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Section S1 Codes for Training Process

This section provides the detailed instructions to use our inhouse package to realize the steps 
and functions in the training progress. Before reproduce the steps, make sure to install the package 
“fast-machine-learning” by running “pip install fast-machine-learning” in cmd. The PyPI website 
is: https://pypi.org/manage/project/fast-machine-learning/release/0.0.2.0/. The training process is 
based on the version of 0.0.2.0, and the API functions might be changed in later developments. 

The code in each step will be illustrated in general, and the code files are supplemented as the 
supporting files at https://github.com/luktian/InverseDesignViaPSP. The data set used in this 
manuscript and the relevant output files are also attached at the GitHub. 

Code S1 Dealing with multiple target values of singular sample

As shown in Figure S1, the raw sample set (loaded from “code1/extracted_samples_1159.xlsx” 
in supporting files) was processed using the module “fml.targets.DealMultipleTarget”, in which the 
formulas were identified using the module “fml.formulars.SplitFormular”. The sample number 
reduced to 437 from 1159, in which the details could be seen in the variable “dealed_data” or the 
output excel file “./code1/pruned_samples_437.xlsx”.

From the variable “counters”, more information could be accessible to the readers. Typically, 
the bandgap of the identical HOIP material MAPbI3 had 340 diverse values ranging from 1.45 ~ 2.0 
eV, which may be caused by the experimental error or the diverse conditions. As shown in Table 
S1, there are 176 samples owned with bandgap 1.50 eV while the second top is 54 samples with 
1.51 eV. After being processed by using the dealing method “prone_mean” in the module 
“fml.targets.DealMultipleTarget”, the bandgap of MAPbI3 was adapted to 1.504 eV. Other identical 
HOIPs also had the multiple bandgap values. For example, MAPbBr3 had 51 diverse bandgap values 
with the adapted value of 2.298 eV, while FAPbI3 had 33 diverse values and the adapted value of 
1.519 eV. For more details, it might be possible for readers to inspect the variables in code or the 
provided supporting data files in directory “./code1”. 

https://pypi.org/manage/project/fast-machine-learning/release/0.0.2.0/
https://github.com/luktian/InverseDesignViaPSP
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Figure S1 The code to prune the multiple target values of singular sample
Table S1 The diverse bandgap values for the identical HOIPs

MAPbI3 MAPbBr3 FAPbI3

Target values 
(eV)

Counts Target 
values (eV)

Counts Target 
values (eV)

Counts

1.5 176 2.3 29 1.48 5
1.51 54 2.17 3 1.47 3
1.55 24 2.25 3 1.51 3
1.53 18 2.02 2 1.53 3
1.58 14 2.18 2 1.55 3
1.57 12 2.2 2 1.41 2
1.56 9 2.42 2 1.43 2
1.6 8 1.72 1 1.5 2
1.52 6 2.16 1 1.52 2
1.49 4 2.24 1 1.45 1
1.59 4 2.27 1 1.46 1
1.54 2 2.28 1 1.49 1
2.0 2 2.35 1 1.52125 1
1.565 1 2.38 1 1.522054236 1
1.45 1 2.43 1 1.528 1
1.47 1 1.56 1
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1.7 1 2.41 1
1.504 1
1.566 1
1.633 1
Processed 
Value (eV)

Processed 
Value (eV)

Processed 
Value (eV)

1.504 2.298 1.519

Code S2 Generating Descriptors

As shown in Figure S2, the 437 pruned HOIP formulas along with their bandgap values were 
loaded from the file “code1/pruned_samples_437.xlsx” resulted from Code S1. The 
“fml.formulars.SplitFormular” module was used again to transform the string formulas into the 
dictionary format that would be passed into the class function “describe_formular” of “HOIP” 
instance, which could generate the pre-defined descriptors. The descriptors were divided into three 
main parts, namely 34 base descriptors, 8 string descriptors, and 66 other descriptors. The 
descriptors were listed in Table S2, which were marked with the original sources. The atomic 
descriptors were collected from Villars Database1 and Mendeleev Python Package2, while the part 
of organic properties was calculated by using Gaussian3 and Multiwfn4 software. The details of base 
and string descriptors were illustrated in Table S3, and more information could be assessed in the 
documents of Villars Database1 and Mendeleev Python Package2. We collected 80 organic cations 
that are suitable for A site in ABX3 HOIPs, whose structures and origins could be seen in Table S4.

By switching the Boolean values in the module “HOIP”, three parts of descriptors could be 
generated optionally. The options of “base”, “ionization”, “ionic_radii” refer to the base descriptors, 
while the options “str_bool” and “other” refer to string and other descriptors. The option “onehot” 
could be used to control whether the string descriptors are encoded into numeric data or not. 

At last, the generated data set was represented in a table format with the row referring to sample 
indexes and the columns referring to bandgap and descriptors. The data file was outputted as the 
“./code2/HOIP_dataset_437.xlsx” in the supporting files.
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Figure S2 The code to generate descriptors
Table S2 The details of the assembled descriptors from Villars Databases, Mendeleev Package, and the 

quantum-based results.
Descri
ptor 
Types

Descriptor names Properties in 
Villars Database

Properties in 
Mendeleev Package

Properties 
for Organic 
fragments

atomic_number Atomic number 
start counting left 
top, left-right 
sequence

atomic_number

quantum_number quantum number period
atomic_weight atomic weight atomic_weight molecular_

weight

base 
descrip
tors

group_number group number
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valence_electron_number valence electron 
number

melting_point temperature 
melting

multing_point

boiling_point temperature 
boiling

boiling_point Boiling 
temperature

enthalpy_vaporization enthalpy 
vaporization

Evaporation 
enthalpy

enthalpy_melting enthalpy melting
enthalpy_atomization enthalpy 

atomization
volume_Villars volume atom 
volume_Mendeleev atomic_volume atomic 

volume
en_martynov electronegativity 

(Martynov&Bats
anov)

en_pauling electronegativity 
(Pauling)

en_pauling

en_allred electronegativity 
(Allred-Rochow)  

en_mulliken electronegativity 
absolute

Mulliken 
electronegat
ivity

en_allen en_allen
en_ghosh en_ghosh
first_ionization energy ionization 

first
second_ionization energy ionization 

second
third_ionization energy ionization 

third
chemical_potential chemical 

potential 
Miedema

chemical_p
otential

radii_pseudo_zunger radii pseudo-
potential 
(Zunger) 

radii_ionic_yagoda radii ionic 
(Yagoda)  

radii_metal_waber radii metal 
(Waber) 

metallic_radius

atomic_radii atomic_radii atomic radii
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density density density
dipole_polarizability dipole_polarizability molecular 

polarity 
index

electron_affinity electron_affinity vertical 
electron 
affinity

evaporation_heat evaporation_heat evaporation 
enthalpy

lattice_constant lattice_constant
proton_affinity proton_affinity
ionization ionization ionization
_ionic_radii_ ionic_radii ionic_radii
block block
lattice_structure lattice_structure
cas cas
goldschmidt_class goldschmidt_class
geochemical_class geochemical_class
is_monoisotopic is_monoisotopic
is_radioactive is_radioactive

string 
descrip
tors

name name
atomic_number_2 Periodic number 

start counting left 
bottom, left-right 
sequence

atomic_number_3 Periodic number 
start counting top 
right, right-left 
sequence

atomic_number_4 Periodic number 
start counting 
bottom right, 
right-left 
sequence

enthalpy_surface_miede
ma

enthalpy surface 
Miedema

enthalpy_vacancies_mied
ema

enthalpy 
vacancies 
Miedema

mass_attenuation_coef_m
okalpha

mass attenuation 
coefficient for 
MoKalpha

other 
descrip
tors

mass_attenuation_coef_cr mass attenuation 
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kalpha coefficient 
CrKalpha

mass_attenuation_coef_cr
kalpha_2

mass attenuation 
coefficient for 
CuKalpha

mass_attenuation_coef_fe
kalpha

mass attenuation 
coefficient 
FeKalpha

atomic_electron_scatterin
g_factor

atomic electron 
scattering factor 
at 0.5 (/)

work_function work function
nws1_3_miedema nWS1/3 

Miedema
nulear_charge_effective_
slater

nuclear charge 
effective Slater

charge_nuclear_effective
_clementi

charge nuclear 
effective 
(Clementi)

energy_cohesive_brewer energy cohesive 
Brewer

modulus_compression modulus 
compression

modulus_bulk modulus bulk
modulus_rigidity modulus rigidity
modulus_Young modulus Young
mendeleev_number Mendeleev 

