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SUPPLEMENTARY METHODS

In this work, we employed an adapted version of the model developed by Arregui et al.1 to estimate the long-term
impacts of disruptions in TB diagnosis due to the Covid-19 pandemic. The adapted version is fundamentally the
same as the original model, except that it introduces a new way of calculating confidence intervals of the outcomes,
which works better than the previous one while preserving all the sources of uncertainties.

This model is a deterministic, age-structured model based on ordinary differential equations, where individuals
belonging to different age strata are considered to experience different levels of epidemiological risk that translate
into age-specific parameter values for at least some of the key dynamical processes. According to this model, the
dynamical architecture that defines the disease dynamics within each age group is similar to previous approaches.
Other aspects, such as the description of the contact patterns among age groups that lead to pathogen’s spreading, or
the coupling between populations’ aging and transmission dynamics are profusely described in Arregui et al. work1,
where the reader is referred for further details.

In the following lines, we summarise the main aspects of the model, including its Natural History description of the
disease, the description of the coupling between the population’s aging and disease dynamics, and the propagation
of the uncertainty incurred in the outcome. The entire model is described at a much greater level of detail in the
original publication1.

M.tb. transmission dynamics within age strata.

The model is age-structured, including 15 different age groups, 14 of them covering 5 years of age up to 70 years
old, and the last one containing all individuals older than 70 years old. Within each age group, we have a class of
unexposed individuals –susceptible–, two different latency paths to disease –fast and slow – and six different kinds of
disease, depending on its aetiology: -nonpulmonary, pulmonary (smear-positive) and pulmonary (smear-negative)-,
and depending on if it is left untreated or treated. After the disease phase, we consider the treatment outcomes
contemplated by the WHO data schemes: treatment completion, default, failure, and death2.
Being the model compartmental, it reproduces the natural history of TB making use of 19 possible reservoirs for

individuals, which depends upon the status of the disease. In Supplementary Figure 1 we schematize the whole model.
In a summary, there are several types of possible transitions between the compartments of the TB natural history,

which are listed below:

• Infection processes: after contact with an infectious individual, susceptible individuals (S) get infected, entering
either the fast (LF ), or slow latency states (LS).
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• Re-infection processes: individuals in the slow latency reservoir can get re-infected, a fraction of which will
develop TB fast after re-infection. This is modeled as a transition from LS to LF .

• Development of active TB: infected individuals (either LF or LS) may develop initially undiagnosed -and thus
untreated- TB (D states).

• TB diagnosis: with some delay after the disease onset, TB gets diagnosed and treatment starts (transition from
D states to T ones)

• Treatment outcomes: (transitions from T states to R ones) different possible outcomes are possible: –either
success or failure/default- (failure of treatment moves individuals to F)

• Disease relapse: (transitions back from T to R)

• Death: active TB patients, either diagnosed or not, are assigned a TB-specific mortality rate.

The specific details about the mathematical parameterization of these and other model transitions are explicitly
enumerated and described in the supplementary appendix of Arregui et al. work1, and the ODE system that governs
the evolution in each compartment is also reported in the next section. Altogether, they define the evolution of
individuals with time, which can finally get aggregated across age strata to define global estimates of TB burden.

Within this scheme, infections occur after contact between susceptible individuals and infectious ones. If S(a, t)
represents the number of susceptible subjects in the age group a, at a given time t, the number of new infections that
will be observed will be equal to the product of S(a, t) and the force of infection perceived by that sub-population,
λ(a, t), which represents the fraction of susceptible individuals who get infected per year. In turn, the force of infection
is proportional to the following sum:

∑
a′

ξc(a, a
′, t)Υ(a′, t) (1)

where Υ(a′, t) is the density of all the infectious individuals within age-group a′ at time step t, weighted by their
relative infectiousness; and ξc(a, a

′, t) represents the relative contact frequency that an individual of age a has with
individuals of age a′ at time t, with respect to the overall average of contacts that an individual has per unit time with
anyone else. For the computation of the contact matrices used in our model, we have integrated data from different
survey studies conducted in African countries (Kenya3, Zimbabwe4 and Uganda5), to obtain a unique matrix broadly
representative of contact structures in Africa1,6. Importantly, we also take into account that, as the demographic
structure of the population changes, the contact patterns change too6, being this the origin of the dependence over
time we found in matrices.
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Ordinary differential equations system

