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SUMMARY
Understanding the complete immune cell composition of human neuroblastoma (NB) is crucial for the develop-
mentof immunotherapeutics.Here,weperformsingle-cell RNAsequencing (scRNA-seq)on19humanNBsam-
ples coupledwithmultiplex immunohistochemistry, survival analysis, andcomparisonwithnormal fetal adrenal
gland data. We provide a comprehensive immune cell landscape and characterize cell-state changes from
normal tissue to NB. Our analysis reveals 27 immune cell subtypes, including distinct subpopulations of
myeloid, NK, B, and T cells. Several different cell types demonstrate a survival benefit. In contrast to adult can-
cers and previous NB studies, we show an increase in inflammatory monocyte cell state when contrasting
normalandtumor tissue,whilenodifferences incytotoxicityandexhaustionscore forTcells, nor inTregactivity,
are observed. Our receptor-ligand interaction analysis reveals a highly complex interactive network of the NB
microenvironment fromwhich we highlight several interactions that we suggest for future therapeutic studies.
INTRODUCTION

Neuroblastoma (NB) is a pediatric cancer deriving from the neu-

ral crest during embryonic development and arises primarily in

the sympathetic nervous system.1 It has a wide range of clinical

presentations and outcomes, from spontaneously regressing tu-

mors to highly aggressive and metastatic cases. This heteroge-

neity is reflected by large differences in 5-year survival rates

ranging from 90% to 95% for low- and intermediate-risk disease,

to 40%–50% for high-risk disease.2

The role of the immune system is widely recognized as critical

in cancer development, progression, and therapy resistance in

adults. Various immune cell subsets can either directly or indi-

rectly support or suppress tumor growth in adult cancer.3,4 Mul-

tiple studies in NB have pointed to a critical role for the immune

system in both prognosis and response to treatment. For

instance, the infiltration of T cells in therapy-resistant NB is

known to improve clinical outcome,5 while the prognostic value

of the specific T cell subtypes remains unclear.6 Ex-vivo-

expanded tumor-infiltrating lymphocytes from patients showed

phenotypic heterogeneity; however, they were non-reactive to-

ward autologous tumor cells.7 In addition, T cell receptor

sequencing on NB-derived T cells revealed clonal expansion in

only a small number of untreated patients,8–10 indicating that a

tumor antigen response may occur only in a limited number of

patients. Furthermore, T cell memory formation, and a sug-
Cell R
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gested active tumor microenvironment, have also been

described in NB,11 implying an active inflammatory response in

these tumors. However, the recently described tissue-resident

T cells, which highly resemble T memory cells, demonstrated

that a memory T phenotype does not have to indicate tumor an-

tigen recognition and memory formation.12 Other lymphocytes,

such as invariant natural killer (NK) T cells have been implied to

play an important role in the spontaneous regression of NB

due to their prominent presence in low-risk tumors.13 Also, NK

cell marker gene and protein expression are correlated with

improved prognosis,14 and infiltration of NK cells into NB tumors

has been detected by bulk RNA sequencing.15 Furthermore,

different myeloid cell subtypes play an important role in disease

progression andmetastasis in NB,16,17 where they are described

as highly heterogeneous.18,19 An increase in the number of mac-

rophages was detected in metastatic NB patient samples

compared with local primary tumors,17 and macrophages are

associated with poor prognosis20; whereas dendritic cell gene

and protein programs in NB tumors in turn have been correlated

with improved prognosis.14 In addition, the presence of myeloid-

derived suppressor cells has been observed in both human and

mouse NB tumors and has been associated with poor prog-

nosis.21,22 These insights into the function of immunity in NB

have led to the development of anti-GD2 immunotherapy that

is given in conjunction with conventional treatment in high-risk

NBs.23,24
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Figure 1. Global immune cell landscape of human NB

(A) Experimental design: human NB tumor tissue was mechanically and enzymatically dissociated. Immune cells were studied in silico, infiltration validated using

immunohistochemistry, and additional data added for combinational analysis.

(B) Global overview of NB immune cell atlas containing 46,261 cells, color coded by annotated cell type (n = 17).

(C and D) (C) Subset marker gene expression and (D) heatmap of marker genes associated with major immune cell types.

(E) Images for macrophages (CD68+), dendritic cells (CD1a+), neutrophils (NE+), NK cells (NKp46+), B cells (CD19+), and T cells (CD3+) in NB tumors. Scale bar,

100 mm. n = 43.

(F) Fraction of cells from all immune cells shown for the different subtypes (n = 17).

(legend continued on next page)
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Although immune cell populations have been studied, many of

the studies have either conveyed conflicting results, focused on

a single immune cell type, or used a limited number of patient

samples.6 Previous single-cell RNA sequencing (scRNA-seq)

studies in NB have mainly focused on the tumor cell compart-

ments25–31 and the cells in the tumor microenvironment form a

complex interactive network of cells and molecules, where the

immune cell function is dependent on the different cells working

together in the tissue. Therefore, providing a systems biology

characterization of the immune cells, their prognostic impact,

and their interactions with tumor cells, and each other, at the sin-

gle-cell level, will provide an improved understanding of the NB

microenvironment that can be exploited for future therapies. In

this study, we performed scRNA-seq on human NBs, we con-

trasted our data with a single-cell dataset from normal fetal ad-

renal tissue and additional NB datasets to provide an in-depth

analysis and characterization of the different immune cells, their

molecular state shifts, and cellular networks.

RESULTS

Global immune cell landscape of human NB
We performed single-cell transcriptomics (10X Chromium Single

Cell Solution, see STAR Methods) on tumor tissue from 17 NB

patients (19 samples). Tumor specimens were dissociated using

a protocol that enriches for immune cells (Figure 1A).32 The sam-

ples were derived from all clinical risk groups and included pa-

tients with both primary and recurrent disease (Table S1). A pre-

print article by our lab focused on the tumor and stroma

compartment,28 whereas in this study we focused on the im-

mune cells of NB.We used the algorithm CONOS33 for joint anal-

ysis of all NB samples and created an immune cell landscape

(Figure 1B; for cellular map including tumor and stroma cells,

see Figure S1A). Our initial analysis of the immune cells including

46,261 cells revealed a rich repertoire of the main immune sub-

types, including myeloid, B, T, and NK cell lineages, and con-

sisted of 10 clusters in total (Figures 1B–1D). The global immune

cell clusters were identified using key marker genes: myeloid

cells (LYZ, C1QA, S100A9, and CD1C),34,35 B cells (MS4A1,

BANK1, and CD79A),36,37 T cells (CD3D),38 and NK cells

(CMC1 and GNLY)39 (Figures 1C and 1D). We validated immune

cell infiltration of the different immune cell types detected in our

scRNA-seq data by performing immunohistochemistry on a

separate cohort of 43 patients (Table S2) taking one or multiple

samples from the same patient (Figure S1B). We stained for

key markers detecting T cells (CD3+), B cells (CD19+), NK cells

(NKp46+), macrophages (CD68+), dendritic cells (CD1a+), and

neutrophils (NE+) (Figure 1E). Neutrophils were absent in the

scRNA-seq data, reflecting a known limitation of the single-cell

method utilized.40 The majority of immune cells detected in the

single-cell analysis were T cells and myeloid cells where propor-

tions for each immune cell subtype differed between patients

(Figures 1F, S1C, and S1D). In addition, we detected T cells

and macrophages for most of the samples we performed immu-
(G) Quantification of percentage of cells from (E) (n = 43).

(H) Survival data on bulk RNA-seq data. A gene signature derived from scRNA-se

whereas low is the lowest 25% expression of the signature genes (STAR Method
nohistochemistry on, and immune cell infiltration overall was be-

tween 5% and 35% of total cells in the tumor (Figures 1G and

S1E). Next, we created a combined dataset containing data

from previous NB scRNA-seq studies25–27 and we determined

the fraction of immune cells in low-, intermediate-, and high-

risk disease. We detected no differences in the major immune

cell populations comparing the risk groups (Figure S1F). Survival

analysis on bulk RNA sequencing data for 498 samples, based

on gene expression signatures derived from our scRNA-seq

(Table S3), showed that high expression of immune-related

genes was significantly correlated with improved survival in hu-

man NB (Figure 1H).