Number
mendeleev_number

mendeleev_number_2 Mendeleev 
Number

mendeleev_number_3 Mendeleev 
Number

mendeleev_number_4 Mendeleev 
Number

pettifor_number Mendeleev 
Pettifor

pettifor_number_regular Mendeleev 
Pettifor regular

glawe_number glawe_number
mendeleev_chemisits_seq
uence

Mendeleev 
chemists 
sequence

mendeleev_t_d_left Mendeleev t-d 
start left
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mendeleev_t_d_right Mendeleev t-d 
start right

mendeleev_d_t_left Mendeleev d-t 
start left

mendeleev_d_t_right Mendeleev d-t 
start right

mendeleev_h_li_na_be_
mg_block_t_d_left

Mendeleev 
H,Li,Na,Be,Mg 
as block t-d start 
left

mendeleev_h_be_mg_t_d
_left

Mendeleev 
H,Be,Mg t-d start 
left

mendeleev_h_li_na_be_
mg_t_d_left

Mendeleev 
H,Li,Na,Be,Mg t-
d start left

distance_valence_electro
n

distance valence 
electron 
(Schubert)

distance_core_electron distance core 
electron 
(Schubert)

v2_3_miedema V2/3 Miedema
atomic_env_number atomic 

environment 
number (Villars, 
Daams)

covalent_radius_cordero covalent_radius_cord
ero

covalent_radius_pyykko covalent_radius_pyy
kko

covalent_radius_bragg covalent_radius_brag
g

covalent_radius_slater covalent_radius_slate
r

covalent_radius_pyykko_
double

covalent_radius_pyy
kko_double

covalent_radius_pyykko_
triple

covalent_radius_pyy
kko_triple

vdw_radius vdw_radius
vdw_radius_bondi vdw_radius_bondi
vdw_radius_truhlar vdw_radius_truhlar
vdw_radius_rt vdw_radius_rt
vdw_radius_batsanov vdw_radius_batsano
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v
vdw_radius_dreiding vdw_radius_dreiding
vdw_radius_uff vdw_radius_uff
vdw_radius_mm3 vdw_radius_mm3
vdw_radius_alvarez vdw_radius_alvarez
atomic_radius_rahm atomic_radius_rahm
atomic_weight_uncertaint
y

atomic_weight_uncer
tainty

gas_basicity gas_basicity
heat_of_formation heat_of_formation
c6 c6
c6_gb c6_gb
metallic_radius_c12 metallic_radius_c12
dipole_polarizability_unc dipole_polarizability

_unc
specific_heat specific_heat
fusion_heat fusion_heat
thermal_conductivity thermal_conductivity
abundance_crust abundance_crust
abundance_sea abundance_sea

Table S3 The details of base and string descriptors
Descriptor names Descriptions Unit Examples
atomic_number Number in periodic table / Cl (17)
quantum_number Quantum Number / Cl (3)
atomic_weight Atomic weight / Cl (35.45)
group_number Group number / Cl (7)
valence_electron_number Valence electron number / Cl (7)
melting_point Melting point K Cl (172 K)
boiling_point Boiling point K Cl (238.6 K)
enthalpy_vaporization Vaporization enthalpy kJ/mol Cl (20.42 kJ/mol)
enthalpy_melting Melting enthalpy kJ/mol Cl (6.41 kJ/mol)
enthalpy_atomization Atomization enthalpy kJ/mol Cl (121.7 kJ/mol)
volume_Villars Volume from Villars database 10-2 nm3 Cl (2.886 10-2 nm3)
volume_Mendeleev Volume from Mendeleev 

package
cm3/mol Cl (18.7 cm3/mol)

en_martynov Electronegativity 
(Martynov&Batsanov)

/ Cl (2.98)

en_pauling Electronegativity (Pauling) / Cl (3)
en_allred (EA) Electronegativity (Allred-

Rochow)  
/ Cl (2.83)

en_mulliken Electronegativity absolute // Cl (8.3)
en_allen (EN) Electronegativity / Cl (16.97)
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en_ghosh Electronegativity / Cl (0.264)
first_ionization First ionization energy kJ/mol Cl (1251.1 kJ/mol)
second_ionization Second ionization energy kJ/mol Cl (2297 kJ/mol)
third_ionization (TI) Third ionization energy kJ/mol Cl (3822 kJ/mol)
chemical_potential Chemical potential / Cl (0)
radii_pseudo_zunger 
(RPZ)

Radii pseudo-potential (Zunger) a.u. Cl (0.92 a.u.)

radii_ionic_yagoda Radii ionic (Yagoda)  Å Cl (0.2 Å)
radii_metal_waber Radii metal (Waber) Å Cl (30 Å)
atomic_radii Radii from Mendeleev package pm H (79 pm)
density Density g/cm3 Cl (1.4 g/cm3)
dipole_polarizability 
(DP)

Dipole polarizability a.u. Cl (11.083 a.u.)

electron_affinity Electron affinity eV Cl (-11.5 eV)
evaporation_heat Heat evaporation kJ/mol Cl (6.52 kJ/mol)
lattice_constant (LS) Lattice constant of element 

crystal
/ Cl (5.26)

proton_affinity Proton affinity kJ/mol Cl (369.2 kJ/mol)
ionization Ionization depending on degree eV Cl- (12.97 eV) 

Pb2+ (15.03 eV)
_ionic_radii_ Ionic radii depending on charge Å Cl- (1.81 Å)

Pb2+ (1.19 Å)
block Block position in periodic table / Cl (p)
lattice_structure Lattice structure of element 

crystal
/ Cl (ORC)

ORC refers to 
Primitive 
orthorhombic

cas Chemical Abstracts Serice 
identifier

/ Cl (7782-50-5)

goldschmidt_class Goldschmidt classification / Cl (litophile)
geochemical_class Geochemical classification / Cl (semi-volatile)
is_monoisotopic (IM) Is the element monoisotopic / I (True)
is_radioactive Is the element radioactive / Cl (True)
name (N) Element name / Cl (Chlorine)

Table S4 Collected structures of organic cations that are suitable for the A site in ABX3 HOIPs. 
Cation Codes Cation Names Structures Reference
A ammonium 5

AA dimethylammonium 6

AB N,N-dimethylmethyliumaminium 7
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AC propan-1-aminium 6

AD propan-2-aminium 6

AE hydroxylammonium 7

AF 1-aminoethan-1-iminium 6

AG hydrazinium 7

AH azetidin-1-ium 7

AI thiazol-3-ium 7

AJ 1H-pyrrol-1-ium 7

AK diethylammonium 6

AL benzenaminium 6

AM aziridin-1-ium 7

AN pyrrolidin-1-ium 6

AO azepan-1-ium 7

AP piperidin-1-ium 6

AQ pyridin-2-ylmethanaminium 8

AR trifluoromethanaminium 9
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AS difluoromethanaminium 9

AT fluoromethanaminium 9

AU cyclohexylmethanaminium 6

AV hexan-1-aminium 6

AW dodecan-1-aminium 6

AX 2-methylpropan-2-aminium 6

AY N1,N1-diethylpropane-1,3-diaminium 6

AZ N1,N1-dimethylpropane-1,3-diaminium 6

BA butan-1-aminium 6

BB morpholin-4-ium 6

BC cyclohexanaminium 6

BD 2-(4-fluorophenyl)ethan-1-aminium 6

BE (4-fluorophenyl)methanaminium 6

BF propane-1,3-diaminium 6

BG 2,2-dimethylpropan-1-aminium 6

BH N1,N1-dimethylethane-1,2-diaminium 6



S15

BI butane-1,4-diaminium 6

BJ 4-fluorobenzenaminium 6

BK pyridin-1-ium 6

BL 3-methylbutan-1-aminium 6

BM hexan-1-aminium 6

BN diisopropylammonium 6

BO 1-(2-ammonioethyl)pyrrolidin-1-ium 6

BP piperazine-1,4-diium 6

BQ 2,4,4-trimethylpentan-2-aminium 6

BR phenylmethanaminium 6

BS benzene-1,4-diaminium 6

BT (4-
(trifluoromethyl)phenyl)methanaminium

6

BU 4-(trifluoromethyl)benzenaminium 6

BV 4-methoxybenzenaminium 6

BW 2-(4-methoxyphenyl)ethan-1-aminium 6

EA ethanaminium 6
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ED ethane-1,2-diaminium 6

