Supplemental:

Cross-seeding of wild-type Amyloid-β with Arctic but not Italian familial mutants accelerates fibril formation in Alzheimer's Disease

Ruina Liang, Yao Tian and John H. Viles

Supplemental Figures S1 – S12

Supplemental Figure S1: TEM images at equilibrium phase Arctic and Italian Isoforms.

Supplemental Figure S2: Aβ42(Italian) monomer cross-seeding with Aβ(WideType) and Aβ(Italian) fibrils.

Supplemental Figure S3: A β 40(Arctic) monomer cross-seeding with A β (WideType) and A β (Arctic) fibrils.

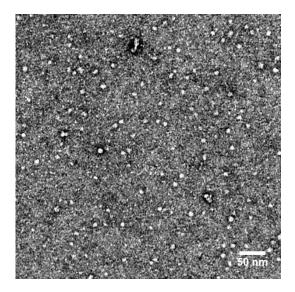
Supplemental Figure S4: Aβ40(WildType) monomer cross-seeding with Aβ(WildType), Aβ(Italian) and Aβ(Arctic) fibrils.

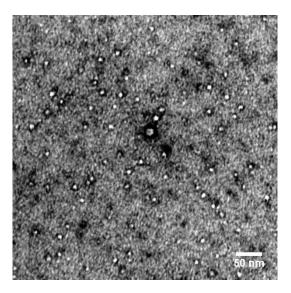
Supplemental Figure S5: A β 42(WildType) monomer cross-seeding with A β (Arctic), A β 42(Italian) and A β (WildType) fibrils.

Supplemental Figure S6: Tabulation of mean half-times for cross-seeding conditions.

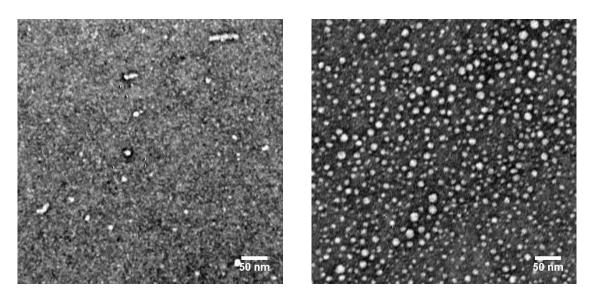
Supplemental Figure S7: Cross-seeding of WildType Aβ40 fibrillization with seeds at different concentrations.

Supplemental Figure S8: C-Amidated Aβ42

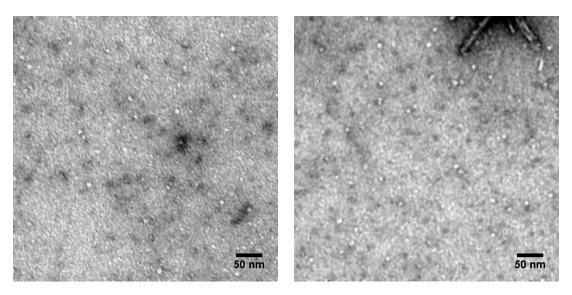

Supplemental Figure S9: TEM images of both seeded and unseeded Aβ42(WildType) and Aβ40(Arctic).


Supplemental Figure S10: TEM images of both seeded and unseeded Aβ40(Arctic).

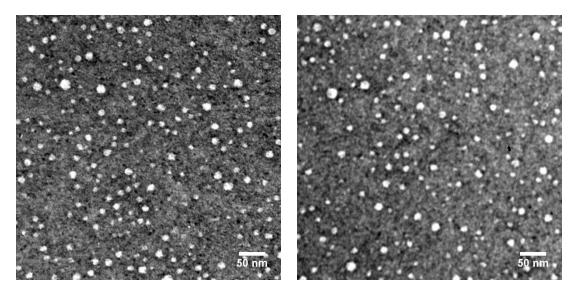
Supplemental Figure S11: TEM images of both seeded and unseeded Aβ40(Arctic).


Supplemental Figure S12: TEM images of both seeded and unseeded Aβ40(WildType).