Infiltration of myeloid cells with distinct cell states
detected in NB
Myeloid cell infiltration has been described for multiple cancers

and shown to support tumor growth.18,41,42 In NB, discrepancies

between studies and a lack of study into myeloid cell heteroge-

neity in NB prompted us to analyze these cells in detail.

We have used in silico subcluster analysis32 focusing on the

myeloid cells present within NB tissues obtained by our lab to

identify nine distinct subpopulations. These we annotated as

Mono-1/2, CLEC9A+ myeloid dendritic cells (mDCs), CD1C+

mDCs, mature-LAMP3+ mDCs, and Macro-1, 2, 3, and 4, based

on their expression of key marker genes for respective cell line-

ages (Figures 2A–2C). Multiplex immunohistochemistry, on pa-

tient samples from the single-cell cohort (Table S1), was used

for the detection of antigen-presenting myeloid cells (CD11c+,

five out of five patients, and HLA-DR+, in three of three patients)

(FiguresS2AandS2B).Tocharacterize thecell stateof themyeloid

cells, we curated a gene signature score based on existing

scRNA-seq studies describing previously characterized tumor-

derived monocyte and macrophage cell states (Table S4). Our

analysis revealed a significantly higher monocyte score in both

Mono-1 and Mono-2 compared with the other myeloid popula-

tions (Figures S2C and S2D), substantiating that these cells are

monocytes. Macro-2 and Macro-3 also had a high monocyte

score (Figures S2C and S2D). Furthermore, Macro-1 showed the

highestmacrophage cell identity score followedby the three other

macrophage populations when compared with the monocytes

(Figures S2E andS2F), substantiating theirmacrophage cell state.

Focusing on Mono-1/2 subclusters, we annotated these clus-

ters based on the expression of the key monocyte marker genes

CLEC7A,NLRP3, andBST1.43Bothmonocyteclusters expressed

the pro-inflammatory cytokine IL1B, the monocyte genes TIMP1,

CD44, andG0S2, and several inflammatory-related S100A genes

(Figures 2B and 2C). Mono-1 appeared to consist of two subpop-

ulationswithin: a small populationofnon-classicalmonocyteswith

expression of FCGR3A, FCGR3B, and IFITM3, and a larger popu-

lationof cells that exhibited specificexpressionofTIMP1,S100A4,

S100A12, and CD55 (Figures 2B and 2C). Mono-2 had a mixed

gene expression pattern with similarities to both monocytes and

macrophages. This population might be differentiating into

Macro-2 since part of the population displayed expression of the
q high was considered the top 25% highest expression of the signature genes,

s).
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Figure 2. Myeloid cell infiltration with distinct cell states detected in NB

(A–C) (A) Subcluster view of the myeloid cells as shown on a myeloid-specific joint embedding. Key marker gene expression shown in feature plots (B) and in a

dotplot (C) for the different subpopulations of myeloid cells.

(D) Average expression of inflammatory monocyte score in different myeloid subpopulations (n = 16).

(E) Heatmap showing average expression of select genes from different categories (rows) across different cell populations.

(F and G) Similar to (Dand E), showing M2 score (n = 16) and representative M2 signature gene expression.

(H) UMAP showing combined myeloid cell integration (CONOS) including fetal adrenal and public NB single-cell data.

(I) Density plot comparing myeloid cells in fetal adrenal gland myeloid cells, and low-, intermediate-, and high-risk NB. Brighter color corresponds to a denser

region.

(J) Cell fractions of different myeloid populations in fetal adrenal gland (n = 16), and low- (n = 5), intermediate- (n = 8), and high-risk (n = 21) disease.

(legend continued on next page)

4 Cell Reports Medicine 3, 100657, June 21, 2022

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
macrophage marker genes CD68 and APOE (Figures 2B and

2C).35 To provide a possible function of Mono-1/2, we applied a

functionalgenesignature scoreanalysis focusingon the inflamma-

tory activity of monocytes, and compared them to macrophages

(TableS4).Our analysis showed thatMono-1/2havea significantly

higher inflammatorymonocyte score comparedwithmacrophage

populations and are thereforemost likely pro-inflammatorymono-

cytes (i.e., TIMs) (Figures 2D and 2E) thatwe previously character-

ized in human prostate cancer bone metastases.32

Further investigation of the macrophage populations showed

that the macrophage clusters had high expression of the classic

macrophage marker gene CD68 (Figure 2B).35 Furthermore,

Macro-1 displayed a population-specific gene expression

pattern of tumor-associated macrophage markers, such as

TREM2, FABP5, and FABP4 (Figures 2B and 2C).44–46 Macro-2

expressed high levels of neutrophil-attracting chemokines,

includingCXCL2,CXCL3, andCXCL8.47 In addition, this popula-

tion exhibited high expression of GPR183, DUSP2, CD83, and

HLA class II genes (Figures 2B and 2C). Macro-3 displayed

expression of other macrophage genes, such as LYVE1,

CSF1R, and MRC1,20,45,48 and Macro-4 had the highest level

of HLA class II genes (Figures 2B and 2C). To demonstrate the

possible functional properties of the different macrophage pop-

ulations, we ran analysis of M1 (i.e., immune active) and M2 (i.e.,

immunosuppressive) signature score (Table S4), which revealed

that Macro-1 had a significantly higher M2 score than the other

macrophage populations, and those in turn had a higher M2

score compared with the monocytes (Figures 2F and 2G).

Among Macro-1 to 4, Macro-2 had the highest M1 signature

score (Figures S2G and S2H).

We next examined the myeloid dendritic cell population that

branched into three different subpopulations, including

CLEC9A+ cells, CD1C+ cells, and mature-LAMP3+ cells.

CLEC9A+ mDCs expressed high levels of CLEC9A, RAB7B,

BATF3, WDFY4, and CADM1, which phenotypically corre-

sponded to DC1 cells (Figures 2A–2C).43 CD1C+ mDCs were

identified by the high expression of CD1C, CLEC10A, and

FCER1A, but also exhibited high expression of HLA class II anti-

gen-presenting genes, and therefore had a similar phenotype to

previously described DC2.43 Mature-LAMP3+ mDCs showed

high expression of CCR7 and CD83 (Figures 2B and 2C).

To increase the power of our analysis, but also to compare our

findings with corresponding normal tissue for NB, we combined

our dataset with three recently published scRNA-seq studies

(including a recent study25) of normal fetal adrenal tissue (i.e.,

where NB is believed to originate) and NB tumors (see section

Data and code availability in STAR Methods).25–27 Here, we

observe that the fetal adrenal data mainly contained myeloid

cells (Figures S2I and S2J). In the combined dataset, we

detected the same myeloid subpopulations as in our dataset,

validating our findings (Figures 2H and S2K), where the annota-

tions were based on key marker genes (Figure S2L). To
(K) Inflammatory monocyte score for combined dataset comparing fetal adrenal g

different myeloid subpopulations. Statistical significance was assessed by Wilc

****p < 0.0001.

(L) Heatmap showing average expression of select genes from different categori

(M) Similar to Figure 1E, survival curves for Mono-2, Macro-1, and Macro-4.
determine the role of specific myeloid populations on disease

risk stratification, we compared the fraction of cells and the

different functional gene signature scores from the combined

dataset25–27 in low-, intermediate-, and high-risk NB compared

with healthy fetal adrenal myeloid cells. Our analysis revealed

that the main myeloid population found in fetal adrenal tissue is

Macro-3. Also, these cells showed significantly lower cell frac-

tions in NB patients, while Macro-4 demonstrated an increase

in the intermediate- and high-risk NB (Figures 2I and 2J). In

addition, Macro-3/4 were close together in the embedding (Fig-

ure 2H). Looking into cell state, the different gene signature

scores showed a significantly increased M1 score for four out

of six populations, and a significantly decreased M2 score with

higher disease risk in Macro-3 and Mono-2 (Figures S2M and

S2N). Surprisingly, we discovered a significant increase of in-

flammatory monocyte score in all populations except Macro-4,

indicating that the presence of tumor cells strongly initiates in-

flammatory gene expression in these cells (Figure 2K). Focusing

on Mono-1 and Mono-2 in this scoring analysis, we also de-

tected a difference in gene expression comparing fetal adrenal

and NB cells (Figure 2L).