FA aminomethaniminium 6

GA diaminomethaniminium 6

HE 2-hydroxyethan-1-aminium 10

IA 1H-imidazol-3-ium 6

MA methanaminium 6

PE 2-phenylethan-1-aminium 6

PY 2-methylpropan-1-aminium 6

SA tetrafluoroborate

XA phenylmethylium 7

XB oxiran-1-ium 11

XC oxetan-1-ium 11

XD tetrahydro-1H-furan-1-ium 11

XE hexahydropyrylium 11

XF oxepan-1-ium 11

XG thiiran-1-ium 12
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XH thietan-1-ium 12

XI tetrahydro-1H-thiophen-1-ium 12

XJ hexahydrothiopyrylium 12

XK thiepan-1-ium 12

XL phosphiran-1-ium 12

XM phosphetan-1-ium 12

XN phospholan-1-ium 12

XO phosphinan-1-ium 12

XP phosphepan-1-ium 12

XQ sulfonium 13

XR methylsulfonium 13

XS ethyloxonium 13

XT methylphosphonium 13

Code S3 Searching Optimal Sample Distribution

As shown in Figure S3, the data set (“./code2/HOIP_dataset_437.xlsx”) was preprocessed by 
using the module “fml.preprocessing.Preprocessing” under the criteria of trimming the variables 
that have missing values or standard values nearly to 0, bringing about 102 features left. 
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As for data set division, the most regular way is to divide the data set randomly into training 
and test sets, which however may cause the extreme unreasonable sample distribution for training 
set and result in un unilateral chemical space for fitting models. In practice, if a pair of training and 
test sets are generated by random splitting based on the packages such as scikit-learn14 or NumPy15, 
the sample distribution is controlled by pseudo-random number generators, e.g., Mersenne Twister 
in Python standard module “random” and NumPy module “numpy.random.MT19937” and PCG-64 
in NumPy module “numpy.random.PCG64”, in which a fixed integer parameter named as random 
state or seed could always produce the same random sample sequence. By controlling the values of 
random state and test set size, the distributions of training and test sets could be optimized 
numerically, in which the sample distribution optimization is converted into a two-parameter 
optimization task. In this regard, HyperOpt16 is employed as the backend to perform the 
optimization task for searching the optimal random state and test size efficiently, in which the 
package is built based on Bayes theory. In our inhouse code, such process could be realized by using 
the module “fml.sampling.HpSplit”. The parameter “rounds” and “cv” could control the searching 
iterations and the fitness type, in which “cv=True” means that the root mean squared error (RMSE) 
of leaving-one-out cross-validation (LOOCV) is used as the fitness value. The optimal random state 
and test size could be accessed in the variable “best_params”. It should be noted that the searching 
procedure via HyperOpt is not a global searching, which will lead to different optimizing results. 

By passing the optimal random state and test size, we could easily obtain the divided training 
and test sets. We also prepared our data files that were generated under the random state of 1959 
and test size of 18.05% which were named as “./code3/train_1805_1959.joblib” and 
“./code3/test_1805_1959.joblib” in the supporting files. 
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Figure S3 The code to split data set into training and test sets

Code S4 Feature Selection

As shown in Figure S4, the training and test sets were loaded from the output files in Code S3. 
The recursive feature addiction (RFA) method was performed by importing the inhouse module 
“fml.pipelines.RFA”, which takes training and test sets as main parameters. The optional parameters 
“min_f” and “max_f” control the minimum and maximum feature numbers in RFA procedure. The 
RFA approach will fit the models by recursively iterating both of the selected features and the 
employed 7 algorithms, in which selected features is ranked according to the feature importance 
extracted from SHAP package17 and maximum relevance minimum redundancy (mRMR) method18, 
and the algorithms cover CatBoost (CAT)19, XGBoost (XGB)20, LightGBM (LGB)21, gradient 
boosting machine (GBM)22, support vector machine (SVM)23, decision tree regressor (DTR)24, and 
multiple linear regressor (MLR)14. The processed result could be accessed in the variable “summary” 
in the pandas.DataFrame format, which is outputted as an excel file “./code4/RFA_result.xlsx”. 

The various model performance could be seen in Figure S5 ~ Figure S8. The model 
performance was mainly determined based on the LOOCV RMSEs of the 7 models. By comparing 
the integral LOOCV RMSEs trend between in the Figure S5 (a) and (b), the over performance of 
the tree-based models was largely greater than the other models. The LOOCV RMSEs of tree-based 
models were fixed in 0.08 ~ 0.12 after 13 features while the range of the latter were almost over 
0.14. The same result could be drawn from the LOOCV determination coefficient (R2) trend in 
Figure S6, in which the LOOCV R2 values of the tree-based models were almost over 0.90. Figure 
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S7 (a) and Figure S8 (b) signaled the powerful predictivities of the tree-based models with the test 
RMSEs ranging 0.10 ~ 0.14 and the test R2 values higher 0.85, indicating that the models were fitted 
well and avoided the over-fitting problems. Finally, the CAT, XGB, LGB, and GBT models were 
built up based on the top 13, 13, 12, and 10 features respectively, whose LOOCV R2 were 0.94, 
0.92, 0.90, and 0.93 respectively.

Figure S5 ~ Figure S8 could be generated by the file “./code4/code4_plot.py”.

Figure S4 The code to perform RFA feature selection combining with 7 algorithms. 

Figure S5 The changing trend of LOO RMSEs of the tree-based (a) and other (b) models along with the 
increasing number. 

Figure S6 The changing trend of LOO R2 of the tree-based (a) and other (b) models along with the 
increasing number.
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Figure S7 The changing trend of test set RMSEs of the tree-based (a) and other (b) models along with 
the increasing number.

Figure S8 The changing trend of test set R2 of the tree-based (a) and other (b) models along with the 
increasing number.

Code S5 SHAP Analysis

The feature contributions of each established model were calculated using SHAP package.17 
As shown in Figure S9, the training and test set loaded from Code S3 were passed to module 
“fml.pipelines.SHAPModelling” to obtain the filtered training and test set for each algorithm along 
with the selected feature number determined in Code S4, namely 13, 13, 12, and 10 for CAT, XGB, 
LGB, and GBT models respectively. Then the SHAP values would be calculated based on the 
filtered respective training and test set for each model. The extracted feature contributions could be 
seen in Figure S10. 
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Figure S9 The code to calculate SHAP values for the fitted tree-based models.

 

(a)                                    (b)

 
(c)                                  (d)

Figure S10 SHAP values of CAT (a), XGB (b), LGB (c), GBT (d) models.
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Code S6 Hyper-parameter Optimization

The hyper-parameters were optimized for CAT, XGB, LGB, GBT models. The grid search 
(GS) module from scikit-learn14 may lack of more detailed processing information and not perform 
so efficiently in parallel calculations. Thence we used the self-developed module 
“fml.parameter_opt.GridSearch” to perform GS approach.

Herein, we consider the tree number, learning rate and tree depth for the optimization. As 
shown in Figure S11, the training and test set were loaded from Code 3, and the feature number 
were extracted from Code 4. The filtered training and test set were obtained from the module 
“fml.pipelines.SHAPModelling”, which was the same as Code S5. Then the grid search were 
performed using the module “fml.parameter_opt.GridSearch” along with the pre-defined algorithm 
(XGB in Figure S11), training set, test set, and the parameter ranges loaded from module 
“fml.configs.auto_config.gridsearch_parameters_reg”. We set the range 0.05~1 with step 0.05 for 
learning rate in XGB, LGB, GBT algorithms, while the learning rate will be will be automatically 
calculated in CAT algorithm according to the tree number value. The tree number (n_estimators) 
was set as 50~350 with step 10 for XGB, LGB, GBT algorithms, while 50~600 with step 50 for 
CAT algorithm. The tree depth (max_depth) was set as 3~8 with step 1 for XGB, LGB, GBT 
algorithms, while 4~10 with step 1 for CAT algorithm. Then the GS procedure would be running 
for hours depending on the computers. The full GS results could be accessed in “results”, while the 
best parameters could be seen in “best_p”. The results were outputted into table file and 
“./code6/*.joblib” file. 