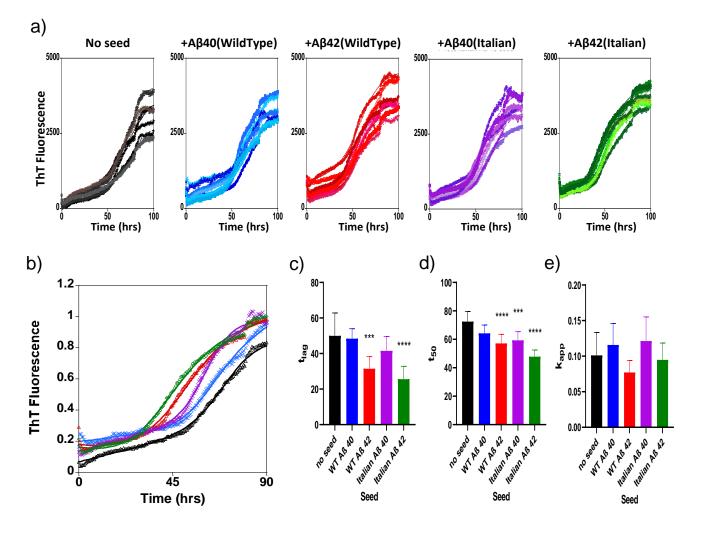
a) Aβ40(Arctic)

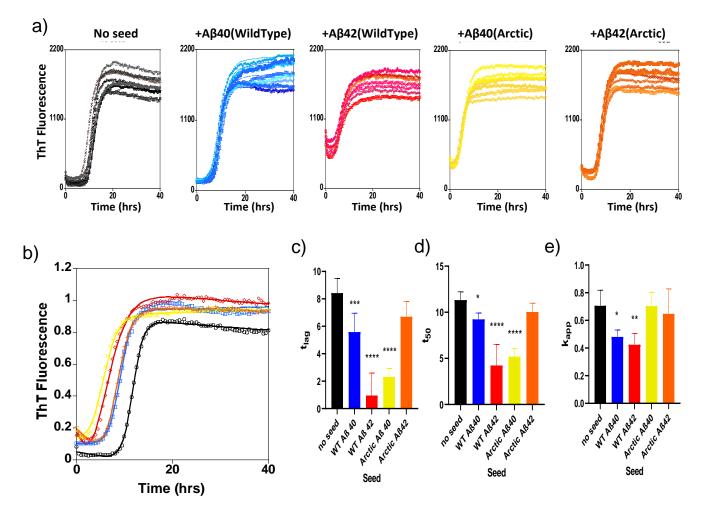


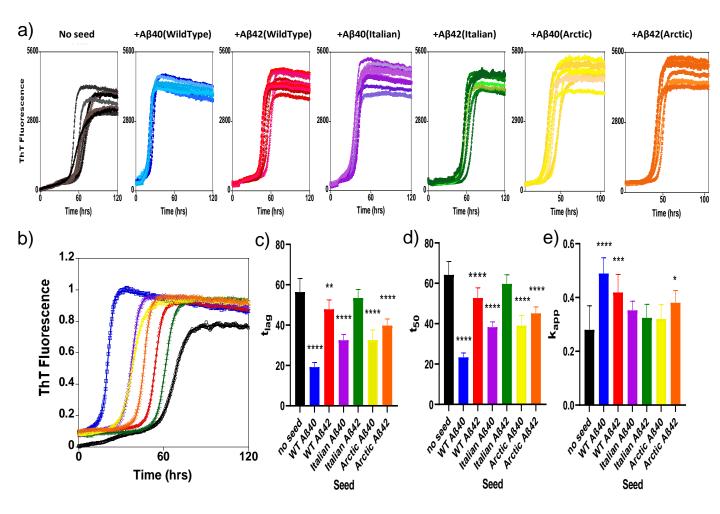
b) Aβ42(Arctic)