Finally, to evaluate for potential prognostic value of different

myeloid cell populations, we ran survival analysis on bulk RNA

sequencing data based on key marker gene expression from

our scRNA-seq dataset (Figures 2C; Table S5). Interestingly,

Mono-2 and Macro-4 significantly correlated with improved

survival, whereas Macro-1 was significantly correlated with

decreased survival (Figure 2M). Signatures based on CLEC9A+

and CD1C+ dendritic cell populations were associated with

improved survival, whereas the other monocyte andmacrophage

populations and mature mDCs did not show an association with

survival (Figure S2O). Since NB is a clinically heterogeneous dis-

ease,we split the bulk RNA sequencing data to determine survival

into low- and high-risk cases, and into non-MYCN-amplified and

MYCN-amplified cases. Next, we applied the gene scores for the

different myeloid cell populations on the split data and created a

summary figure. There, we detected a significant correlation with

improved survival for CD1CmDCs in the low-risk group, but there

were no differences for the other groups (Figure S2P).

B and NK cell heterogeneity found in NB
We next focused our analysis on the B and NK cells. Subcluster

analysis of the B cells in the combined dataset revealed the pres-

ence of four subpopulations in NB tissues (Figures 3A–3C). B cell

infiltration was confirmed by multiplex immunohistochemistry

on patient samples from the single-cell cohort (Table S1,

Figures S3A and S3B). Active B cells expressed B cell marker

genes, suchas IGHD, IGHM,CD69, andCD83,49 andplasmacells

expressed high levels ofMZB1 and JCHAIN (typical B cell plasma

marker genes) (Figures 3B and 3C).50,51 In addition, we detected

memory B cells that were annotated based on the expression of

CD27, CLECL1, and ZBTB32 (Figures 3B and 3C).52 We also
land (n = 16), and low- (n = 5), intermediate- (n = 8), and high-risk (n = 21) NB for

oxon rank-sum test for (D, F, J, and K); *p < 0.05, **p < 0.01, ***p < 0.001,

es (rows) across different cell populations (top color bar, colors matching) (K).
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Figure 3. B and NK cell heterogeneity and infiltration in NB tumors

(A–C) (A) Detailed annotation of the B cells subpopulations is shown on a B cell-specific joint embedding combining multiple NB datasets. Key marker gene

expression shown in feature plots (B) and in a dotplot (C) for the different subpopulations of B cells.

(D) The fraction of B cell subtypes comparing low- (n = 3), intermediate- (n = 6), and high-risk (n = 18) NB.Wilcoxon rank-sum test was used for statistical analysis;

*p < 0.05, **p < 0.01.

(E–G) (E) Detailed annotation of NK cell subpopulations shown on NK cell-specific embedding from the combined dataset. Key marker gene expression shown in

a violin plot (F) and in a dotplot (G) for the different subpopulations of NK cells.

(H) Density plot for NK cell-specific embedding showing the number of cells in low-, intermediate-, and high-risk NB. Brighter color corresponds to a denser

region.

(I) The fraction of cells in the different NK cell populations comparing low- (n = 4), intermediate- (n = 6), and high-risk (n = 21) NB.Wilcoxon rank-sum test was used

for statistical analysis; *p < 0.05, **p < 0.01.

(J) Survival curve for active NK cells.
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discovered the presence of germinal center (GC) B cells. GC B

cells expressed high levels of VDJ recombination genes, including

VPREB3, VPREB1, and RAG1.53 Furthermore, this GC cluster ex-

hibited expression of previously describedGC-associated genes,

such as AICDA, MME, PRPSAP2, and MARCKSL1 (Figures 3B

and 3C).50,54,55 Using immunohistochemistry, we detected a B

cell aggregate combined with antigen-presenting cells in one of

our fivepatient samples showing thepresenceof tertiary lymphoid

structures (Figures S3A and S3B).

Furthermore, B cells were barely detected in the human fetal

adrenal glands and therefore excluded from the joint analysis.

Comparing low-, intermediate-, and high-risk disease, we de-

tected a significant increase in memory B cells and a decrease

in GC B cells in intermediate- and high-risk disease compared

with low-risk tumors (Figures 3D and S3C). In addition, we deter-

mined the prognostic value of the different B cell subtypes in a

similar manner as performed in Figure 1H and for the

myeloid subpopulations (genes can be found in Figure 3C and

Table S5), where we observed a trend in the presence of plasma

cells and tertiary lymphoid structure (TLS) signature score with

survival; however, the results were not statistically significant

(Figures S3D and S3E). Finally, in a similar approach as for the

myeloid cells, we created a survival summary figure showing

the different clinical conditions, wherewe detected no significant

correlation with survival (Figure S3F).

NK cells have potent tumor-killing properties, and NK cell infil-

tration has been demonstrated as a good prognostic marker in

different cancers.56,57 In the combined NB dataset, subcluster

analysis of the innate lymphoid cells (ILCs) identified four subclus-

ters (Figure 3E). No NK cells were detected in the fetal adrenal

glands (data not shown). The NK-active cell cluster was anno-

tated based on the expression of immediate-early genes, such

as ZPF36, NR4A2, JUNB, FOS, FOSB, and CD69.39 Classical

NK cell subsets CD56bright and CD56dim were detected

(Figures 3F and 3G).39,58 In addition, an ILC3 cell cluster was an-

notated based on their lack of expression of classical NK cell

marker genes TBX21 and EOMES and the high expression of

AHR, KIT, IL7R, and RORC (Figures 3F and 3G).59

The potently cytotoxic CD56dim NK cells (Figure S3G) were

found significantly enriched in cell number in intermediate- and

high-risk disease (Figures 3H, 3I, and S3H). However, their pres-

ence in NB did not correlate with improved survival (Figure S3I).

On the other hand, active NK cells were significantly correlated

with improved survival (Figure 3J). No significant differences

were detected when the data were split by risk group and

MYCN status (Figure S3J). NK cell survival analysis was done

as described above using key marker gene expression (Fig-

ure 3G; Table S5).

Distinct subtypes of T cell infiltrates correlate with
improved NB survival
Various subpopulations of T cells have been suggested to play a

critical role in cancer development and progression, which has

prompted the identification of new immuno-therapeutic ap-

proaches based on modulating T cell function and dysfunction

in cancer.60–63 In our NB dataset, subcluster analysis revealed

ten distinct subclusters of T cells, including two CD4+ clusters

(Tregs [regulatory T cells] and Th17), four cytotoxic T lymphocyte
(CTL) CD8+ clusters (CTL-1/4), a naive T cell cluster containing

cells with CD4 expression and cells with CD8A/B expression,

a proliferating T cell cluster, and an NKT cell cluster

(Figures 4A–4C). Infiltration of the different T cell subtypes was

validated by multiplex immunohistochemistry (patient informa-

tion in Table S1) and single staining immunohistochemistry

(patient information in Table S2) (Figures S4A–S4D). Single-cell

transcriptomics and immunohistochemistry both showed the

presence of Th17 cells (RORC, CCL20, CCR6, and, less promi-

nently, IL17A).64 However, other cell types, such as ILC359 and

gdT cells,65 can also produce IL-17, where the latter promote

tumor cell proliferation and migration in NB cell lines.65

Tregs were identified based on FOXP3 and IL2RA expres-

sion, two key Treg marker genes66 (Figures 4B and 4C), and

infiltration of Tregs was validated by FOXP3 staining

(Figures S4C and S4D). Because of their tumor-promoting

role in adult cancer, we sought to evaluate the activity of

Tregs in NB based on a gene signature score curated from liter-

ature (Table S4). Treg activity was evaluated in the combined

dataset, where we detected no difference in Treg activity

score comparing low-, intermediate-, and high-risk disease

(Figures S4F and S4G). Surprisingly, the number of Tregs

showed a significant decrease from intermediate-to high-risk

disease (Figure 4D). In addition, Tregs did not correlate with

survival (Figure S4H). Due to the low number of T cells in the

normal fetal adrenal data this was not included in the combined

data analysis.