In the previous section, we included the TB natural history which is used in the model as the compartments of
the compartmental model. The evolution of the population in each compartment is given by an ordinal differential
equation (ODE) which captures the transitions that either introduce new individuals or withdraw them. The following
system of differential equations describes, then, the evolution of the different dynamical states of the model:

Ṡ(a, t) = −λ(a, t)S(a, t)− ((1− δ(a− 14))S(a, t)− (1− δ(a))S(a− 1, t))/τ (2)

+ δ(a)(1−mcmd(t))∆N (a, t) + (1− δ(a))∆N (a, t)S(a, t)/N(a, t)

L̇s(a, t) = (1− p(a))λ(a, t)S(a, t)− p(a)qλ(a, t)Ls(a, t)− ωsLs(a, t) + δ(a)mcmd(t)(1− p(0))∆N (a, t) (3)

− ((1− δ(a− 14))Ls(a, t)− (1− δ(a))Ls(a− 1, t))/τ + (1− δ(a))∆N (a, t)Ls(a, t)/N(a, t)

L̇f (a, t) = p(a)λ(a, t)S(a, t)− ωfLf (a, t) + p(a)qλ(a, t)(Ls(a, t) +Rp+N (a, t) +Rp−N (a, t) +RnpN (a, t)) (4)

+ p(a)qλ(a, t)(Rp+S(a, t) +Rp−S(a, t) +RnpS(a, t) +Rp+D(a, t) +Rp−D(a, t) +RnpD(a, t))

− ((1− δ(a− 14))Lf (a, t)− (1− δ(a))Lf (a− 1, t))/τ + δ(a)mcmd(t)p(0)∆N (a, t)

+ (1− δ(a))∆N (a, t)Lf (a, t)/N(a, t)

Ḋp+(a, t) = ωfρp+(a)Lf (a, t) + ωsρp+(a)Ls(a, t)− µp+Dp+(a, t)− d(t)Dp+(a, t) (5)

− νDp+(a, t) + rNRp+N (a, t) + rSRp+S(a, t) + rDRp+D(a, t) + θDp−(a, t)

− ((1− δ(a− 14))Dp+(a, t)− (1− δ(a))Dp+(a− 1, t))/τ + (1− δ(a))∆N (a, t)Dp+(a, t)/N(a, t)

Ḋp−(a, t) = ωf (1− ρp+(a)− ρnp(a))Lf (a, t) + ωs(1− ρp+(a)− ρnp(a))Ls(a, t)− µp−Dp−(a, t) (6)

− ηd(t)Dp−(a, t)− νDp−(a, t) + rNRp−N (a, t) + rSRp−S(a, t) + rDRp−D(a, t)− θDp−(a, t)

− ((1− δ(a− 14))Dp−(a, t)− (1− δ(a))Dp−(a− 1, t))/τ + (1− δ(a))∆N (a, t)Dp−(a, t)/N(a, t)

Ḋnp(a, t) = ωfρnp(a)Lf (a, t) + ωsρnp(a)Ls(a, t)− µnpDnp(a, t)− ηd(t)Dnp(a, t) (7)

− νDnp(a, t) + rNRnpN (a, t) + rSRnpS(a, t) + rDRnpD(a, t)

− ((1− δ(a− 14))Dnp(a, t)− (1− δ(a))Dnp(a− 1, t))/τ + (1− δ(a))∆N (a, t)Dnp(a, t)/N(a, t)

Ṫp+(a, t) = d(t)Dp+(a, t)−ΨTp+(a, t) + θTp−(a, t) (8)

− ((1− δ(a− 14))Tp+(a, t)− (1− δ(a))Tp+(a− 1, t))/τ + (1− δ(a))∆N (a, t)Tp+(a, t)/N(a, t)

Ṫp−(a, t) = ηd(t)Dp−(a, t)−ΨTp−(a, t)− θTp−(a, t) (9)

