**Cell Reports Medicine, Volume 3** 

# **Supplemental information**

## *Plasmodium vivax* malaria serological exposure

### markers: Assessing the degree and implications

## of cross-reactivity with P. knowlesi

Rhea J. Longley, Matthew J. Grigg, Kael Schoffer, Thomas Obadia, Stephanie Hyslop, Kim A. Piera, Narimane Nekkab, Ramin Mazhari, Eizo Takashima, Takafumi Tsuboi, Matthias Harbers, Kevin Tetteh, Chris Drakeley, Chetan E. Chitnis, Julie Healer, Wai-Hong Tham, Jetsumon Sattabongkot, Michael T. White, Daniel J. Cooper, Giri S. Rajahram, Bridget E. Barber, Timothy William, Nicholas M. Anstey, and Ivo Mueller

#### **Supplementary Information**



**Figure S1: IgG antibody levels against 21** *P. vivax* proteins in 98 individuals with matched data over time. IgG levels were measured against the 21 *P. vivax* proteins using a multiplexed antibody assay. Samples were obtained and run at the time of *P. knowlesi* infection (day 0), and days 7 and 28 following enrolment (ACTKNOW cohort). Results are expressed as the relative antibody units (RAU). All samples were run in singlicate. The raw data were converted to RAU based on the protein-specific standard curve using a 5-paramater logistic function. Proteins are ordered by highest level of median IgG at day 7 compared to the seropositivity cut-off. Dashed lines indicate the malaria-naïve negative control samples (n=369, MSP3b n=213): lower = average of the negative control samples; upper = seropositivity cut-off (average plus 2x standard deviation). Related to Figure 1.



**Figure S2:** Correlation between acquisition of IgG antibodies at Day 0 to *P. vivax* DBPII constructs and duration of fever of *P. knowlesi* patients. IgG levels were measured against the 21 *P. vivax* proteins using a multiplexed antibody assay. Samples were obtained and run at the time of *P. knowlesi* infection (day 0), and days 7 and 28 following enrolment (ACTKNOW cohort). Results are expressed as the relative antibody units (RAU). All samples were run in singlicate. The raw data were converted to RAU based on the protein-specific standard curve using a 5-paramater logistic function. Here, IgG antibody data at day 0 were correlated with the duration of fever (days) reported by the *P. knowlesi* patients. Data are shown for the only two proteins with a statistically significant correlation, DBPII AH and Sal1. Dashed lines indicate the malaria-naïve negative control samples (n=369): lower = average of the negative control samples; upper = seropositivity cut-off (average plus 2x standard deviation). The third plot shows the correlation between antibodies between both DBPII constructs. Spearman correlation co-efficients are shown. Related to Table 4.



**Figure S3: IgG antibody levels against 21** *P. vivax* proteins in *P. knowlesi* patients split via clinical trial. IgG levels were measured against the 21 *P. vivax* proteins using a multiplexed antibody assay. Samples were obtained and run at the time of *P. knowlesi* infection (day 0), and days 7 and 28 following enrolment (ACTKNOW and PACKNOW cohorts). Further data timepoints were available for PACKNOW but are not shown. Results are expressed as the relative antibody units (RAU). All samples were run in singlicate. The raw data were converted to RAU based on the protein-specific standard curve using a 5-paramater logistic function. Proteins are ordered by highest level of median IgG at day 7 compared to the seropositivity cut-off. Dashed lines indicate the malaria-naïve negative control samples (n=369, MSP3b n=213): lower = average of the negative control samples; upper = seropositivity cut-off (average plus 2x standard deviation). Data are split via clinical trial; the ACTKNOW cohort (n=99) and the PACKNOW cohort (n=41 at day 0). Statistical difference in antibody levels between clinical trial groups was only assessed at the peak timepoint of day 7, using Mann-Whitney U tests. 9 of 21 *P. vivax* proteins induced significantly higher levels in ACTKNOW vs PACKNOW: RBP2b<sub>161-1454</sub> (p=0.0019), MSP3b (p=0.0095), DBPII AH (p=0.0064), RIPR (p=0.013), MSP3a (p=0.0002), MSP5 (p=0.021), RBP2a (p=0.046), DBPII Sal1 (p=0.0049) and EBP (p=0.0007). Related to Figures 1 and 2.