Next, we sought to delineate the CD8+ T cell compartment,

which revealed four different subtypes of cytotoxic T lympho-

cytes where CTL-1 cells expressed high levels of PRF1 and

GZMB (Figures 4A–4C). The expression of granzyme-B and

perforin-1 showed high cytotoxic properties for CTL-1. CTL-4

expressed high levels of TNF, CD69, and IFNG. Cytotoxic

T cells upregulate the expression of CD69 and IFNG upon TCR

stimulation,67,68 showing that CTL-4 are activated T cells (Fig-

ure 4B). To further investigate the functional properties of the

CTL populations in NB, we took the combined dataset (Fig-

ure S4E) and performed cytotoxicity and exhaustion signature

score analysis comparing low-, intermediate-, and high-risk dis-

ease (Table S4). Interestingly, no differences were found for both

cytotoxicity and exhaustion score for the different CTL popula-

tions in NB (Figures S4I and S4J).

Since different T cell subtypes have rendered diverse results in

prognostic value in different NB studies,5,15,69,70 we ran survival

analysis for the different T cell subtypes based on their marker

genes (Figure 4C; Table S5). Including all data, CTL-1, CTL-3,

CTL-4, naive T cells, and Th17 signatures were significantly

correlated with improved survival (Figure 4E), whereas prolifer-

ating T cells, CTL-2, andNKT cell signatures did not (Figure S4K).

When we split the data into risk group and divided by MYCN

status as described for other cell types above, we detected no

significant differences (Figure S4L).

Ligand-receptor interaction analysis reveals a highly
complex interactive network of immune cells with tumor
and stroma
To investigate potential interactions and molecular crosstalk

between cells located within the NB microenvironment,
Cell Reports Medicine 3, 100657, June 21, 2022 7
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Figure 4. Distinct subtypes of T cell infiltrates correlate with improved NB survival

(A–C) (A) Detailed annotation of the T cell subpopulations shown on a T cell-specific joint embedding, together with marker genes (B and C).

(D) The fraction of T cell subtypes detected in low- (n = 4), intermediate- (n = 9), and high-risk (n = 23) NB.Wilcoxon rank-sum test was used for statistical analysis;

*p < 0.05.

(E) Survival curves for CTL-1, -3, -4, naive T cells, and Th17.
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we performed receptor-ligand interaction analysis.71 To find

interactions that may be targetable, we used significant corre-

lation to survival as a cutoff. In addition, we set a cutoff for spe-

cific expression of both ligand and receptor in a specific cellular

subtype. Our analysis revealed that the tumor microenviron-

ment of NB consists of a highly complex interacting cellular

network (Figure 5A). Most of the interactions involving tumor

cells occurred with the different stroma cell populations, but

there were also noticeable interactions within tumor/stroma

cells and the immune cells (Figures S5A and S5B). Importantly,

we detected a high number of potential interactions between

stroma and immune cells, involving CTL1, mesenchymal, and

endothelial populations (Figure 5B). Next, to investigate specific

cellular interactions in our dataset, we generated a list of the

top ligand-receptor interactions for tumor/stroma cells versus

immune cells (Figure 5C), tumor/stroma cells versus tumor/

stroma cells (Figure S5A), and immune cells versus immune

cells (Figure S5B). Our analysis detected genes well studied

in the NB field in addition to other interesting interactions.

The genes included the presence of NOTCH pathway ligand

and receptor genes known to play a role in NB tumor cell differ-

entiation72,73 and the expression of NRTK1 specifically in tumor
8 Cell Reports Medicine 3, 100657, June 21, 2022
cells, which, when activated, is described to cause neuronal

differentiation and cell-cycle arrest in NB.74 Subsequently three

particularly interesting interactions (based on highest expres-

sion) drew our attention due to their relation to already

described importance in cancer and correlation to survival.

These may therefore be used as possible modulatory targets

for NB treatment: semaphorin 6D (SEMA6D)/triggering receptor

expressed on myeloid cells 2 (TREM2), galectin-9 (LGALS9)/

hepatitis A virus cellular receptor 2 (HAVCR2), and cluster of

differentiation 24 (CD24)/sialic acid binding Ig-like lectin 10 (SI-

GLEC10) (Figure 5C). Survival analysis of the indicated interac-

tions showed that high expression of SEMA6D-TREM2 was

significantly correlated with decreased survival (Figure 5D),

suggesting this interaction as a possible target in NB. On the

contrary, high LGALS9-HAVCR2 expression was positively

correlated with survival (Figure 5E). In a similar manner, high

CD24-SIGLEC10 expression was significantly correlated with

improved survival (Figure 5F). This suggests that LGALS9-

HAVCR2 and CD24-SIGLEC10 might possibly be used in a

different manner than the classical ‘‘inhibition to unleash activ-

ity’’ strategy.75 Understanding and exploiting these interactions

will require additional studies.



Figure 5. Tumor-immune cell ligand-receptor interaction analysis reveals several interactions for future studies

(A) Interaction map with ligand-receptor interactions within the NB tumor microenvironment (n = 19).

(B) Table displaying the number of interactions (n = 1,973) between the different subpopulations present in human NB tumors that are significantly correlated with

patient survival and specifically expressed in a subtype of cells.

(C) Heatmap showing expression of ligand (tumor/stroma) and receptor (immune) pairs in different tumor/stroma and immune subsets. Dot size indicates

expression ratio, color represents average gene expression. Significance of ligand-receptor pair is determined by permutation test, correlation to survival and

specific cellular expression (see STAR Methods).

(D) Survival curve for SEMA6D-TREM2 expression.

(E) Survival curve for LGALS9-HAVCR2 expression.

(F) Survival curve for CD24-SIGLEC10 expression.
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DISCUSSION

Here, we created a comprehensive cellular andmolecularmap of

immune cells present within the NB microenvironment and pro-

vided a resource for future research into the development of

novel therapeutics. We used a combination of single-cell tran-

scriptomics, multiplex immunohistochemistry, and in silico anal-

ysis. The cell atlas shows 27 different immune cell subtypes that

create a highly unique interactive network of cellular and molec-

ular interactions within immune populations and with tumor and

stroma cell populations in NB.

It is important to emphasize here that analyzing scRNA-seq

from different studies where different tissue dissociation proto-

cols were used might introduce bias in terms of cell fraction

changes. Wewere therefore cautious when interpreting cell frac-

tion differences since distortions from protocols are still likely to

be pronounced. Instead, we focused our analyses on cell-state

changes that should provide amore accurate analysis.32 In addi-

tion, it is important to note that 7 out of the 17 patients included in

our study were pre-treated and/or treated with systemic therapy

at the time of tissue harvest. Before tissue harvest, patients had

at least 2 weeks of wash out after chemotherapy and none of the

patients were treated with immunotherapy. Recently, the first

study trying to understand the influence of therapy on immune

cells in the blood of high-risk NB patients was conducted. Inter-

estingly, in this study, large variations between patients existed

and immune cell phenotypes related to both tumor suppression

and support were detected.76 The influence of different cancer

therapies on immune cells in the broader cancer perspective

has not been defined yet, with chemotherapy having both im-

mune enhancing and inhibiting properties.77 Furthermore, inter-

pretation of survival analysis can be difficult since the outcome is

highly dependent on the type of analysis, the number of patient

samples, the distribution of outcome, which biomarkers are

analyzed, and possible additional factors. For several cell types,

we detected a significant correlation with improved survival

overall. However, when splitting the samples into different risk

group and MYCN status the differences disappear. This may

be due to the fact that low-risk patients do well overall; therefore,

the number of high-risk patients goes down and it is difficult to

detect differences. Other factors than tumor biology (like treat-

ment) may influence outcome within the different subgroups

(risk group/MYCN status); however, the limited number of pa-

tients did not allow us to study those. Nevertheless, the overall

analysis and interpretation we have done is important for clinical

purposes.