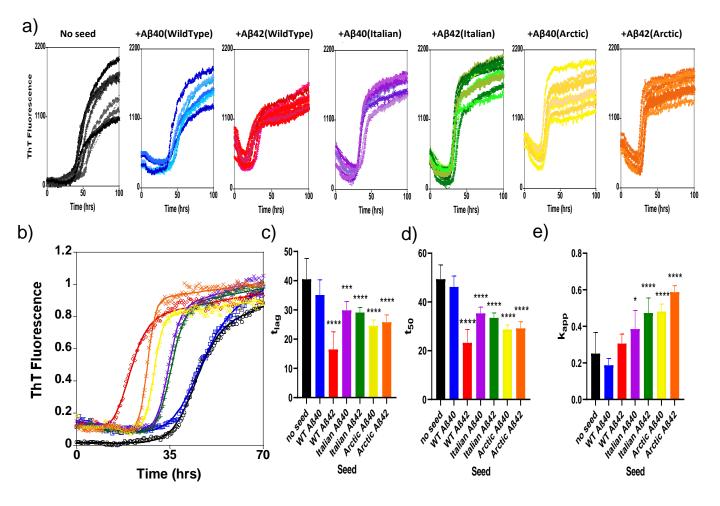


Supplemental Figure S1: TEM images at equilibrium phase Arctic and Italian Isoforms. Many oligomers as well as fibrils are observed at equilibrium for four mutant A β isoforms: a) A β 40(Arctic); b) A β 42(Arctic); c) A β 40(Italian); d) A β 42(Italian). Negatively stained TEM images generated from 10 μ M A β isoforms. Once ThT has reached maximum after 50 hrs incubation at pH 7.4, HEPES buffer (30 mM) and NaCl (160 mM).

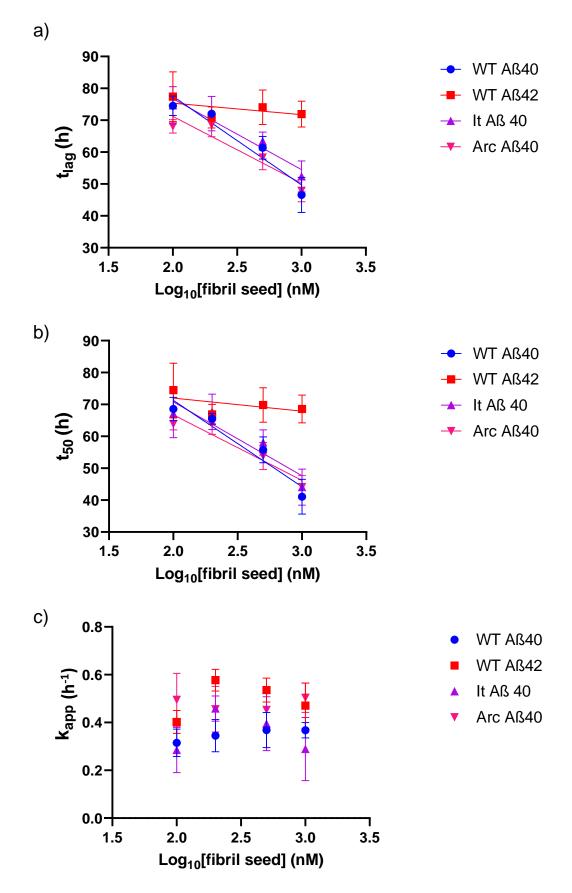

c) Aβ40(Italian)

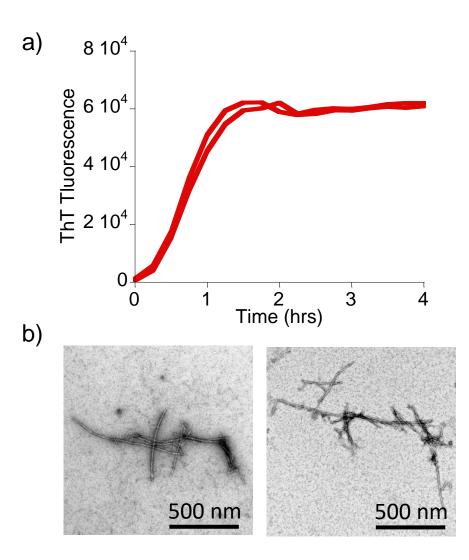

d) Aβ42(Italian)