The model performance along with the best hyper-parameters were listed in Table S5. LOOCV 
R2 of the CAT, XGB, LGB, GBT models were 0.928~0.950, while LOOCV RMSEs were 
0.076~0.091, indicating the robust model performance. The corresponding test R2 and test RMSEs 
were 0.883~0.918 and 0.102~0.122 respectively, showing the good predictivities. Also, we 
performed 5-folds cross-validation (CV5) and 10-folds cross-validation (CV10) for the models, 
whose R2 were all over 0.90, which proved the models were trained well. 
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Figure S11 The code to optimize the hyper-parameters for the CAT, XGB, LGB, GBT models.

Figure S12 Ranges of the hyper-parameters for CAT, XGB, LGB, and CAT algorithms.
Table S5 Model performance of CAT, XGB, GBT, LGB models. The validation methods involve 

training validation, leaving-one-out cross-validation (LOOCV), 5-folds cross-validation (CV5), 10-
folds cross-validation (CV10), and test validation. The metrics involves determination coefficient (R2), 
Pearson correlation coefficient ( ), root mean squared error (RMSE), mean average error (MAE), and 𝜌
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mean squared error (MSE).

CAT XGB LGB GBT
Tree number 600 50 350 80
Learning rate 0.048 0.3 0.15 0.25

Tree depth 7 5 5 4
Feature number 13 13 12 10

R2 0.994 0.998 0.992 0.999 
𝜌 0.997 0.999 0.996 0.999 

RMSE 0.025 0.017 0.031 0.013 
MAE 0.018 0.012 0.020 0.010 

Training

MSE 0.001 0.000 0.001 0.000 
R2 0.950 0.934 0.932 0.928 
𝜌 0.976 0.966 0.966 0.963 

RMSE 0.076 0.088 0.089 0.091 
MAE 0.048 0.058 0.057 0.060 

LOOCV

MSE 0.006 0.008 0.008 0.008 
R2 0.946 0.905 0.904 0.904 
𝜌 0.974 0.952 0.951 0.951 

RMSE 0.079 0.105 0.106 0.106 
MAE 0.051 0.066 0.067 0.066 

CV5

MSE 0.006 0.011 0.011 0.011 
R2 0.936 0.920 0.920 0.903 
𝜌 0.968 0.959 0.960 0.951 

RMSE 0.086 0.096 0.096 0.106 
MAE 0.053 0.063 0.061 0.068 

CV10

MSE 0.007 0.009 0.009 0.011 
R2 0.906 0.894 0.883 0.918 
𝜌 0.954 0.946 0.940 0.959 

RMSE 0.109 0.116 0.122 0.102 
MAE 0.054 0.068 0.069 0.059 

Test

MSE 0.012 0.013 0.015 0.010 
R2 0.790 0.800 0.740 0.800
𝜌 0.894 0.902 0.870 0.903

RMSE 0.068 0.066 0.076 0.066
MAE 0.040 0.045 0.044 0.047

External
Set

MSE 0.005 0.004 0.006 0.004

Code S7 Weighted Voting Regressor

Inspired by the voting regressor (VR) in scikit-learn14, we developed a weighted voting 
regressor (WVR) that combines various machine learning regression models and return the 
weighted predicted values. There are two main differences between the self-developed voting 
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regressor and the one of scikit-learn: i) the former combines the predictions of the sub-models by 
weights, while VR directly returns the average value; ii) the sub-models in WVR could use the 
individual feature set while the sub-models in VR use the same feature set. The utilization could be 
seen in Figure S13. The first part was to load the data set and the grid search results from the previous 
code part. Before fitting the WVR model, we needed to prepare 4 augments. The first was the 
variable containing algorithm modules that would be trained as sub-models. The second and third 
variables involved the training sets and test sets. The last one contained the model hyper-parameters 
that extracted from Code S6. An example form for the 4 augments was given in Figure S14. After 
fitting a WVR model, the best weights among the sub-models would be searched by using HyperOpt 
tool16. The search result might be different since HyperOpt does not perform a global search. In our 
case, a set of weights (Table S6) were outputted with 0.38 for CAT, 0.05 for XGB, 0.05 for LGB, 
and 0.51 for GBT model. The LOOCV R2 and test R2 reached 0.95 and 0.91 respectively, while the 
corresponding RMSEs were 0.079 and 0.106 respectively. The WVR model comprehended the 
outputs from the 4 sub-models, which has a more compliment model performance. The WVR model 
was outputted in “./code7/vr.joblib”.

The WVR model was also validated by predicting the bandgaps of external samples set of 42 
HOIPs. The validating result could be seen in Table S7 and the code could be found in “./code7/ 
code7_validating_48samples_2021.py”.

Figure S13 The code to fit a voting regressor
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Figure S14 Example augments for fitting a weighted voting regressor
Table S6 Weights in weighted voting regressor.

CAT XGB LGB GBT

权重
0.381301 0.0520176 0.0520183 0.514664

Table S7 Validating result for the external data set of 42 HOIPs.
VWR Training LOO Test CV5 CV10 External validating set of 42 HOIPs

R2 0.997 0.946 0.912 0.939 0.937 0.837
𝜌 0.999 0.973 0.956 0.970 0.969 0.919

RMSE 0.017 0.079 0.106 0.084 0.086 0.060
MAE 0.012 0.052 0.056 0.056 0.056 0.041
MSE 0.000 0.006 0.011 0.007 0.007 0.004

Code S8 SHAP Analysis for Weighted Voting Regressor

To perform the SHAP analysis based on WVR model, we built up a module 
“fml.ensemble.VotingShap” to overcome the incompatibility between WVR model and SHAP 
package. The SHAP values for experimental and virtual data set were calculated for various SHAP 
analysis, as seen in Figure S15 and Figure S16. The virtual data set was generated via the module 
“fml.searching.HOIPWithVotingRegressor” in Figure S17, whose chemical formular was defined 
as . As shown in Table S8, the elements in red color were chosen to 𝐴′𝑥𝐴′′1 ― 𝑥𝐵′𝑦𝐵′′1 ― 𝑦𝐶′𝑧𝐶′′3 ― 𝑧

supplement the virtual data set. 
As for the calculating code, the procedures for both data set were almost the same except for the data 

set. Firstly, the WVR model was read as the “voting_model”. The “VotingShap” was fitted by passing 
the WVR model and the data set. The user could use the fitted “VotingShap” objects and the generated 
virtual data set. However, because of the large file size, these files were only supplied on our Github 
page (https://github.com/luktian/InverseDesignViaPSP). After fitting the “VotingShap” model, the 

SHAP values could read from the property “shap_values”. Then various SHAP plots could be drawn 
directly, which could be seen in Figure S19~

https://github.com/luktian/InverseDesignViaPSP
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Figure S21. 
Feature Analysis in Detail

Figure S18 (a) and (b) exhibited the top 10 features ranked by their contributions extracted 
from SHAP values in experimental and virtual data sets, whose vertical axis comprised feature 
ranking, and horizontal axis was the SHAP values for the features. The top 10 features in both data 
sets were identically the same, regardless of their ordering sequences. Specifically, the descriptors 
NX (representing element name in X site) and tf were the top 2 features in both of data set. The 
descriptors related to B site also had the important contributions to bandgap in experimental data 
set, which took the 3rd and 4th positions, followed by the descriptors related to A and X sites. 
Meanwhile in virtual data set, the B site descriptors were ranked at 9th and 10th, whose contributions 
were slightly lower than the descriptors in A and X sites.