− ((1− δ(a− 14))Tp−(a, t)− (1− δ(a))Tp−(a− 1, t))/τ + (1− δ(a))∆N (a, t)Tp−(a, t)/N(a, t)

Ṫnp(a, t) = ηd(t)Dnp(a, t)−ΨTnp(a, t) (10)

− ((1− δ(a− 14))Tnp(a, t)− (1− δ(a))Tnp(a− 1, t))/τ + (1− δ(a))∆N (a, t)Tnp(a, t)/N(a, t)

Ḟ (a, t) = Ψfp+
F Tp+(a, t) + Ψfp−

F (Tp−(a, t) + Tnp(a, t))− µp+F (a, t) (11)

− ((1− δ(a− 14))F (a, t)− (1− δ(a))F (a− 1, t))/τ + (1− δ(a))∆N (a, t)F (a, t)/N(a, t)

Ṙp+N (a, t) = νDp+(a, t)− rNRp+N (a, t)− p(a)qλ(a, t)Rp+N (a, t) (12)

− ((1− δ(a− 14))Rp+N (a, t)− (1− δ(a))Rp+N (a− 1, t))/τ + (1− δ(a))∆N (a, t)Rp+N (a, t)/N(a, t)
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Ṙp−N (a, t) = νDp−(a, t)− rNRp−N (a, t)− p(a)qλ(a, t)Rp−N (a, t) (13)

− ((1− δ(a− 14))Rp−N (a, t)− (1− δ(a))Rp−N (a− 1, t))/τ + (1− δ(a))∆N (a, t)Rp−N (a, t)/N(a, t)

ṘnpN (a, t) = νDnp(a, t)− rNRnpN (a, t)− p(a)qλ(a, t)RnpN (a, t) (14)

− ((1− δ(a− 14))RnpN (a, t)− (1− δ(a))RnpN (a− 1, t))/τ + (1− δ(a))∆N (a, t)RnpN (a, t)/N(a, t)

Ṙp+S(a, t) = Ψ(1− fp+
D − fp+

F − fp+
µ )Tp+(a, t)− rSRp+S(a, t)− p(a)qλ(a, t)Rp+S(a, t) (15)

− ((1− δ(a− 14))Rp+S(a, t)− (1− δ(a))Rp+S(a− 1, t))/τ + (1− δ(a))∆N (a, t)Rp+S(a, t)/N(a, t)

Ṙp−S(a, t) = Ψ(1− fp−
D − fp−

F − fp−
µ )Tp−(a, t)− rSRp−S(a, t)− p(a)qλ(a, t)Rp−S(a, t) (16)

− ((1− δ(a− 14))Rp−S(a, t)− (1− δ(a))Rp−S(a− 1, t))/τ + (1− δ(a))∆N (a, t)Rp−S(a, t)/N(a, t)

ṘnpS(a, t) = Ψ(1− fp−
D − fp−

F − fp−
µ )Tnp(a, t)− rSRnpS(a, t)− p(a)qλ(a, t)RnpS(a, t) (17)

− ((1− δ(a− 14))RnpS(a, t)− (1− δ(a))RnpS(a− 1, t))/τ + (1− δ(a))∆N (a, t)RnpS(a, t)/N(a, t)

Ṙp+D(a, t) = Ψfp+
D Tp+(a, t)− rDRp+D(a, t)− p(a)qλ(a, t)Rp+D(a, t) (18)

− ((1− δ(a− 14))Rp+D(a, t)− (1− δ(a))Rp+D(a− 1, t))/τ + (1− δ(a))∆N (a, t)Rp+D(a, t)/N(a, t)

Ṙp−D(a, t) = Ψfp−
D Tp−(a, t)− rDRp−D(a, t)− p(a)qλ(a, t)Rp−D(a, t) (19)

− ((1− δ(a− 14))Rp−D(a, t)− (1− δ(a))Rp−D(a− 1, t))/τ + (1− δ(a))∆N (a, t)Rp−D(a, t)/N(a, t)

ṘnpD(a, t) = Ψfp−
D Tnp(a, t)− rDRnpD(a, t)− p(a)qλ(a, t)RnpD(a, t) (20)

− ((1− δ(a− 14))RnpD(a, t)− (1− δ(a))RnpD(a− 1, t))/τ + (1− δ(a))∆N (a, t)RnpD(a, t)/N(a, t)

where δ(a) stands for the Dirac delta function (δ(x = 0) = 1 and δ(x ̸= 0) = 0). There are three quantities that
depend on time: the force of infection λ(a, t), the diagnosis rate d(t) and the correction terms ∆N (a, t), standing for
any demographic variation in the population due to causes foreign to TB and aging.