Supplemental Figure S1: TEM images at equilibrium phase Arctic and Italian Isoforms. Many oligomers as well as fibrils are observed at equilibrium for four mutant A β isoforms: a) A β 40(Arctic); b) A β 42(Arctic); c) A β 40(Italian); d) A β 42(Italian). Negatively stained TEM images generated from 10 μ M A β isoforms. Once ThT has reached maximum after 50 hrs incubation at pH 7.4, HEPES buffer (30 mM) and NaCl (160 mM).

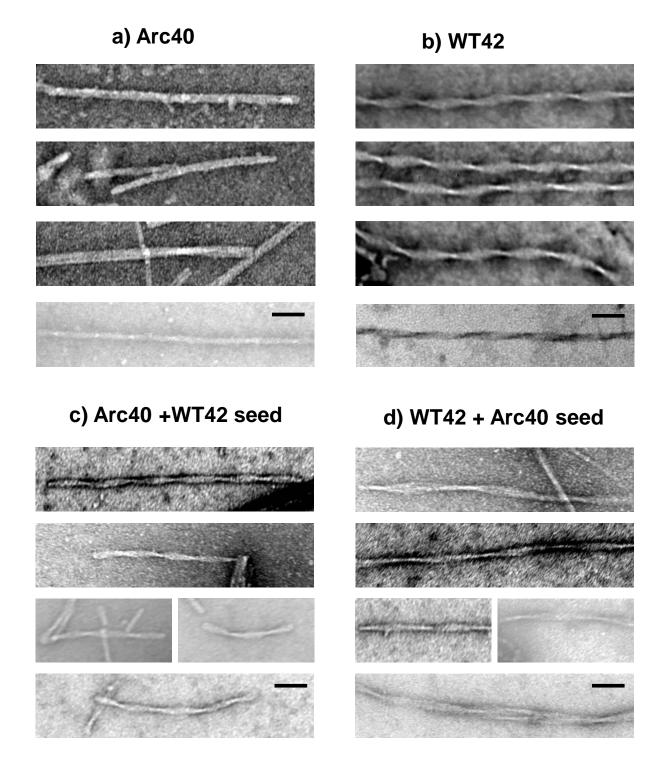

Supplemental Figure S2: Aβ42(Italian) monomer cross-seeding with Aβ(WideType) and Aβ(Italian) fibrils. a) Fibril formation of monomeric Aβ42(Italian) in presence of a range Aβ isoform fibril seeds (10 % w/w): No seed (black); Aβ40(WildType) (blue); Aβ42(WildType) (red); Aβ40(Italian) (purple) and; Aβ42(Italian) (green). b) Typical representative (median) single trace of Aβ42(Italian) in the absence and presence of different seeds, same colours. Empirical kinetic parameters for: t_{lag} (c); t_{50} (d) and k_{app} (e) of Aβ42(Italian) fibril formation, mean from n=9 for each condition, error bars are standard deviation. Total Aβ is 10 µM at pH 7.4. Self-seeding with Aβ42(Italian) fibrils (in green) most effectively nucleates fibril formation, with a large reduction in the lag-time. One-way ANOVA test, a comparison between unseeded and seeded kinetics ****P ≤ 0.0001 , ***P ≤ 0.001 .