Figure S18 (c) and (d) displayed the distributions of SHAP values of features for experimental 
and virtual data sets, where the horizontal axis comprised the sorted sample indexes according to 
model predictions that were presented in the top panel with their mean values (1.68 eV for 
experimental data set and 2.12 eV for the virtual one) signaled by the dotted line in gray color. The 
red/blue color expressed the positive/negative SHAP values for each sample and feature, which 
furtherly indicated the positive/negative contributions to predictions. The positive SHAP values for 
each feature (in red color) were mainly localized in the left part that corresponds to the higher 
bandgaps in both of the data sets, while the negative values (in blue color) were located at the right 
part related to the lower predictions, thus resulting a separately isolated distributions of 
positive/negative SHAP values for both data sets. 

The scatter plots between features and SHAP values were drawn in Figure S19 with the color 
indicating prediction value to acquire a further understanding of each feature. Individual conditional 
expectation (ICE)25 plots for each feature were drawn in Figure S20. ICE plots could signify the 
marginal effect that the feature had on the prediction, and revealed how the prediction of one sample 
(one line per sample) changed as the feature value increased. The partial dependence (PD)26 plot 
was the average case that focused on the overall margin effect of the feature, which was drawn in 
Figure S21.

Starting from NX, as shown in Figure S19 (a) and (b), the SHAP values for NX had the 
decreasing trend in both data sets as the NX values were increasing. The samples with lower NX 
values and thence corresponding higher SHAP values tended to express the larger bandgaps (in 
darker red color) and the vice versa. By marking an inflection point (determining the SHAP values 
positive or negative) 34.72 of NX in experimental data set, the NX values over 34.72 would result in 
the negative SHAP values, and the ones lower than 34.72 led to the positive, while the inflection 
point in virtual data set was adapted to 26.33. The original values of NX have been converted to 
numbers in the procedure of generating descriptors, in which chlorine, bromine and iodine were 
signaled by 20, 13, and 46 respectively. Hence, in pursuit of a higher/lower bandgap, the ratio of 
iodine in X site should be decreased/increased for a low/high NX value that would trigger a high/low 
SHAP value, which was consistent to the current domain knowledges.27

As indicated by the ICE and PD plots for NX in Figure S21 (a ~ b) and Figure S22 (a ~ b), the 
same conclusion was extracted that the bandgap decreased as the NX value increased. Besides, the 
steep points that triggered sharp deceases in predictions were labelled out for both of two data sets, 
whose locations were 25.00, 27.80, 30.20, 34.50, 37.66, 41.50 for experimental data set and 18.90, 
25.00, 27.80, 30.20, 32.00, 36.70, 41.50 for virtual data set respectively. Four points of 25.00, 27.80, 
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30.20 and 41.50 were the same for both data sets, in which the steep point 25.00 for NX might refer 
to the doped couple Br1.915I1.091 or Cl2.423I0.577, and 27.80 to Br1.655I1.345 or Cl2.100I0.900, 30.20 to 
Br1.455I1.545 or Cl1.846I1.154, 41.50 to Br0.409I2.591 or Cl0.519I2.481. As the ratios of iodine in these couples 
increased, their bandgap values were expected to receive steep decreases.

There were 4 other X-site-related descriptors that largely contributed to model predictions. 
RPZX was the element (in X site) radii defined by Zunger et al.28, in which the radius of chlorine, 
bromine, and iodine were 1.01, 1.2, and 1.585 a.u. respectively. IMX determined whether an element 
in X site had only a single stable isotope, whose values were defined 0 for iodine and 1 for 
chlorine/bromine. ENX was the electronegativity defined by Allred et al.29, in which 
electronegativities of chlorine, bromine, and iodine were 2.83, 2.74, and 2.21 respectively. DPX 
represented the dipole polarizability of the element in X site, whose values were 14.60, 21.00, and 
32.90 a.u. respectively. Presented by the scatter plots in Figure S19 (i, j, k, l, o, p, s, t), the 
higher/lower values of IMX, and ENX indicated the higher/lower proportions of chlorine/bromine 
and the higher/lower bandgap predictions, while the cases of RPZX and DPX was the vice versa. The 
ICE and PD plots for the features in Figure S20 (i, j, k, l, o, p, s, t) and Figure S21 (i, j, k, l, o, p, s, 
t) also unveiled that the feature values of IMX, and ENX were proportional to the bandgap prediction 
while the values of the other X-related features were the reverse. Particularly, the RPZX range in 
1.18 ~ 1.33 a.u. resulted in a steep decrease while the range over/lower than 1.88/1.33 a.u. led to 
unshaking tendencies. The inflection point of 1.18 a.u. might refer to the doped couple Cl0.330Br2.670 
or Cl2.130I0.870, and the point 1.33 a.u. might refer to Br1.980I1.020 or Cl1.350I1.650. As the ENX value was 
less than 2.21 that represented the electronegativity of iodine, the corresponding bandgap prediction 
was nearly unchanged, while the prediction started to augment after 2.21. The DPX values in 15.43 
~ 32.67 a.u. would cause a sharp decrease of the bandgap, while the range over/lower than 
32.67/15.43 a.u. led to the steady change. Herein the points signaled to the couples of Cl2.610Br0.390, 
Cl2.580I0.150, Br0.060I2.940, or Cl0.030I2.970.

TIB signaled the third ionization energy of the element in B site, in which the energies of tin, 
lead, germanium, cadmium, and palladium were 2943, 3081, 3302, 3616, and 3177 kJ/mol 
respectively. LSB stood for the lattice crystal structure of the simple substance for the elements in B 
site, whose values were tetragonal (TET, encoded as 9) for tin, face-centered cubic (FCC, encoded 
as 3) for lead/cadmium/palladium, and diamond cubic (DIA, encoded as 2) for germanium. 
Indicated by the scatter plots in Figure S19 (e, f, g, h) for the features, the TIB value was proportional 
to its SHAP value and bandgap prediction in both of data sets, while the LSB was the reverse situation. 
Combining the relevant ICE and PD plots of TIB in Figure S20 (e, f, g, h) and Figure S21 (e, f, g, 
h), it could be noted that the steep point 2943 and 3081 kJ/mol were the third ionizations of tin and 
lead, which revealed the overall increasing trending of the bandgap as the proportion of lead arose 
in the doped B site couple SnPb. When the TIB value was over 3081, the prediction was nearly 
unchanged and even slightly declined, indicating that the higher ratios of 
germanium/cadmium/palladium might have little influence on bandgap. The point of 3 in the ICE 
and PD plots of LSB signaled the existence of lead/cadmium/palladium. The rising LSB value 
represented the increasing proportion of tin, which further rendered the lower model prediction.

DPA was the dipole polarizability of the element in A site, whose values were 400.90 a.u. for 
caesium (Cs), 289.70 a.u. for potassium, 1.07 a.u. for FA, 0.51 a.u. for MA, 1.13 a.u. for GA, 0.52 
a.u. for EA, and 0 a.u. for ED. Because of the much smaller dipole polarizability of organic 
fragments, lots of samples with pure organic components in A site were concentrated around the 
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feature value of 0, whose SHAP values mingled either positive or negative. The positive ones might 
refer to the samples containing, e.g., GA/EA/ED, whose bandgaps were much larger than [MA]BX3 
or [FA]BX3, such as EA0.25~1MA0.75~0PbBr3 (2.56 ~ 2.94 eV versus 2.30 eV of MAPbBr3) and 
ED0.1~0.5MA0.9~0.5PbI3 (1.58 ~ 2.10 eV versus 1.50 eV of MAPbI3), while the negative samples might 
refer to the ordinary MAPbX3 or FAPbX3 (X referred to chlorine, bromine and iodine). As the 
additions of inorganic elements into MAPbX3 or FAPbX3, the SHAP value had a sluggish growing 
trend toward 0, which revealed that the higher ratio of inorganic elements was contributed to the 
higher bandgap.