Myeloid cell infiltration has been described for multiple can-

cers and shown to support tumor growth.18,41,42 In NB,

CSF1R+ myeloid cells have been shown to predict poor clinical

outcome20; however, other studies have indicated myeloid cells

to be correlated with improved survival.78 The different myeloid

cell subtypes in our study show a gene expression pattern indi-

cating ongoing plasticity in both monocytes and macrophages,

and we detected cells with pro-inflammatory phenotypes,

which is in contrast to previous studies regarding myeloid cells

in NB.20,78 Pro-inflammatory immune cells and inflammation

can promote tumor growth and cause metastatic spread in

cancer.79 However, our data suggest that, in NB, a pro-inflam-
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matory state is a good prognostic factor due to the positive

correlation between different myeloid cell populations with

pro-inflammatory cell states and improved survival. The

different myeloid populations may still be exploited in the pur-

suit for novel therapeutics. Several interactions exist between

tumor/stroma and myeloid cells, which could be exploited as

therapeutic targets to recruit the good prognostic monocyte

and macrophage players into the NB tumor. For this, we sug-

gest further in-depth studies that will hopefully demonstrate

their specific function and the possible use of these interactions

in therapeutic strategies.

B cells have gained significantly more attention in the cancer

field. Three studies demonstrated that B cells and the presence

of TLSs in adult tumors correlated with improved response to

immunotherapy in melanoma and sarcoma.51,80,81 In human

NB, a paper on the interaction between dendritic cells and NK

cells detected the presence of TLSs.14 Since TLSs are dynamic

structures containing different immune cell types, they may be

highly interesting for targeting or supporting therapy.

T cells, mainly CTLs, have been extensively studied in can-

cer. CTLs can play an important role in cancer eradication

and have therefore been the main targets of currently used

immunotherapy such as PD-L1 checkpoint inhibitors.82 In our

study, we showed that different CTLs are an important part

of the interacting NB microenvironment and that several CTL

subtypes correlated with improved survival. Importantly, we

did not detect differences in exhaustion score across NB risk

groups, implying limited phenotypic changes over the course

of disease. Moreover and surprisingly, Tregs were not corre-

lated with survival, a finding that is in contrast with Treg

suppression and exhaustion of effector cells observed in

adult cancer.83 This indicates that the NB tumor microenviron-

ment differs from adult cancer. Another possible explanation

might be a result of dilution in bulk RNA sequencing from sur-

vival datasets to the low number of Tregs in the tumor

microenvironment.

Our receptor-ligand interaction analysis between tumor/

stroma and immune cells revealed several genes that

have already been correlated with NB growth and differentia-

tion,72–74,84 aswell as the discovery of important cell-cell interac-

tionsmediating immune suppression in other cancer types, such

as the CCL20-CCR6 axis in prostate cancer bone metastasis32

and the CD161-CLEC2D axis in glioma.85 This provides a basis

for the additional genes detected in our analysis to have a poten-

tial therapeutic impact. For instance, SEMA6D was expressed

mainly on SCP-like cells and functions as an inhibitory ligand

upon binding to Plexin A1, which forms a receptor complex

with TREM2, a marker for TAMs.86 TREM2 deficiency has been

shown to attenuate tumor growth, and combining TREM2 defi-

ciency with PD-1 antibodies caused tumors to completely

regress in a sarcoma mouse model.87 Since we detected that

SEMA6D-TREM2 expression is significantly correlated with

decreased survival suggesting, we suggest this interaction as a

potential therapeutic target. Furthermore, we detected elevated

LGALS9 expression in endothelial cells that interacts with

HAVCR2 (encodes TIM-3) on NK cells. TIM-3 present on NK cells

serves as a maturation marker and functions as an inhibitory re-

ceptor, while TIM-3 induced inhibition can be overcome by
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cytokine stimulation.88 The function of TIM-3 in NK cells upon

galectin-9 binding and immune cues differs depending on the

cues and the endurance of the input, rendering TIM-3 function

in NK cells in different cancers controversial. It has been sug-

gested that the initial upregulation of TIM-3 enhances cytotox-

icity and that chronic overexpression or dysregulation leads to

exhaustion.89 However, the precise role of TIM-3 in NK cell func-

tion in NB cannot be determined based on our analysis, and

therefore warrants further investigation. Finally, the surface re-

ceptorCD24was exclusively expressed on tumor cells and inter-

acts with SIGLEC10 on macrophages in the immune cells. CD24

is a ‘‘don’t eat me’’ signal, which conveys an inhibitory response

in macrophages when binding to SIGLEC10 preventing these

macrophages from exerting phagocytosis. The presence of

CD24 has been detected on several solid tumors and its impor-

tance in suppressing phagocytosis has recently been demon-

strated in ovarian and breast cancer. In addition, it is suggested

that CD24/SIGLEC10 might be a target for cancer immuno-

therapy.90 Hence, monoclonal anti-CD24 antibodies could be

investigated as a potential therapy in NB.

Immune cells and immunotherapy in NB are an active field of

research. Despite lack of MHC class I and high mutational load

in NB tumors, major steps toward improved therapy are being

made. Two recent studies demonstrated the potential of immu-

notherapy in NB by improving current anti-GD2 to reduce pain

and by creating novel chimeric antigen receptors(CARs) on T

cells toward a peptide sequence derived from the master tran-

scriptional regulator in NB PHOX2B.23,91 Our study provides a

comprehensive resource for possible ways the tumor microenvi-

ronment could be exploited to further enhance immunotherapy

in NB.

In conclusion, our study suggests that the immunological

landscape in the NB microenvironment appears and most prob-

ably functions differently from the well-characterized adult can-

cer tumor microenvironment. Since NB is known to be initiated

early during embryonal development,1,31 it may be possible

that tumor development occurred alongside immune cell devel-

opment and therefore other mechanisms are at play within the

NB microenvironment. We believe that our findings will pave

the way to a better understanding of the role of the immune sys-

tem in NB. It is important to emphasize that future studies are

needed to understand the functional properties of each immune

cell subtype and the suggested cell-cell interactions between the

different cell types that our study has identified. Combined,

we hope that these biological insights will help to tailor new

and improved therapeutics that instruct the immune system

against NB.

Limitations of the study
While the presented analysis provides a good representation

of immune cell heterogeneity in NB in general, a number of po-

tential limitations should be noted. First, our dissociation pro-

tocol used for preparing single-cell suspensions is known to

enrich for immune cells.32 We, therefore, observe a higher fre-

quency of immune cells relative to tumor and stromal cells in

our dataset compared with public datasets and were cautious

about interpreting frequency data outside of the data obtained

using the same protocol. This enrichment, however, gave us
the opportunity to study immune cell granularity in NB in great

detail. Second, we have performed interpretation of function-

ality of certain immune cell types based on gene expression

data. Protein validation and additional functional studies will

have to provide additional evidence for these interpretations.

Finally, creation and interpretation of survival curves based

on gene expression can be challenging. NB is a highly hetero-

geneous disease in which genetics, risk group, age, and treat-

ment can strongly influence outcome, and gene expression

values are not the optimal choice for assessing survival.