For further information about the ODE system, and the set of parameters that appear in them, the reader is referred
to the supplementary materials of the original source1, in which they are described exhaustively. In summary, the
parameters appearing here represent either probabilities (for example, probability of developing one kind of TB or
another, or success probability of under-treatment individuals) or rates (for instance, the rate of progression from
slow and fast latency towards developing active TB) that are reported in the literature and capture the progression
of individuals across the states of the model.

Population dynamics across age strata: individuals’ ageing and demographic evolution.

This model includes the simultaneous description of the disease dynamics across all age groups in an entire pop-
ulation, using parameters that are, in general, dependent on age. Therefore, it is not enough to describe how the
sub-populations associated with the disease states evolve, but the model also includes an aging dynamics whereby
individuals transit across the different age strata as they get older. In Supplementary Figure 2 we schematize this
phenomenon as the transitions between age strata inside each pyramid and the change in the shape of the demographic
pyramid with time.

Two additional ingredients that are key to describing the evolution of the population and the aging are then included
in our model. First, we consider empirical data and forecasts to model past and future fertility levels, respectively.
Second, we introduce continuous correction terms ∆N (a, t) that are added or subtracted from the population within
the age stratum a at time t while the simulation unfolds.

These terms are calculated dynamically to make the time evolution of the demographic pyramid match the demo-
graphic forecasts reported in the United Nations population division database until the end of the simulation. This
way, the correction terms ∆N (a, t) are distributed among all disease states proportionally to their relative size. These
terms represent changes in the population of each stratum that are unrelated to the dynamics of the disease (TB
unrelated mortality and migratory fluxes).
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In a summary, demographic pyramids in Supplementary Figure 2 evolve with time in such a way that individuals
transit inside the pyramid as they age, but also we update the whole population in a data-driven way. That is, we
update the number of individuals inside each age strata according to the prospects of the UN population division,
where the correction terms ∆N (a, t) are used for this purpose. This assures that both the aging and the demographic
prospects are included in the model, capturing the evolution of the population.

Propagation of the uncertainty

The uncertainty sources1 are summarized here:

• Parameters associated with the Natural History of the disease are treated as totally independent uncertainty
sources.

• TB burden estimations provided by the WHO. Based upon several case notifications surveilled in each country,
the World Health Organization provides estimations for incidence and mortality rates for almost all countries.

• Demographic structures that are reported in the form of demographic pyramids with 15 age groups, the first 14
from 0y to 70y each 5y, and the last one comprises 70+y. Each group has its uncertainty but we modify them
as a whole and not as 15 independent uncertainty sources.

• Contact matrices, whose uncertainty comes from the variability between studies used for building regional
contact matrices.

Those uncertainty sources are managed independently and their contributions to the uncertainty of a certain model
outcome x are to be evaluated. On the original version of the model1 the uncertainty of an outcome was translated
by doing a sensibility analysis that accounts for the variation produced in the outcome when the median value of an
uncertainty source is changed by its extreme values and the uncertainty is built by grouping individual sensitivities
according to the type of input data for building credibility intervals and significance levels for the outcome.

In this work, thus, this procedure is deprecated and has changed radically, as the old procedure was conservative
in the sense that for each uncertainty source the worst-case scenario was assumed always, which is not always a
realistic approach to spreading. This approach is replaced, and a probabilistic procedure is implemented. The process
performed in the new version of the model is described here:

1. Generate a set of N new values of the uncertainty sources taking into account the original value and its CI. The
generation of new values is not trivial as we cannot treat all the uncertainty sources in the same way. Further
details of the generation procedure are explained in the next section.