As shown in Figure S19 (c), the SHAP values of tf had an overall increasing trend with the 
ascendent tf values, whose inflection point was 0.971 in experimental data set. In the case of virtual 
data set in Figure S19 (d), the tf could be divided into three ranges. The SHAP values for tf in the 
range 0.850~0.861 were mostly negative contributing to the lower bandgap, while the majority of 
SHAP values for tf in 0.861~1.014 were negative and the ones in 1.014~1.277 were almost positive. 
Thence, for the purpose of higher/lower bandgaps, the tf values should be controlled higher/lower 
than 1.014. Revealed by the ICE plots for tf in Figure S20 (c, d), the predictions of each sample were 
shrinking from the range 1.21 ~ 2.95 eV to the range 1.76 ~ 2.75 eV. The PD plots in Figure S21 
(c, d) displayed sigmoid-like function trends in experimental and virtual data sets, in which the tf 
range below/above than 0.930/1.086 indicated steady prediction changes, and the data in the range 
of 0.930 ~ 1.086 resulted in a steep increment for bandgap values. From the scatter plots of τf in 
Figure S19 (q, r), the inflection points 3.50 and 4.78 could be noticed in both of data sets. The SHAP 
values were mostly positive as the τf value was lower than 3.50 or higher than 4.78, while the values 
become negative as the τf value was in 3.50 ~ 4.78. The ICE plots in Figure S20 (q, r) for τf expressed 
that the prediction ranges were shrinking from 1.22 ~ 3.15 to 1.24 ~ 2.83 as the τf value arose. The 
PD plots in Figure S21 (q, r) showed that the τf ranges lower than 3.46, 4.13 ~ 4.78 and higher than 
4.78 would render steady prediction trends, while the range 3.46 ~ 4.13 signaled an overall 
decreasing tendency. Taking both factors into consideration, if we seek HOIPs with lower bandgaps, 
the value of tf should not be over 1.014 (or even lower than 0.971) and the value of τf is recommended 
to be 3.50 ~ 4.18 (4.18 determines the structure formability as indicated in reference30), while HOIPs 
with tf>1.014 and τf<3.5 tend to own the larger bandgaps. 
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Figure S15 The code to perform SHAP analysis for experimental data set
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Figure S16 The code to perform SHAP analysis for virtual data set

Figure S17 The code to generate virtual data set
Table S8 Elements in A, B, C sites along with their count numbers. The references and SMILE formats 

were also given after table. 
Element in A site Count Element in B site Count Element in C site Count
MA 291 Pb 386 I 386
FA 269 Sn 135 Br 235
CS 145 Bi 11 Cl 26
GA 8 Cd 6
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ED 8 Ge 5
Rb 7 Sr 3
BA 6 Ca 3
K 6 Cr 2
EA 5 Pd 1
PE 5 La 1
HE 5
A 3
AN 1
AZ 1
AA 1

MA -- C[NH3+] -- ref31;

FA -- NC=[NH2+] -- ref32;

GA -- NC(N)=[NH2+] -- ref33;

ED -- [NH3+]CC[NH3+] -- ref34;

BA -- CCCC[NH3+] -- ref35;

EA -- CC[NH3+] -- ref36;

PE -- [NH3+]CCC1=CC=CC=C1 -- ref37;

HE -- OCC[NH3+] -- ref10;

A -- [NH4+] -- ref5;

AN -- C1CC[NH2+]C1 -- ref38;

AZ -- C[NH+](C)CCC[NH3+] -- ref39;

AA -- C[NH2+]C -- ref40.

Figure S18 Feature importance for experimental data set (a) and virtual data set (b); Distributions of 
SHAP values with feature values for experimental data set (c) and virtual data set (d)
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Figure S19 Scatter plots of the features Nx (a), tf (c), TIB (e), LSB (g), RPZX (i), IMX (k), DPA (m), 
ENX(o), τf (q), DPX (s) in experimental data, and the features Nx (b), tf (d), TIB (f), LSB (h), RPZX (j), 

IMX (l), DPA (n), ENX(p), τf (r), DPX (t) in virtual data. 
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Figure S20 Individual conditional expectation (ICE) plots of the features Nx (a), tf (c), TIB (e), LSB (g), 
RPZX (i), IMX (k), DPA (m), ENX(o), τf (q), DPX (s) in experimental data, and the features Nx (b), tf (d), 

TIB (f), LSB (h), RPZX (j), IMX (l), DPA (n), ENX(p), τf (r), DPX (t) in virtual data.
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Figure S21 Partial dependency (PD) plots of the features Nx (a), tf (c), TIB (e), LSB (g), RPZX (i), DPX 

(k), DPA (m), ENX(o), τf (q), IMX (s) in experimental data, and the features Nx (b), tf (d), TIB (f), LSB 
(h), RPZX (j), DPX (l), DPA (n), ENX(p), τf (r), IMX (t) in virtual data. 

Code S9 Proactive Searching Progress (PSP)

A so-called proactive searching progress (PSP) (Figure S22) was proposed to exert an efficient 
searching for the potential materials with expected values. The first step in this code is to load the 
established WVR “voting_model” from Code S7 and assemble the feature names into 
“columns_set”. The collected 88 organic fragments and 3 three metal elements were considered for 
A site, while 9 metal elements and 3 halogen elements were prepared for B/C site. The criterion was 
set as 0.05 eV determining whether the potential materials could be retained. The PSP could be run 
for multiple times for various initial point to start searching. The expected value was set as a fixed 
number or chosen from a list that contained multiple values. The doping form was needed to be 
defined such as 3, 3, 3 which meant for each site there were 3 elements/fragments. The iteration 
determined the searching steps in PSP. The results for each run of PSP would be recorded into local 
file in .csv format. Then the PSP would be exerted by using the module 
“HOIPHyperSearchingWithVotingRegressor”. The code is in “./code9/code9.py”, while the 
searching results were only accessible in our GitHub website 
(https://github.com/luktian/InverseDesignViaPSP) because of the large file size. 

https://github.com/luktian/InverseDesignViaPSP
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Figure S22 Code for proactive searching progress (PSP). 
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Section S2 Other Figures and Tables
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Figure S23 Feature distributions for 4 candidate sets.

Table S9 Searched candidates for 1.34 eV.

Triple divalent cations HOIP candidate Predicted bandgap
MA0.215Cs0.432FA0.353Sn0.924Ge0.039Pd0.038I2.708Br0.29

2
1.3400 

Cs0.334FA0.266MA0.4Pd0.228Ge0.003Sn0.769I2.837Br0.164 1.3400 
MA0.296FA0.338Cs0.366Cr0.104Sn0.8Pd0.096Br0.056I2.944 1.3401 

FA0.412Cs0.509MA0.079Ge0.095Cr0.271Sn0.634Br0.109I2.89
1

1.3399 

MA0.289FA0.333Cs0.378Cr0.099Sn0.804Pd0.097Br0.005I2.995 1.3398 
MA0.29FA0.339Cs0.372Cr0.001Sn0.8Pd0.199Br0.061I2.939 1.3398 

MA0.345FA0.306Cs0.349Cr0.003Sn0.921Pd0.076Br0.005I2.995 1.3398 
Cs0.307FA0.373MA0.32Ge0.019Sn0.939Ca0.041Br0.287I2.713 1.3403 
MA0.282FA0.336Cs0.381Pd0.159Sn0.839Cr0.002Br0.003I2.998 1.3397 
FA0.02MA0.693Cs0.287Cr0.168Pd0.037Sn0.795Br0.003I2.998 1.3396 
MA0.314FA0.348Cs0.338Cr0.066Sn0.816Pd0.118Br0.176I2.824 1.3404 
MA0.306FA0.338Cs0.356Cr0.097Sn0.81Pd0.093Br0.046I2.954 1.3404 
Cs0.396MA0.035FA0.569Sn0.719Ge0.219Pd0.062Br0.013I2.98

7
1.3406 

Cs0.419FA0.253MA0.328Ge0.003Sn0.708Pd0.288Br0.019I2.98
2

1.3407 

FA0.462MA0.169Cs0.369Cr0.151Ge0.138Sn0.711I2.986Br0.01
4

1.3408 

MA0.305FA0.337Cs0.359Cr0.129Sn0.723Pd0.148Br0.05I2.95 1.3391 
FA0.424MA0.185Cs0.39Cr0.158Ge0.162Sn0.68I2.989Br0.011 1.3390 

FA0.403MA0.168Cs0.429Cr0.195Pd0.113Sn0.693I2.984Br0.016 1.3390 
Cs0.423FA0.243MA0.334Ge0.059Sn0.713Pd0.228Br0.01I2.99 1.3411 