**Figure S4: Classification of recent** *P. vivax* **infections using an adjusted** *P. vivax* **antigen panel.** Receiver operator characteristic curve for classifying individuals with PCRdetected *P. vivax* infections within the prior 9 months, using a random forest classification algorithm with antibody responses to a modified set of 8 *P. vivax* antigens (green, "new") compared to the original 8 (red, "legacy"). In panel A) RBP2b<sub>1986-2653</sub>, MSP7L, MSP7F, TRAP, DBPII Sal1, hypothetical (PVX\_097715), s16 and EBP, and B) RBP2b<sub>161-1454</sub>, MSP7L, MSP7F, TRAP, DBPII Sal1, hypothetical (PVX\_097715), s16 and EBP. Both panels A and B also include classification using either of the RBP2b<sub>1986-2653</sub> (purple) or RBP2b<sub>161-1454</sub> (blue) responses alone. Antibody data was from Thailand (n=829), Brazil (n=928), the Solomon Islands (n=754) and malaria-naïve negative controls (n=370). All samples were run in singlicate. Related to Table 3 and STAR Methods.

|                            | PlasmoDB code/GenBank ID |                                                              |                            |                                  |                                                 |
|----------------------------|--------------------------|--------------------------------------------------------------|----------------------------|----------------------------------|-------------------------------------------------|
| Protein                    |                          | Full Annotation                                              | Region, amino acids (size) | Expression system                | μg protein coupled to 2.5x10 <sup>6</sup> beads |
| RBP2b <sub>161-1454</sub>  | PVX_094255               | Reticulocyte binding protein 2b (n-terminal fragment)        | 161-1454 (1294)            | E. coli, WEHI                    | 0.6                                             |
| MSP1-19                    | PVX_099980               | Merozoite surface protein 1 - 19                             | 1622-1729 (108)            | WGCF, CellFree Sciences          | 4                                               |
| RBP2b <sub>1986-2653</sub> | PVX_094255               | Reticulocyte binding protein 2b (c-terminal fragment)        | 1986-2653 (667)            | WGCF, CellFree Sciences          | 8                                               |
| EBP                        | KMZ83376.1               | Erythrocyte binding protein                                  | 109-432 (324)              | E. coli, Institut Pasteur        | 0.5                                             |
| s16                        | PVX_000930               | Sexual stage antigen S16                                     | 31-end (110)               | WGCF, CellFree Sciences          | 2                                               |
| RIPR                       | PVX_095055               | Rh5 interacting protein                                      | 552-1075 (524)             | <i>E. coli,</i> WEHI             | 2                                               |
| MSP3a                      | PVX_097720               | Merozoite surface protein 3                                  | 25-end (828)               | WGCF, CellFree Sciences          | 2                                               |
| Hypothetical               | PVX_097715               | Hypothetical protein                                         | 20-end (431)               | WGCF, CellFree Sciences          | 3                                               |
| DBPII AH                   | AAY34130.1               | Duffy binding protein region II (strain AH)                  | 1-237 (237)                | E. coli, Institut Pasteur        | 1.4                                             |
| MSP8                       | PVX_097625               | Merozoite surface protein 8                                  | 24-463 (440)               | WGCF, CellFree Sciences          | 1.4                                             |
| Pv-fam-a                   | PVX_112670               | Pv-fam-a                                                     | 34-end (302)               | WGCF, CellFree Sciences          | 2.26                                            |
| RAMA                       | PVX_087885               | Rhoptry associated membrane antigen                          | 462-730 (269)              | WGCF, CellFree Sciences          | 1.2                                             |
| Pv-fam-a                   | PVX_096995               | Pv-fam-a                                                     | 61-end (420)               | WGCF, CellFree Sciences          | 3                                               |
| MSP3b                      | PVX_097680               | Merozoite surface protein 3                                  | 21-end (996)               | WGCF, CellFree Sciences          | 0.8                                             |
| MSP7L                      | PVX_082700               | Merozoite surface protein 7                                  | 23-end (397)               | WGCF, CellFree Sciences          | 1.5                                             |
| MSP5                       | PVX_003770               | Merozoite surface protein 5                                  | 23-365 (343)               | WGCF, CellFree Sciences          | 0.2                                             |
| MSP7F                      | PVX_082670               | Merozoite surface protein 7                                  | 24-end (388)               | WGCF, CellFree Sciences          | 1                                               |
| TRAP                       | PVX_082735               | Thrombospondin related adhesion protein (also known as SSP2) | 26-493 (468)               | WGCF, CellFree Sciences          | 2                                               |
| DBPII Sal1                 | PVX_110810               | Duffy binding protein region II (strain Sal1)                | 193-521 (329)              | <i>E. coli,</i> Institut Pasteur | 1.5                                             |
| PTEX150                    | PVX_084720               | translocon component PTEX150, putative                       | 24-908 (885)               | WGCF, CellFree Sciences          | 1                                               |
| RBP2a                      | PVX_121920               | Reticulocyte binding protein 2a                              | 160-1135 (976)             | E. coli, WEHI                    | 1.5                                             |