Despite the above-mentioned reasons, we managed to detect

significant differences, which we believe provide important

clinical insights into the influence of immune cells on NB

survival.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-CD235-PE Biolegend 306603/306604; RRID: AB_314621

CD3 (UCHT1) Akoya 4350008; RRID: AB_2895047

CD4 (SK3) Akoya 4350010; RRID: AB_2895048

CD8 (SK1) Akoya 4150004; RRID: AB_2895049

CD11c (S-HCL-3) Akoya 4350012; RRID: AB_2895050

CD19 (HIB19) Akoya 4350003; no RRID available

CD45RO (UCHL1) Akoya 4150023; RRID: AB_2895053

HLA-DR (L243) Akoya 4250006; RRID: AB_2895054

Ki67 (B56) Akoya 4250019; RRID: AB_2895046

CODEX Nuclear Stain (SKU) Akoya 7000003

Anti-CD68 Agilent M0814 clone KP1; RRID: AB_2750584

Anti-CD3 Abcam Ab16669 clone SP7; RRID: AB_443425

Anti-CD8 Agilent M710301-2 clone C8/144B; RRID:

AB_2075537

Anti-FOXP3 Abcam Ab20034 clone 236A/E7; RRID: AB_445284

Anti-IL17 R&D Systems AF-317-NA; RRID: AB_354463

Anti-NE Abcam Ab68672; RRID: AB_1658868

Anti-NKp46 R&D Systems Clone 195314; RRID: AB_2149153

Anti-CD1a Abcam EP3622; RRID: AB_10864235

Biological samples

Human neuroblastoma tumor samples for

scRNAseq

Karolinska Institutet/Karolinska

University Hospital

N/A

Human neuroblastoma tumor samples for

IHC

Skåne University hospital biobank/Lund

University hospital

N/A

Chemicals, peptides, and recombinant proteins

Media 199 Thermofisher Scientific Cat#12350039

DMEM Thermofisher Scientific Cat#15-013-CV

RPMI-1640 Thermofisher Scientific Cat#11875101

Fetal Bovine Serum (FBS) Life Technologies Cat#A31605-01

Penicillin-Streptomycin Life Technologies Cat#15140-122

Collagenase type I Worthington Cat#LS004214

Collagenase type II Worthington Cat#LS004202

Collagenase type III Worthington Cat#LS004206

Collagenase type IV Worthington Cat#LS004210

Dispase 1 Thermofisher Scientific Cat#17105041

RNasin Ribonuclease Inhibitor) Promega Cat#N2111

RNAase Out Recombinant Ribonuclease

Inhibitor

Thermofisher Scientific Cat#10777019

ACK-lysis buffer Thermofisher Scientific Cat#A1049201

Calcein AM Thermofisher Scientific Cat#C3099

7-AAD Thermofisher Scientific Cat#00-6993-50

DAPI Thermofisher Scientific Cat#62248

Ultrapure BSA Thermofisher Scientific Cat#AM2616

4% paraformaldehyde Thermofisher Scientific Cat#28908

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Phosphate Buffered Saline (PBS) Thermofisher Scientific Cat#14080048

PBS + 30%sucrose Sigma Cat#0389

OCT VWR Cat#00411243

Xylene 28973.294 VWR

1% H2O2 1.07209.0250 Merck

Target Retrieval Solution (DAKO) DAKO S1699

Protein Block Serum-Free Solution DAKO X0909

PBS + 5% normal goat serum 005-000-001

SH30256.01

Jackson ImmunoResearch

Nordic Biolabs

Labeled-chromogen substrate solution with

Liquid DAB chromogen

DAKO K3467

Mayer htx HISTOLAB 01820

Faramount Aqueous Mounting Medium DAKO S3025

Critical commercial assays

Chromium Single Cell 30v2 and v3 Reagent

Kit

10X Genomics N/A

CODEX Staining Kit Akoya Biosciences Cat# 7000008

CODEX Assay Reagents Akoya Biosciences Cat # 7000002

10X CODEX Buffer Akoya Biosciences Cat # 7000001

Deposited data

Data files for scRNA-seq This paper GEO: GSE147766

Software and algorithms

Cellranger v2.0 10x Genomics https://support.10xgenomics.com/

single-cell-gene-expression/software/

downloads/latest

Conos 1.2.1 Barkas et al., 2019 https://github.com/kharchenkolab/conos

InferCNV Patel et al., 2014 https://github.com/broadinstitute/inferCNV

ClusterProfiler 4.0 R package Wu et al., 2021 https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

Candisc 0.8-5 R package Comprehensive R Archive Network

(CRAN)

https://cran.r-project.org/web/packages/

candisc/index.html

Survival 3.2-3 R package Comprehensive R Archive Network

(CRAN)

https://cran.r-project.org/web/packages/

survival/index.html

R v3.6.0 https://www.r-project.org/ https://www.r-project.org/

Prism software GraphPad https://www.graphpad.com/scientific-

%20software/prism/

CODEX Instrument Management Software Akoya Biosciences NA

Ks R package (for kernel density) Comprehensive R Archive Network

(CRAN)

https://cran.r-project.org/web/packages/

ks/index.html

Other

BD FACS Aria III BD Biosciences N/A

Inverted fluorescent microscope Leica

Dmi8

N/A N/A

Akoya CODEX instrument Akoya Biosciences N/A

Olympus BX43 microscope Leica Biosystems N/A
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ninib Bar-

yawno (n.baryawno@ki.se).
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Material availability
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ninib Bar-

yawno (n.baryawno@ki.se).

Data and code availability
d The expression datasets generated in this study are available through Gene Expression Omnibus with the accession number

GEO: GSE147766.

d Interactive views of the single cell datasets, differential expression results, code notebooks, cell annotation and RData objects

are available on the author’s website at https://github.com/shenglinmei/NB.immune.atlas/.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient material and collection of tumor specimens
NB samples from Swedish patients were collected in conjunction with routine clinical sampling after parents and/or legal guardians

had given verbal or written consent. All samples were collected according to permits approved by the Karolinska Institutet/Karolinska

University Hospital ethics committees (reference numbers 03-736, 2009/1369-31/1) in accordance with the Helsinki declaration.

Clinical management and therapy were performed according to national and international protocols and data were obtained from

hospital records.

Tumor material used for immunohistochemistry
43 patients between the age 0 and 11 years were included in this study after written consent from their legal guardians. All patients

have been treated at Lund University hospital from the year 2000 and forward. The tumor samples were accessed through the bio-

bank at department of clinical genetics and pathology at Skåne University hospital and regional pathology archives and consists of

multiple, formalin-fixed paraffin embedded (FFPE) tumor samples.

Ethical approval for material used in immunohistochemistry
All tissue samples and genetic data used during this project were collected from human tumors which were collected with informed

consent from the legal guardians of the patients. Privacy of the donors have been protected and ethical approval from the ethical

committee at Lund University has been obtained before the start of this project.

METHOD DETAILS

Dissociation of NB into single cells
Fresh tissue obtained from surgery was collected inMedia 199 supplemented with 2% (v/v) FBS on ice. Single cell suspensions of the

tumors were obtained by cutting the tumor into small pieces (1mm3) followed by enzymatic dissociation for 45 minutes at 37�C with

shaking at 120 rpm using Collagenase I, Collagenase II, Collagenase III, Collagenase IV (all at a concentration of 1 mg/mL) and Dis-

pase (2 mg/mL) in the presence of DNAse I solution (1:100) and RNase Out (1:1000). Cells were then resuspended in fetal bovine

serum (FBS) with 5% DMSO and cryopreserved in liquid nitrogen.

FACS enrichment of viable NB cells
Cryopreserved cells from NB samples were thawed and stained with anti-CD235-PE and Calcein AM for 30 minutes at 4�C. Cells
were washed twice with Media199 containing 2% FBS followed by DAPI and/or 7AAD staining (1 mg/mL). Flow sorting for live and

non-erythroid cells (DAPI/7AAD-negative, Calcein AM-positive, CD235-negative) was performed on a BD FACS Aria III equipped

with a 100mm nozzle instrument.