MA0.289FA0.334Cs0.377Cr0.113Sn0.773Pd0.113Br0.057I2.943 1.3388 
Cs0.429MA0.138FA0.433Sn0.765Ge0.182Pd0.053Br0.059I2.94

1
1.3412 

FA0.425Cs0.513MA0.062Ge0.142Cr0.122Sn0.735Br0.105I2.89
5

1.3387 

MA0.315FA0.335Cs0.35Cr0.088Sn0.777Pd0.135Br0.061I2.94 1.3414 
MA0.304FA0.332Cs0.364Cr0.098Sn0.825Pd0.078Br0.054I2.946 1.3386 
MA0.373Cs0.495FA0.133Cr0.243Pd0.081Sn0.676I2.902Br0.098 1.3386 
MA0.278FA0.314Cs0.407Ge0.197Sn0.782Cr0.021Br0.047I2.95

3
1.3385 

FA0.466Cs0.499MA0.035Ge0.188Cr0.127Sn0.686Br0.196I2.80
3

1.3385 

MA0.288FA0.339Cs0.373Cr0.069Sn0.891Pd0.041Br0.061I2.939 1.3385 
Cs0.436FA0.306MA0.258Ge0.004Sn0.732Pd0.264Br0.052I2.94

8
1.3384 

MA0.327FA0.316Cs0.357Cr0.022Sn0.869Pd0.11Br0.002I2.998 1.3384 
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MA0.296FA0.339Cs0.365Cr0.131Sn0.78Pd0.089Br0.044I2.956 1.3416 
FA0.363Cs0.521MA0.116Ge0.174Cr0.224Sn0.602Br0.106I2.89

3
1.3383 

FA0.037MA0.746Cs0.217Cr0.073Pd0.047Sn0.88Br0.058I2.942 1.3418 
MA0.302FA0.327Cs0.371Cr0.055Sn0.772Pd0.172Br0.003I2.997 1.3418 
FA0.483Cs0.501MA0.016Ge0.138Cr0.157Sn0.704Br0.142I2.85

8
1.3418 

FA0.486Cs0.358MA0.155Cr0.123Pd0.163Sn0.714I2.998Br0.002 1.3381 
MA0.324FA0.343Cs0.333Cr0.116Sn0.851Pd0.033Br0.162I2.838 1.3381 
MA0.338FA0.347Cs0.315Cr0.062Sn0.865Pd0.073Br0.001I2.998 1.3419 
FA0.432Cs0.369MA0.199Ge0.148Cr0.084Sn0.767Br0.12I2.881 1.3420 

Double divalent cations HOIP candidate Predicted bandgap
MA0.191FA0.403Cs0.406Sn0.76Cr0.24Br0.01I2.99 1.3400 

FA0.177Cs0.353MA0.471Cr0.279Sn0.721I2.995Br0.004 1.3400 
Cs0.494MA0.217FA0.289Sn0.866Ge0.134I2.623Br0.377 1.3400 
FA0.235Cs0.214MA0.551Sn0.955Ge0.044I2.256Br0.744 1.3400 
Cs0.299MA0.675FA0.025Sn0.816Pd0.183Br0.051I2.949 1.3400 
MA0.211FA0.391Cs0.398Sn0.872Pd0.128Br0.031I2.968 1.3400 
MA0.306FA0.325Cs0.369Cr0.262Sn0.738Br0.002I2.998 1.3400 
Cs0.305FA0.273MA0.422Sn0.975Cr0.025I2.737Br0.264 1.3399 
MA0.215FA0.406Cs0.379Sn0.87Pd0.131Br0.009I2.991 1.3399 
MA0.295Cs0.378FA0.327Pd0.148Sn0.852I2.999Br0.001 1.3399 
MA0.485FA0.07Cs0.445Sn0.764Cr0.236Br0.032I2.969 1.3401 
Cs0.181MA0.409FA0.41Cr0.096Sn0.905I2.995Br0.005 1.3399 

MA0.191FA0.415Cs0.394Sn0.892Pd0.108Br0.037I2.963 1.3399 
FA0.592MA0.333Cs0.075Sn0.957Ge0.044I2.745Br0.255 1.3399 
Cs0.248MA0.343FA0.409Pd0.246Sn0.754I2.962Br0.039 1.3399 
Cs0.256MA0.524FA0.22Sn0.873Pd0.127I2.993Br0.007 1.3401 
Cs0.23MA0.401FA0.369Pd0.2Sn0.799I2.942Br0.058 1.3401 

FA0.285MA0.334Cs0.382Sn0.739Cr0.262I2.911Br0.089 1.3398 
MA0.504FA0.077Cs0.419Sn0.704Cr0.295Br0.005I2.995 1.3402 
FA0.278MA0.33Cs0.392Sn0.752Cr0.248I2.984Br0.016 1.3402 

Cs0.227MA0.367FA0.406Pd0.178Sn0.823I2.923Br0.077 1.3398 
MA0.364Cs0.225FA0.411Sn0.999Pd0.001I2.757Br0.243 1.3398 

Cs0.136FA0.084MA0.78Sn0.949Ge0.051Br0.51I2.49 1.3402 
Cs0.365FA0.461MA0.174Pd0.191Sn0.809I2.964Br0.036 1.3402 

FA0.283MA0.322Cs0.395Sn0.77Cr0.23I2.991Br0.009 1.3397 
FA0.371MA0.294Cs0.335Sn0.977Pd0.023Br0.473I2.528 1.3397 
FA0.068MA0.6Cs0.333Pd0.323Sn0.677I2.775Br0.225 1.3403 

MA0.266FA0.517Cs0.217Sn0.979Cr0.022Br0.317I2.683 1.3397 
MA0.507FA0.105Cs0.389Sn0.707Cr0.293Br0.077I2.923 1.3403 
FA0.398Cs0.397MA0.204Sn0.823Pd0.178Br0.003I2.997 1.3397 
MA0.239FA0.492Cs0.269Sn0.992Pd0.007Br0.354I2.646 1.3403 
FA0.407Cs0.295MA0.299Sn0.947Ge0.052Br0.43I2.57 1.3397 
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MA0.179Cs0.527FA0.294Sn0.84Pd0.16I2.909Br0.09 1.3403 
Cs0.241MA0.375FA0.384Pd0.203Sn0.797I2.934Br0.066 1.3403 
Cs0.239MA0.372FA0.389Pd0.211Sn0.789I2.957Br0.043 1.3404 
MA0.203FA0.513Cs0.284Sn0.949Pd0.051Br0.352I2.647 1.3396 
MA0.239FA0.384Cs0.377Sn0.693Pd0.308Br0.092I2.908 1.3396 
FA0.283MA0.325Cs0.392Sn0.749Cr0.251I2.982Br0.018 1.3404 
Cs0.267MA0.337FA0.396Pd0.21Sn0.791I2.905Br0.095 1.3396 
MA0.23FA0.373Cs0.397Sn0.687Pd0.314Br0.099I2.901 1.3396 
MA0.303Cs0.331FA0.367Sn0.995Sr0.005I2.668Br0.332 1.3404 
FA0.357MA0.305Cs0.337Sn0.633Pd0.367Br0.101I2.899 1.3396 

FA0.123Cs0.418MA0.459Sn0.775Cr0.226I2.96Br0.04 1.3405 
FA0.328Cs0.52MA0.152Pd0.209Sn0.792Br0.085I2.915 1.3395 
MA0.194FA0.402Cs0.405Sn0.82Pd0.181Br0.054I2.946 1.3405 
Cs0.28FA0.536MA0.185Ge0.049Sn0.952Br0.847I2.154 1.3395 
FA0.428Cs0.017MA0.555Sn0.978Pd0.022Br0.298I2.702 1.3395 

Cs0.073MA0.63FA0.297Pd0.052Sn0.948Cl0.123I2.73Br0.147 1.3405 
MA0.187Cs0.349FA0.463Pd0.225Sn0.774I2.938Br0.061 1.3405 
MA0.213FA0.535Cs0.252Sn0.961Pd0.039Br0.475I2.524 1.3405 
Cs0.263MA0.567FA0.17Sn0.927Cr0.074Br0.031I2.969 1.3406 