2. Calibrate the model for each new set of parameters.

3. Run the model for each new set of parameters, thus obtaining a set of N values for a certain outcome.

4. The outcome is obtained as the median value and the CI interval as the 95% quantile of the set of outcomes.

Proceeding this way we can generate a CI for any outcome the model can give, assuring that all the uncertainty
sources are taken into account. The generation process of the new values for each uncertainty source is described in
the following section.

Generation of new values for the uncertainty sources

In general, we assume that the reported confidence intervals of each value can be interpreted as coming from a
normal distribution, thus being the reported value the mean and building the standard deviation from the CI, so we
have pi ∼ N (µ, σ).

This allows us to generate random numbers under those normal distributions that serve as our new value for the
uncertainty source, but caution is needed, as there are several points we must consider. First, some parameters that
belong to the interval ∈ [0,∞), so their normal distribution must be renormalized in such a way that all the probability
lies within the [0,∞) interval. Other parameters represent probabilities, so not only do they lie in the interval [0, 1]
but also are bounded to some other parameters. As an example, if we take the treatment success probability and
calculate a new value that is higher than the original, then the probability of not succeeding must decrease accordingly.



6

Here, the random number generation procedure trust in R, as we use the random number generators included in the
base package (R 3.4.4).
In the case of contact matrices, we consider each value of the matrix as independent from the others, as each number

is obtained through surveys performed in all age groups, and represents the contact they establish with the other age
groups. This means that the matrices are not symmetrical in the sense that they do not report the same number of
contacts between age group a towards age group a’ as contacts from a’ to a, so they do not show this constraint.
Thus, a new matrix is obtained by taking each Ma,a′ and recalculating it within its distribution. As the number of
contacts or the contact rate must lie within the interval ∈ [0,∞), they cannot be negative.
Moving to the TB burden, there are two magnitudes reported here, incidence and mortality per million population

from the year 2000 to the year 2018. As our model calibrates both the infection force and the diagnosis rate based on
this data, we can modify incidence and mortality separately. Nevertheless, values inside each block must be changed
in the same way, so if the new incidence in the year 2000 is higher than the original, then all the incidence values
of the other years must be higher than their previous values too, as we are moving towards a high incidence setting.
Then, we generate new values for the TB burden by drawing a Z-score from the normal distribution N (0, 1) and then
using it for calculating the new incidence of each year j, thus:

ijnew = ijorig + Z · σj (21)

where σj is the standard deviation of the normal distribution of the j-th year. Then this is repeated with a new
Z-score for the mortality so both incidence and mortality are modified as a block.

Finally, in dealing with demography we decided to act on the shape of the demographic pyramid instead of modifying
the global population. This way the change from one year to another is not too abrupt. Let’s denote an arbitrary
age group as a so a ∈ [1, 15]. A new Z-score, namely Z ′, is drawn from N (0, 1) and a new value for the base of the
pyramid (a=1) is calculated by:

n(a = 1)new = n(a = 1)orig + Z · σ(a = 1) (22)

Then, we modify the rest of the age groups from the base to the top of the pyramid but using a Z-score given by:

Z(a, Z ′) = M(Z ′) · a+K(Z ′) (23)

where M(Z ′) = − 1
7Z

′ and K(Z ′) = 8
7Z

′. This assures that Z(1) = Z ′ and Z(15) = −Z ′, which implies that the
excess or lack of population in the base groups balance out by the contrary effect in the top of the pyramid, preserving
the total population. Consequently, the new value for any group is given by:

n(a)new = n(a)orig + Z(a, Z ′) · σ(a) (24)

Up to this point, we have been able to generate a new set of values for all the uncertainty sources described before.
Finally, for each one of these sets, the model needs to be calibrated.

SUPPLEMENTARY NOTES 1

Mobility patterns, Covid-19 influence, and modeling decisions: In this study, we opt to introduce the
pandemic disruption as a multiplicative factor that either increases or decreases the expected diagnosis value if the
pandemic had never happened and evaluate the changes that occur in the forecast. This multiplicative factor, based
on WHO and local reports, accounts not only for the lockdowns but for the whole period in which the healthcare
system is disrupted, which is, generally, longer than the lockdown itself.