Single cell library preparation and sequencing
After FACS sorting, NB single-cell libraries were prepared using the Chromium single-cell 30 reagent kit v2 and v3 according to the

manufacturer’s recommendations. Libraries were sequenced on the Illumina NextSeq 500 platform.

Sectioning of NB tumors
Snap frozen NB samples were slowly brought from – 80�C to +4�C. Samples were fixed in 4% paraformaldehyde in PBS (pH 7.4)

at 4�C for 4 hours with constant rotation, rinsed in PBS 3 times and cryoprotected by incubating at 4�C overnight in PBS contain-

ing 30% sucrose, again with constant rotation. Tissue samples were then embedded in OCT and frozen at �20�C. Serial sections
(10, 14 or 40 mm) were produced from each sample and collected on SuperFrost Plus Adhesion microscope slides and stored at

�20�C.
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Highly multiplexed immunofluorescence
For highly multiplexed immunofluorescence of tissue sections with the CODEX (Co-detection by inDEXing) we used the service

provided by the Spatial Proteomics Facility at Scilifelab. We used the automated image acquisition with an inverted fluorescent

microscope, Leica Dmi8, and fluidics exchange was performed using an Akoya CODEX instrument and CIM (CODEX Instrument

Management software). Staining was done for the following targets: CD3, CD4, CD8, CD11c, CD45RO, CD19, HLA-DR and Ki67.

A nuclear stain was used as a reference marker between the different cycles (SKU 7000003 CODEX Nuclear Stain).

Immunohistochemistry
Immunohistochemistry was performed on 4 mm tissue sections from FFPE tumor samples. The slides were dried for 20 min, then

deparaffinized in Xylene and rehydrated in ethanol to water. Endogenous peroxidase was blocked for 20 min with 1% H2O2. The

slides were then washed, and epitope retrieval was performed using Target Retrieval Solution (DAKO) in 95 �C in a pressure cooker

heater for 20 min. Slides were blocked in Protein Block Serum-Free Solution (X0909, DAKO) and later incubated with a primary anti-

body diluted in PBS containing 5% normal goat serum. Following incubation with primary antibody slides were washed in PBS and

incubated with a secondary antibody. Labeled-chromogen substrate solution with Liquid DAB chromogen was applied. The slides

were counterstained in Mayer htx before rehydrated and mounted with Faramount Aqueous Mounting Medium (S3025, DAKO).

The following primary antibodies were used: anti-CD68 (M0814, clone KP1, DAKO), anti-CD3 (ab16669, clone SP7, Abcam), anti-

CD8 (M710301-2, clone C8/144B, Agilent), anti-FOXP3 (ab20034, clone 236A/E7, Abcam), anti-IL17 (AF-317-NA, R&D Systems),

anti-NE (ab68672, Abcam), anti-NKp46 (clone 195314, R&D Systems) and anti-CD1a (EP3622, Ventana).

Infiltration density of immune cells in human NB
The infiltration density of immune cells in the tumors were evaluated by counting cells in 4 mm tissue sections from FFPE tumor sam-

ples. The FFPE samples had been stained using immunohistochemistry for the cell markers; CD68, CD3, CD8, FOXP3, IL17, NE,

NKp46 and CD1a. 100 cells were counted in three different areas in each sample at 40x magnification (Olympus BX43 microscope,

Olympus, Shinjuku, Japan) and the average percentage of infiltrating cells were calculated for each sample.

QUANTIFICATION AND STATISTICAL ANALYSIS

Pre-processing of scRNA-seq data
Demultiplexing of bcl files into fastq files was performed using cellranger 3.0.1 mkfastq software and alignments to the human

genome reference sequences were performed using cellranger count. The reference included all protein coding genes as well as

mitochondrial genes for downstream analysis. All cell barcodes with less than 500 UMIs were excluded. These were further filtered

one sample at a time where barcodes with percent mitochondrial reads larger than median plus two standard deviations

(percent.mito > median + 2sd). Likewise, barcodes with few detected genes were filtered out as log10(nGene) < median - 2sds.

ScRNA-seq analysis
During the preliminary round of analyses the datasets were aligned using Conos 1.2.1 with k = 15; kself = 5 PCA rotation space and

angular distance measure. Visualization using UMAP embedding showed a number of continuous bridges connecting the major

populations.

For subtype assessment within myeloid, T, NK or B cells, we extracted all myeloid (or T, NK, B cells), removed low quality samples

with less than 50 cells per cells, and realigned separately using Conos with default paramenters. Leiden community clustering

method (as implemented in Conos) was used to determine refined joint clusters, providing higher resolution than the initial analysis.

In addition, we also provided walktrap.community and multilevel.community result in data website (https://github.com/shenglinmei/

NB.imzmune.atlas), where users can download and view different clustering results. To avoid over clustering, we also evaluated cell

type or cell states specific expressed genes. Final cell annotations are annotated based on literature reported markers and cluster

specificmarkers (Table S5). getDifferentialGenes function fromConoswas used to identify differentially expressed (marker) genes for

clusters or subtypes. Annotation of the cluster communities was done using marker gene expression. Two patient samples were

excluded for immune cell analysis due to low number of immune cells. These samples were included in the receptor ligand analysis

where tumor and stroma are taken into account (see section Identification of significant ligand-receptor pairs).

Analysis of cell composition shift
We present two methods to analysis relative cell compositions shift within the major cell populations. The first one is cluster-

based cell proportion analysis, cell frequency is normalized by total number of cells per sample (like total myeloid cells), sta-

tistical significance of proportion differences was then evaluated using Wilcoxon rank sum test. The second one is cluster-

free cell composition analysis, where we estimate cell density per sample and evaluate the differential cell density between

sample groups. We first compute kernel density in joint embedding space for each sample using ks R package (bin = 400),

then quantile normalization was used to normalize the density matrix across samples and the average density of each sample

group is shown in Figure 2H.
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Calculation of gene set signature scores
To assess cell states in different cell subsets and conditions, we used a gene set signature score to measure the relative difference of

cell states. The signature scores were calculated as average expression values of the genes in a given set. Specifically, we first calcu-

lated signature score for each cell as an average normalized (for cell size) gene expression magnitudes, then the signature score for

each sample was computed as the mean across all cells.

Survival analysis
We collected 498 bulk RNA sequencing data of primary NB patient samples from GSE49711 (https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE49711). To test if a given signature predicts survival of NB patient, we first computed the average gene

expression level of the signature in each tumor based on the bulk RNA sequencing data. The samples were grouped into high

(top 25%) and low (bottom 25%) groups based on the average signature gene expression. Next, we used a one-sided log-rank

test to compute the significance of the association between the signature expression value and prognosis. To evaluate the satiability

of signature genes list, we resample the signature genes and repeat the analysis with 500 bootstrap resampling rounds. Statistical

significance was then assessed by p-values at the 99% reproducibility power (i.e. reporting 0.99th quantile of the sampled p-values).

Similarly, the same survival analysis was separately applied to low-risk and high-risk patients, MYCN amplified and MYCN non-

amplified patients. The detailed genes list used for prognostic analysis can be found in Table S5. For survival heatmap plots,

P-value from the survival plot was taken and presented as heatmap using -log10 P-value.