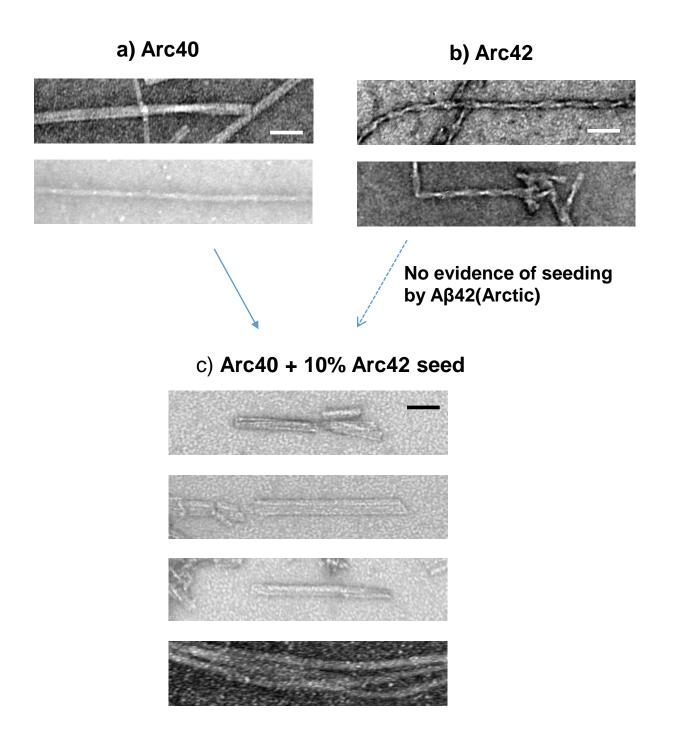
Supplemental Figure S3: Aβ40(Arctic) monomer cross-seeding with Aβ(WideType) and Aβ(Arctic) fibrils. a) Fibril formation of monomeric Aβ40(Arctic) in presence of a range Aβ isoform fibril seeds (10 % w/w): No seed (black); Aβ40(WildType) (blue); Aβ42(WildType) (red); Aβ40(Arctic) (yellow) and; Aβ42(Italian) (orange). b) Typical representative (median) single trace of Aβ40(Arctic) in the absence and presence of different seeds, same colours. Empirical kinetic parameters: t_{lag} (c), t_{50} (d) and k_{app} (e) of Aβ40(Arctic) fibril formation, mean from n=9 for each condition, error bars are standard deviation. Total Aβ is 10 µM at pH 7.4. Self-seeding with Aβ40(Arctic) fibrils (in yellow) effectively nucleates fibril formation, surprisingly Aβ42(WildType) (in red) is also very effective at nucleating fibril formation, with a large reduction in the lag-time. One-way ANOVA test, a comparison between unseeded and seeded kinetics , *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ***P ≤ 0.001.