As facemasks and social distancing have been globally introduced as a countermeasure for avoiding Covid-19
transmission, some effect is expected over the transmission of other airborne diseases such as TB. Interestingly
enough, if we observe the changes in mobility according to Google’s data7, along with the Covid-19 confirmed cases
and the reduction in the TB notifications in India from Feb 2020 to Oct 20218 (see Supplementary Figure 3), we realize
that during high-Covid-19 burden periods, where more strict measures are implemented, presence in households and
Grocery & pharmacy places increases. Moreover, changes in mobility patterns suggest that, during several phases of
the pandemic, measures forced individuals to interact in closed spaces.

From Supplementary Figure 3 we also learn that those high-incidence Covid-19 periods, and when mobility changes
drastically, a match with periods of low TB notification when compared to the same period in 2019 is found. This
suggests that neither arguing about rises nor decreases in transmission seems to have enough support from data.
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SUPPLEMENTARY NOTES 2

Alternative scenario by force of infection and treatment completions: In the model, the force of infection
is calculated as:

λ(a, t) = β(t)
∑
a′

M(a, a′, t)Υ(a′, t) (25)

where β(t) is a half sigmoid calibrated by the model, M(a, a′, t) represents the relative contact frequency that an
individual of age a has with individuals of age a′ at time t, with respect to the overall average of contacts that an
individual has per unit time with anyone else. Υ(a′, t), on the other hand, represents the weighted density of all the
infectious individuals within age-group a′ at time step t. All together build the force of infection, which represents
the rate at which infection occurs at time step t for a susceptible individual in age-group a.
Aiming to characterize the effect of a possible modification in λ(a, t), we perform a sensitivity analysis over the TB

burden forecasts of the model in the four countries of the study. Given the information presented in Supplementary
Figure 3, it is difficult to quantify a variation in the force of infection, as mobility changes suggest that individuals left
public spaces and frequented more private and closed spaces. At the same time, the non-pharmaceutical interventions
implemented to halt COVID-19 transmission might have had an effect also on the transmission of TB. Early evidence
shows that this is not the case and that the transmission of TB has remained constant or even has increased in certain
contexts9,10.
Thus, we perform our sensitivity analysis introducing a multiplicative factor that comprises both increases and

decreases evenly distributed around the base value in the range βr ∈ [0.85, 1.15], representing variations from −15%
to 15% of the base value. The new value of the force of infection is thus obtained as:

λ̄(a, t) = βrλ(a, t) (26)

Regarding the treatment completion, in the main text a fixed value of η = 0.788 multiplicative factor is adopted, as
literature findings support it. Here, we also decided to explore a more conservative case in which the multiplicative
factor is raised to η = 0.90, which allows more patients to be treated quickly in the model. Then, we perform our
simulations and produce forecasts for every alternative scenario and present them in two panels, one for each value
of the treatment completion. Supplementary Figure 4 shows the different forecasts when the force of infection is
modified accordingly to the multiplicative factor βr for the same value as in the main text, while Supplementary
Figure 5 presents the forecasts with the alternative treatment completion value.

In Supplementary Figure 4 the results for the sensitivity over λ(a, t) with a treatment completion scale factor
of 0.788, and the results are, as expected, highly dependent upon the force of infection values. That’s because
the infections in the model are mainly driven through primary infections, i.e., those that occur upon susceptible
individuals. Primary infections are highly dependent on λ(a, t) too, as in the model they are calculated as the sum
over all age groups a of the product λ(a, t)S(a, t), thus, the fraction of susceptible individuals of age a that gets
infected in time step t. Nevertheless, λ(a, t) also affects reinfections, which ultimately leads to a high reduction of the
expected burden if it decreases, along with an increment of incidence and mortality if it decreases.

Moreover, in Supplementary Figure 5 the results for the sensitivity over λ(a, t) with a treatment completion scale
factor of 0.90 are shown. We recover the same qualitative behavior that in the previous case, but not quantitatively, as
all future burdens are lower because we are allowing more sick individuals to be treated than in the previous scenario
during the pandemic period.