Identification of significant ligand-receptor pairs
The ligand-receptor (LR) pairs were downloaded from published databases CellPhoneDB (v1.1.0). To identify significant ligand-re-

ceptor pairs in 10X data (n = 19 patient samples), we used a similar approach as previously described (Vento-Tormo et al., 2018). We

first calculated gene expression ratio in each cell type and only considered genes with more than 10%of cells demonstrating expres-

sion within each cell type. We then calculated average expression of ligand and receptor pairs across cell type pairs in normalized

scRNA-seq data. The product of average ligand expression in cell type A and the average receptor expression in cell type Bwas used

to measure LR pair expression. Statistical significance was assessed by randomly shuffling the cluster labels of all cell types and re-

calculating ligand-receptor average pair expression across 1,000 permutations, which generated a null distribution for each LRpair in

each pairwise comparison between two cell types. P-values were calculated with the normal distribution curve generated from the

permuted LR pair interaction scores. Candidate LR pairs were determined by P value 0.05 or lower. To prioritize the significant ligand-

receptor pairs, we tested if a LR pair is associated with patient overall survival. We first computed the average gene expression of the

ligand and receptor in each tumor based on the bulk RNA-Seq data, next patients were stratified into two groups according to the

average expression of the RL pair: high or low expression correspond to the top or bottom 25% of the population, respectively. Log-

rank test was used to examine if therewas a significant difference between these two patient groups in terms of their survival. LR pairs

were filtered using survival significance p value of 0.05 or lower. In addition, we also evaluated ligand and receptor expression,

requiring both ligand and receptor highly expressed in corresponding cell type. The getDifferentialGenes() function from Conos

was used to derive DEG from each cell type and genes. We next screened each of the LR pair using p-value determined Z score

>5 and AUC > 0.5. The detailed ligand-receptor pairs can be found at: https://github.com/shenglinmei/NB.immune.atlas.

Statistics
Wilcoxon rank sum test was used to assess significance in signature score analysis and cell proportion differences analysis. The

p-values in the figures were reported using the following symbols: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Data and code availability
Raw sequencing and processed data in this paper are available under the accession number: GSE147766. For the joint alignment

analysis with public scRNA-seq data, we downloaded normal fetal adrenal tissue and NB scRNA-seq datasets from Dong et al.,

2020, Kameneva et al., 2021 and Kildisiute et al., 2021. Custom code and the combined data that was used in this study can be found

at https://github.com/shenglinmei/NB.immune.atlas. In addition, we provided an interactive view Conos object, allowing the user to

download and view the data to the Conos joint alignment results.
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Figure S1. Global immune cell landscape of human NB. Related to Figure 1. (A) Global overview of 
neuroblastoma landscape including tumor and stromal cells from 19 patient samples. (B) The number of 
samples taken per patient used for the immunohistochemistry analysis. (C) The number of the different immune 
cell populations per patient sample (n=17) (from scRNAseq data). (D) Barplot showing cell composition of 
different immune cell types per patient sample (from scRNAseq data). (E) Frequency distribution of total 
percentage of counted immune cells in neuroblastoma tumors (from IHC data) shown as barplot (n=43). (F) 
Fraction of immune cell populations in low- (n=8), intermediate- (n=10) and high-risk (n=34) patient samples 
from the combined dataset including Kildisiute et al. Science Advances 2021, Dong et al. Cancer Cell 2020, 
Kameneva et al. Nature Genetics 2021 and the data presented here.



 
 
Figure S2. Myeloid cell infiltration with distinct cell-states detected in NB. Related to Figure 2. (A) 
Infiltration of CD11c+ myeloid cells and antigen presentation function (HLA-DR+) into neuroblastoma tumor 
using multiplex immunohistochemistry. Scale bar left = 800 μm, scale bar right = 50 μm. Picture taken from 
patient sample NB06. (B) Quantification for panel A presented as mean with standard error of the mean (n=3). 
(C-D) Average expression of monocyte score signature and accompanying heat map (n=16) (top color bar, 
colors matching panel C). Wilcoxon rank sum test was used for statistical analysis, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001. (E-F) Average expression of macrophage signature genes in different myeloid 
subpopulations and accompanying heat map (n=16) (top color bar, colors matching panel E). Wilcoxon rank 
sum test was used for statistical analysis, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. (G-H) Average 
expression of M1 signature genes in different myeloid subpopulations and accompanying heat map (n=16) (top 
color bar, colors matching panel G). Wilcoxon rank sum test was used for statistical analysis, *p<0.05. (I) 
UMAP visualization of fetal adrenal immune cell data. (J) Accompanying key marker genes for I. (K) Myeloid 
cell specific embedding shows different numbers of different myeloid cell subpopulations comparing low- 
(n=5), intermediate- (n=8) and high-risk (n=21) neuroblastoma. (L) Violin plot displaying specific gene 
expression per population. Average expression of M1 (M) and M2 (N) signature genes in the combined dataset 
(see K for biological replicate numbers). Wilcoxon rank sum test was used for statistical analysis, *p<0.05, 
**p<0.01, ***p<0.001, ****p<0.0001. (O) Similar to Figure 1H, survival curves for Macro-2, Macro-3, Mono-
1, CD1C mDCs, mature-LAMP3 mDCs, CLEC9A mDCs and Proliferating myeloid cells. (P) Summary of 
survival correlation split into risk group and MYCN status for the myeloid subtypes. Log-rank test was used for 
statistical analysis, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 



 
 
Figure S3. B and NK cell heterogeneity and infiltration in NB tumors. Related to Figure 3. (A) B cell 
(CD19+) and antigen presentation (HLA-DR+) staining using multiplex immunohistochemistry. Scale bar left = 
1600 μm, scale bar right = 50 μm. Picture taken from patient sample NB11. (B) Quantification for panel A 
presented as mean with standard error of the mean (n=4). (C) B cell specific embedding shows different 
numbers of different B cell subpopulations comparing low- (n=3), intermediate- (n=6) and high-risk (n=18) 
neuroblastoma. (D) Similar to Figure 1H, survival curve for TLS signature. (E) Survival curves for the different 
B cell subpopulations. (F) Summary of survival correlation split into risk group and MYCN status for the B cell 
subtypes. Log-rank test was used for statistical analysis, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.(G) 
Cytotoxicity signature score for the different NK cell populations comparing low- (n=4), intermediate- (n=6) 
and high-risk (n=21) disease. (H) The fraction of NK cells in low- (n=4), intermediate- (n=6) and high-risk 
(n=21) neuroblastoma on an NK cell specific embedding. (I) Survival curves for CD56bright, CD56dim and 
ILC3 cells. (J) Summary of survival correlation split into risk group and MYCN status for the NK cell subtypes. 
Log-rank test was used for statistical analysis, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.



 
 
Figure S4. Distinct subtypes of T cell infiltrates correlate with improved NB survival. Related to Figure 4. 
(A) Multiplex IHC validation of different T cell populations in human neuroblastoma. Scale bar left = 800 μm, 
further right scale bars all are 50 μm. Staining included CD3+, CD4+, CD8+, memory cells (CD45RO+) and 
proliferating cells (Ki67+), and (B) quantification is presented as mean with standard error of the mean (n=3 to 
n=5). Pictures taken from patient sample NB01. (C-D) Additional single staining for CD8, FOXP3 and IL-17, 
and quantifications (n=9). (E) T cell specific embedding for the T cells present in the combined dataset (as used 
for the myeloid cell analysis). (F) Treg activity signature score comparing low- (n=4), intermediate- (n=9) and 
high-risk (n=23) disease with accompanying heat map (G). (H) Survival curve for Tregs. (I-J) Cytotoxicity and 
exhaustion signature score comparing low- (n=4), intermediate- (n=9) and high-risk (n=23) neuroblastoma for 
CTL-1 to -4. (K) Survival curves for CTL-2, proliferating T cells and NKT cells. (L) Summary of survival 
correlation split into risk group and MYCN status for the T cell subtypes. Log-rank test was used for statistical 
analysis, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.



 
Figure S5. Tumor-immune cell ligand-receptor interaction analysis reveals several interactions for future 
studies. Related to Figure 5. (A) Similar to Figure 5C, showing expression of Ligand (tumor/stroma) - 
Receptor (tumor/stroma) interactions (n=19). (B) Ligand (immune) - Receptor (immune) interactions between 
immune cell subsets. The color represents scaled average expression of marker genes in each cell type, and the 
size indicates the proportion of cells expressing marker genes. Significance of ligand receptor pair is determined 
by permutation test, correlation to survival and specific cellular expression (see method). 
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