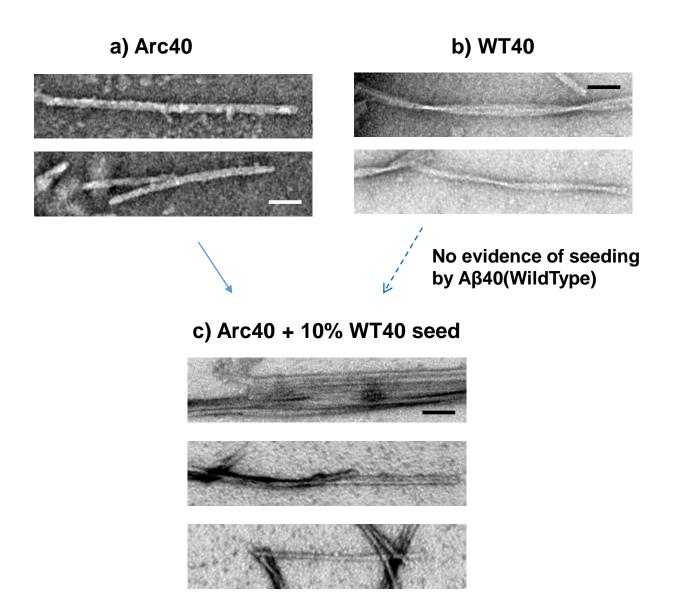

Supplemental Figure S4: A β 40(WildType) monomer cross-seeding with A β (WildType), A β (Italian) and A β (Arctic) fibrils. a) Fibril formation of monomeric A β 40(WildType) in presence of a range A β isoform fibril seeds (10 % w/w): no seed (black); A β 40(WildType) (blue); A β 42(WildType) (red); A β 40(Italian) (purple); A β 42(Italian) (green); A β 40(Arctic) (yellow) and; A β 42(Arctic) (orange); b) Typical representative (median) single trace of A β 40(WildType) in the absence and presence of different seeds. Empirical kinetic parameters: t_{lag} (c), t_{50} (d) and k_{app} (e) of A β 40(WildType) fibril nucleation, mean from n=9 for each condition, error bars are standard deviation. Total A β is 10 µM at pH 7.4. Self-seeding with A β 40(WildType) fibrils (in blue) effectively nucleates fibril formation, with a large reduction in the lag-time. One-way ANOVA test, a comparison between unseeded and seeded kinetics: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.001.

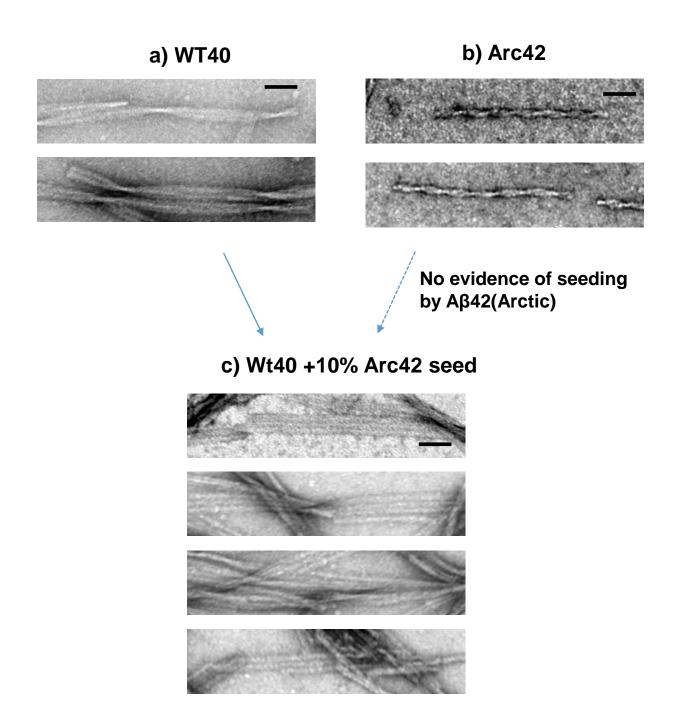

Supplemental Figure S5: Aβ42(WildType) monomer cross-seeding with Aβ(Arctic), Aβ42(Italian) and Aβ(WildType) fibrils. a) Fibril formation of monomeric Aβ42(WildType) in presence of a range Aβ isoform fibril seeds (10 % w/w): No seed (black); Aβ40(WildType) (blue); Aβ42(WildType) (red); Aβ40(Italian) (purple); Aβ42(Italian) (green); Aβ40(Arctic) (yellow) and; Aβ42(Italian) (orange). b) Typical representative (median) single trace of Aβ42(WildType) in the absence and presence of different seeds, same colours. Empirical kinetic parameters: t_{lag} (c), t_{50} (d) and k_{app} (e) of Aβ42(WildType) fibril formation, mean from n=9 for each condition, error bars are standard deviation. Total Aβ is 10 µM at pH 7.4. Self-seeding with Aβ42(WildType) fibrils (in red) effectively nucleates fibril formation as do both Arctic mutants, with a large reduction in the lag-time. One-way ANOVA test, a comparison between unseeded and seeded kinetics *P ≤ 0.05, ***P ≤ 0.001, ****P ≤ 0.0001.

t ₅₀ (%)		No seed	+ seeds of:					
			Wt40	Wt42	lt40	lt42	Arc40	Arc42
Monomers of	Wt40	100%	36%	82%	60%	93%	61%	70%
	Wt42	100%	93%	47%	72%	68%	58%	59%
	lt40	100%	61%	79%	34%	72%		
	lt42	100%	87%	79%	82%	66%	—	
	Arc40	100%	82%	37%		—	46%	87%