Table S1: Proteins used in this study. Related to STAR Methods, Figures 1, 2, 3, Tables 1 and 4.

|                           |            | Parasitaemia                 |         | Gender               |         |
|---------------------------|------------|------------------------------|---------|----------------------|---------|
| Protein                   | Fold ∆ IgG | Coefficient (95% CI)         | p value | Coefficient (95% CI) | p value |
| MSP1-19                   | 43.98      | -2.22e-6 (-8.69e-6-4.25e-6)  | 0.498   | 0.051 (-0.23-0.33)   | 0.724   |
| MSP8                      | 17.07      | -3.31e-7 (-3.9e-6 - 3.24e-6) | 0.855   | 0.17 (-0.06-0.42)    | 0.146   |
| Pv-fam-a (PVX_096995)     | 13.39      | -5.35e-7 (-4.02e-6-2.94e-6)  | 0.761   | 0.12 (-0.07-0.32)    | 0.207   |
| RAMA                      | 10.86      | -1.41e-6 (-4.02e-6-1.2e-6)   | 0.287   | 0.23 (-0.015-0.47)   | 0.065   |
| PTEX150                   | 6.08       | 3.64e-7 (-2.59e-6-3.32e-6)   | 0.808   | 0.11 (-0.13-0.34)    | 0.376   |
| MSP5                      | 4.70       | -1.92e-6 (-5.28e-6-1.43e-6)  | 0.258   | 0.34 (0.049-0.64)    | 0.023   |
| RIPR                      | 3.66       | -2.8e-6 (-7.78e-6-2.18e-6)   | 0.267   | 0.25 (-0.015-0.51)   | 0.065   |
| RBP2b <sub>161-1454</sub> | 3.00       | 1.59e-6 (-3.74e-6 - 6.95e-6) | 0.557   | 0.073 (-0.18-0.32)   | 0.56    |
| Pv-fam-a (PVX_112670)     | 2.76       | 9.23e-7 (-1.62e-6-3.46e-6)   | 0.473   | -0.036 (24-0.17)     | 0.724   |
| RBP2a                     | 2.45       | -2.78e-6 (-5.99e-6-4.35e-7)  | 0.09    | -0.02 (-2.2-0.18)    | 0.842   |
| MSP3b                     | 1.93       | 7.7e-7 (-1.16e-6 - 2.7e-6)   | 0.432   | 0.26 (0.053-0.46)    | 0.014   |
| MSP3a                     | 1.92       | -7.73e-7 (-3.5e-6-1.95e-6)   | 0.575   | 0.28 (0.047-0.52)    | 0.019   |
| EBP                       | 1.33       | -2.02e-6 (-4.83e-6-7.94e-7)  | 0.158   | 0.057 (-0.16-0.27)   | 0.603   |
| DBPII AH                  | 1.31       | -3.6e-9 (-5.52e-66.03e-7)    | 0.015   | 0.178 (0.005-0.35)   | 0.044   |
| S16                       | 1.18       | 8.4e-7 (-3.57e-6-5.25e-6)    | 0.707   | 0.23 (-0.035-0.49)   | 0.089   |
| Hypothetical              | 1.16       | -7.69e-7 (-4.23e-6-2.69e-6)  | 0.661   | 0.18 (-0.067-0.430   | 0.152   |
| DBPII Sal1                | 1.02       | -2.13e-6 (-5.29e-6-1.03e-6)  | 0.185   | 0.17 (-0.022-0.36)   | 0.082   |
| TRAP                      | 0.90       | 3.31e-7 (-3.95e-6 - 4.61e-6) | 0.878   | 0.11 (-0.096-0.31)   | 0.297   |
| MSP7L                     | 0.78       | -8.79e-7 (-3.09e-6-1.34e-6)  | 0.434   | 0.16 (-0.077-0.40)   | 0.185   |
| MSP7F                     | 0.78       | 4.55e-6 (1.29e-6-7.82e-6)    | 0.007   | 0.16 (-0.093-0.41)   | 0.217   |
| RBP2b1986-2653            | 0.44       | 2.67e-6 (-1.06e-6 - 6.4e-6)  | 0.159   | 0.20 (-0.055-0.45)   | 0.125   |

Table S2: Association between peak antibody levels at day 7 with parasitaemia and gender. Sample size = 134. Regression analyses were performed univariably. Antigens are ordered by the fold change in the peak antibody level at day 7 compared to the seropositivity cut-off based on the negative control samples (=Fold  $\Delta$  IgG). Fold change data shown is from the ACTKNOW cohort. CI = confidence interval. Related to Table 4.