsi	PDLIM2	Cordenonsi	
CENPF	Cordenonsi	PHGDH	Cordenonsi	
COL4A3	Cordenonsi	PMP22	Cordenonsi	
CRIM1	Cordenonsi / Wang et al. 2018	PTPN14	Wang et al. 2018	
CCN2 (CTGF)	Cordenonsi / Wang et al. 2018	RBMS3	Wang et al. 2018	
CCN1 (CYR61)	Cordenonsi / Wang et al. 2018	SCHIP1	Cordenonsi	
DAB2	Cordenonsi	SERPINE1	Cordenonsi	
DDAH1	Cordenonsi	SGK1	Cordenonsi	
DLC1	Cordenonsi	SH2D4A	Cordenonsi	
DOCK5	Wang et al. 2018	SHCBP1	Cordenonsi	
DUSP1	Cordenonsi	SLIT2	Cordenonsi	
DUT	Cordenonsi	STMN1	Cordenonsi	
ECT2	Cordenonsi	TGFB2	Cordenonsi / Wang et al. 2018	
EMP2	Cordenonsi	TGM2	Cordenonsi	
ETV5	Cordenonsi	THBS1	Cordenonsi	
F3	Wang et al. 2018	TK1	Cordenonsi	
FGF2	Cordenonsi	TNNT2	Cordenonsi	
FJX1	Wang et al. 2018	TNS1	Cordenonsi	
FLNA	Cordenonsi	TOP2A	Cordenonsi	
FOXF2	Wang et al. 2018	TSPAN3	Cordenonsi	
FSCN1	Cordenonsi			
FSTL1	Cordenonsi			
GADD45A	Wang et al. 2018			
GADD45B	Cordenonsi			
GAS6	Cordenonsi			
GGH	Cordenonsi			
GLS	Cordenonsi			
HEXB	Cordenonsi			
HMMR	Cordenonsi			

Supplementary Table 2: Hippo Component Gene Set

_

Genes
AMOT
AMOTL1
AMOTL2
CASP3
DVL2
LATS1
LATS2
MOB1A
MOB1B
NPHP4
SAV1
STK3
STK4
TJP1
TJP2
WWC1
WWTR1
YAP1
YWHAB
YWHAE
TEAD1
TEAD2
TEAD3
TEAD4