Supplemental Figure S6: Tabulation of mean half-times for cross-seeding conditions. a) summary of half-time values for cross-seeding conditions in hours b) summary of half-times for cross-seeding conditions relative to non-seeded monomer. \mathbf{t}_{50} presented as a percentage, relative to non-seeded monomer (100%). Red highlighting strong seeding, orange indicates some seeding, and green, minimal seeding. Wild-Type (Wt), Italian (It) and Arctic (Arc).


Supplemental Figure S7: Cross-seeding of WildType A β 40 fibrillization with seeds at different concentrations. a,b,c) Lag time t_{lag}(a), half t₅₀ (b)and k_{app} of WildType A β 40 aggregation in the of fibril seeds: blue, WildType A β 40; red, WildType A β 42; purple, Italian A β 40; and magenta, Arctic A β 40. Symbols and error bars are the average and standard deviation of the four cross-seeding experiments.


Supplemental Figure S8: **C-Amidated Aβ42** (a) Fibril growth kinetics of C-Amidated Aβ42. C-amidated Aβ42 (10 μ M) was incubated with ThT (20 μ M) in aqueous buffer containing NaCl (160 mM), HEPEs (30 mM), at pH 7.4. (b) TEM images of C-amidated Aβ42 fibril. Negatively stained TEM images generated from 10 μ M C-amidated Aβ42, 72 hrs incubation at pH 7.4, HEPES buffer (30 mM) and NaCl (160 mM).


Supplemental Figure S9: TEM images of both seeded and unseeded A β 42(WildType) and A β 40(Arctic). a) A β 40(Arctic); b) A β 42(WildType); c) A β 40(Arctic) with 10% A β 42(WildType) fibril-seeds; d) A β 42(WildType) with 10% A β 40(Arctic) fibril-seeds. A β 40(Arctic) with A β 42(WildType) fibril-seeds added indicates cross-seeding as the A β 42(WildType) fibril seed induces a marked twist in the otherwise untwisted A β 40(Arctic) fibril isoform. While A β 40(Arctic) fibril seeds cause a marked extension in the periodicity of the A β 42(WildType) fibril twist from 80 nm to 125 nm. Scale Bar: 50 nm. (Note that Fig 7 is a simplified version of the data shown here, images are reshown here to aid direct comparison)

Supplemental Figure S10: TEM images of both seeded and unseeded A β 40(Arctic). a) A β 40(Arctic); b) A β 42(Arctic); c) A β 40(Arctic) with 10% A β 42(Arctic) fibril-seeds. The morphology of A β 40(Arctic) is unchanged by the presence of the highly twisted A β 42(Arctic) fibril-seeds added, suggesting no cross-seeding. Scale Bar: 50 nm. (Note that the two images of unseeded A β 40(Arctic) are reshown here to aid direct comparison with seeded fibrils and have already been shown in Fig S9a)

Supplemental Figure S11: TEM images of both seeded and unseeded A β 40(Arctic), a) A β 40(Arctic); b) A β 40(WildType); c) A β 40(Arctic) with 10% A β 40(WildType) fibril-seeds. The morphology of A β 40(Arctic) is unchanged by the more twisted presence of A β 40(WildType) fibril-seeds added, suggesting no cross-seeding. Scale Bar: 50 nm. (Note that the two images of unseeded A β 40(Arctic) are reshown here to aid direct comparison with seeded fibrils and have already been shown in Fig S9a)

Supplemental Figure S12: TEM images of both seeded and unseeded A β 40(WildType) a) A β 40(WildType); b) A β 42(Arctic); c) A β 40(WildType) with 10% A β 42(Arctic) fibril-seeds. The morphology of A β 40(WildType) is unchanged by the presence of the highly twisted A β 42(Arctic) fibril-seeds added, suggesting no cross-seeding. Scale Bar: 50 nm.