SUPPLEMENTARY NOTES 3

Recurrent bumps: Alternative scenario where the disruption lasts longer than expected: Given the
current situation with COVID-19 variants spreading, it is not clear if the pandemic is reaching an end soon. Under
those circumstances, we decided to perform a sensitivity analysis in which we explore the hypothetical scenario of
having an extra disruption in diagnosis similar to the one reported in the data.

Thus, we perform a new set of simulations in which we forecast both incidence and mortality when another bump
equal to the fitted ones is introduced right after the end of the former. In Indonesia, Kenya, and Pakistan, this is
trivial, as there is only one big bump in diagnosis reported, whereas, in India, there were two separate bumps, a first,
big one, and a second, narrow one. In this situation, we analyzed separately each case, studying the case of repeating
either the first bump or the narrowest, second bump. The results of this analysis are reported in Supplementary
Figure 6, where diagnosis rates, incidence temporal series, and mortality in 2035 are reported in each scenario.
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We observed that, if another disruption is to happen, an even greater increase in mortality occurs in every coun-
try, which leads to more deaths associated with the diagnosis disruptions. Moreover, incidence levels, especially in
Indonesia, but happening in all countries, need more time to recover the levels of the baseline scenario, risking, even
more, the END TB goals.
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J. Llenas-Garćıa, et al., International Journal of Infectious Diseases (2021).
[10] Y. Geng, G. Li, and L. Zhang, Frontiers in Public Health 9 (2021).



9

F

LF

Dp+ Dp- Dnp

Tp+

Rp+N Rp+S Rp+D Rp-N Rp-S Rp-D RnpN RnpS RnpD

Tp- Tnp

LS

S

Infections and reinfections
Endogenus progression to disease
Diagnosis

Treatment completion
Smear progression
Deaths by tuberculosis

Natural recovery

SUSCEPTIBLE

LATENT

DISEASE

DISEASE 
UNDER
TREATMENT

TREATMENT 
OUTCOMES

TREATMENT 
FAILURE

PULMONARY DISEASE SMEAR+ PULMONARY DISEASE SMEAR- NON PULMONARY DISEASE 

Supplementary Figure 1. Natural history of the disease employed in the mathematical model1. Individuals are classified
according to their epidemiological status, which can be: S: susceptible. L: latent. D: (untreated) disease, T (treated) disease,
R recovered, F: failed recovery . The types of TB considered here are: p+: Pulmonary Smear-Positive, p-: Pulmonary Smear-
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are: N: Natural, S: Successful, and D: Default (abandon of treatment).
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C: India
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D: Kenya
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Supplementary Figure 4. TB burden under alternative scenarios in selected countries for a fixed value of η = 0.788. In each
country, the top figure shows the baseline changes in incidence per million population when βr is introduced. The peak area
changes with the value of βr, either increasing (βr > 1) or decreasing (βr < 1) from the βr = 1 standard scenario. The bottom
figure shows the expected additional deaths measured in 2035 (thus, the integral of the peak) when compared to the forecast
without Covid-19. Colors for each value of βr are the same in both figures.
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D: Kenya
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Supplementary Figure 5. TB burden under alternative scenarios in selected countries for a fixed value of η = 0.9. In each
country, the top figure shows the baseline changes in incidence per million population when βr is introduced. The peak area
changes with the value of βr, either increasing (βr > 1) or decreasing (βr < 1) from the βr = 1 standard scenario. The bottom
figure shows the expected additional deaths measured in 2035 (thus, the integral of the peak) when compared to the forecast
without Covid-19. Colors for each value of βr are the same in both figures.
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Supplementary Figure 6. Diagnosis and TB burden in alternative scenarios. The first column reports the diagnosis rate D(t),
in each country, in the baseline scenario (grey dotted line) compared to the COVID-19 primary disruption and the hypothetical
second disruption (blue lines). The second column reports TB incidence temporal series in each country in the same scenarios
as before. If a secondary disruption is introduced, baseline incidence levels take more time to be reached. Finally, the third
and last column reports the expected mortality in the year 2035 comparing the primary and primary plus secondary scenarios.
In the latter, an increase in mortality leads to even more deaths caused by the pandemic disruption of TB care.