FA0.453MA0.116Cs0.431Pd0.161Sn0.839Br0.072I2.928 1.3406 
MA0.235FA0.465Cs0.3Sn0.93Pd0.07Br0.302I2.698 1.3406 

Cs0.174MA0.703FA0.123Sn0.803Pd0.196I2.998Br0.002 1.3394 
MA0.213FA0.394Cs0.393Sn0.733Pd0.267Br0.008I2.992 1.3394 
MA0.216FA0.392Cs0.392Sn0.733Pd0.267Br0.008I2.992 1.3394 
Cs0.28MA0.547FA0.173Sn0.844Pd0.156I2.973Br0.027 1.3406 

Cs0.122MA0.757FA0.121Sn0.952Ge0.048I2.353Br0.646 1.3394 
MA0.173FA0.402Cs0.425Sn0.774Pd0.225Br0.001I2.999 1.3406 
MA0.465FA0.078Cs0.457Sn0.766Cr0.234Br0.001I2.999 1.3406 

Cs0.24MA0.391FA0.369Pd0.14Sn0.86I2.924Br0.076 1.3394 
Cs0.248MA0.381FA0.371Pd0.22Sn0.78I2.959Br0.041 1.3394 

Cs0.086MA0.733FA0.181Sn0.929Ge0.071I2.418Br0.582 1.3406 
FA0.276MA0.325Cs0.399Sn0.742Cr0.258I2.984Br0.016 1.3394 
MA0.323FA0.313Cs0.364Cr0.301Sn0.699Br0.001I2.998 1.3407 
Cs0.251MA0.379FA0.37Pd0.219Sn0.781I2.921Br0.079 1.3393 

Cs0.073MA0.692FA0.235Sn0.951Ge0.048I2.414Br0.586 1.3407 
FA0.259MA0.481Cs0.26Ge0.105Sn0.895I2.57Br0.43 1.3393 

Cs0.264MA0.375FA0.361Pd0.118Sn0.882I2.999Br0.001 1.3393 
Cs0.236MA0.394FA0.37Pd0.138Sn0.862I2.938Br0.062 1.3393 
Cs0.233MA0.381FA0.386Pd0.135Sn0.866I2.956Br0.044 1.3393 
Cs0.235MA0.407FA0.358Pd0.122Sn0.878I2.938Br0.062 1.3393 
Cs0.481MA0.215FA0.304Sn0.687Pd0.313I2.999Br0.001 1.3408 
MA0.196FA0.386Cs0.418Sn0.764Pd0.236Br0.041I2.959 1.3392 
Cs0.257MA0.381FA0.362Pd0.259Sn0.741I2.918Br0.082 1.3408 
Cs0.347FA0.216MA0.437Sn0.823Cr0.177I2.956Br0.044 1.3408 



S51

FA0.06Cs0.544MA0.396Sn0.954Ge0.046Br0.555I2.445 1.3408 
Cs0.188MA0.66FA0.152Sn0.86Pd0.139I2.995Br0.005 1.3408 

MA0.335FA0.212Cs0.453Cr0.199Sn0.802Br0.036I2.964 1.3408 
MA0.223FA0.601Cs0.176Sn0.887Ge0.113Br0.307I2.693 1.3392 
Cs0.055MA0.94FA0.004Sn0.956Ge0.044I2.35Br0.651 1.3392 
MA0.323FA0.443Cs0.234Sn0.811Cr0.19Br0.006I2.994 1.3392 

Cs0.168MA0.699FA0.133Sn0.892Pd0.108I2.997Br0.003 1.3391 
Cs0.081FA0.025MA0.894Sn0.939Ge0.061Br0.644I2.356 1.3409 
Cs0.032MA0.578FA0.389Cr0.002Sn0.999I2.804Br0.196 1.3409 
Cs0.247MA0.385FA0.369Pd0.156Sn0.844I2.946Br0.054 1.3409 
FA0.382Cs0.338MA0.28Pd0.061Sn0.939Br0.653I2.347 1.3409 
FA0.156MA0.6Cs0.244Sn0.903Ge0.097Br0.42I2.579 1.3409 

FA0.343MA0.225Cs0.432Sn0.772Ge0.228I2.892Br0.108 1.3409 
Cs0.251FA0.425MA0.324Sn0.848Ge0.152I2.868Br0.132 1.3409 
MA0.368FA0.418Cs0.214Sn0.944Pd0.056Br0.289I2.711 1.3390 
Cs0.095MA0.744FA0.162Sn0.913Ge0.087I2.496Br0.504 1.3390 
Cs0.177MA0.73FA0.094Sn0.873Pd0.127I2.965Br0.035 1.3410 
MA0.195FA0.398Cs0.407Sn0.803Pd0.198Br0.055I2.945 1.3410 

FA0.209MA0.5Cs0.292Sn0.749Cr0.252Br0.018I2.982 1.3410 
FA0.413MA0.254Cs0.333Sn0.997Sr0.002I2.633Br0.367 1.3410 
MA0.201FA0.408Cs0.391Sn0.832Pd0.168Br0.083I2.917 1.3410 

Table S10 Searched candidates for 1.67 eV.

Triple divalent cations HOIP candidate Predicted bandgap
FA0.016Cs0.392MA0.592Cr0.383Sr0.347Sn0.27Br1.171I1.829 1.6702

Cs0.445FA0.161MA0.394Pd0.508Cr0.228Sn0.263Br1.094I1.906 1.6693
FA0.057Cs0.789MA0.153Pd0.363Sn0.144Ca0.493Br0.88I2.12 1.671

FA0.355Cs0.322MA0.323Ca0.159Pd0.354Sn0.487I2.014Br0.986 1.6714
FA0.386MA0.221Cs0.393Sr0.333Sn0.351Pd0.315Br1.337I1.663 1.6715
MA0.25Cs0.538FA0.212Sn0.198Sr0.341Pd0.46I1.823Br1.177 1.6685

FA0.381Cs0.582MA0.037Pd0.497Sn0.319Sr0.184I2.046Br0.954 1.6685
FA0.017Cs0.436MA0.547Cr0.063Sr0.168Sn0.769I1.595Br1.405 1.6683
Cs0.437MA0.007FA0.557Cr0.361Sn0.4Ge0.239I2.175Br0.825 1.668

Cs0.424MA0.392FA0.184Ge0.162Sr0.626Ca0.212Br0.921I2.079 1.6673
Cs0.296MA0.136FA0.567Ca0.353Sr0.466Sn0.181Br1.297I1.703 1.6672
FA0.421Cs0.165MA0.414Sn0.137Sr0.465Ca0.398I1.708Br1.292 1.6671
Cs0.292FA0.159MA0.549Pd0.215Ca0.514Sn0.271I2.257Br0.743 1.6666
FA0.315Cs0.388MA0.297Ca0.222Pd0.363Sn0.415I1.896Br1.104 1.6734
Cs0.311MA0.406FA0.284Sr0.563Sn0.358Pd0.079I1.418Br1.582 1.6665
Cs0.652MA0.084FA0.264Sr0.638Ge0.151Cr0.211I2.336Br0.664 1.6664

FA0.162MA0.342Cs0.497Cr0.36Ge0.28Sn0.36I1.721Br1.279 1.6658
Cs0.853MA0.049FA0.098Sr0.677Sn0.063Cr0.26I2.365Br0.635 1.6657

MA0.501Cs0.192FA0.307Sn0.315Pd0.299Sr0.387I1.597Br1.403 1.6656
FA0.367Cs0.525MA0.108Sr0.098Cr0.351Sn0.551I1.798Br1.202 1.6655
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MA0.27Cs0.518FA0.212Sn0.209Cr0.331Pd0.46I1.746Br1.254 1.6654
FA0.241Cs0.485MA0.274Cr0.095Sr0.218Sn0.687I1.614Br1.386 1.6654
FA0.42Cs0.482MA0.099Sr0.169Cr0.322Sn0.509I1.805Br1.195 1.6653

FA0.078Cs0.495MA0.427Ge0.333Pd0.294Sr0.374I2.907Br0.093 1.6651
MA0.191FA0.229Cs0.58Ge0.179Sn0.467Ca0.355I2.003Br0.997 1.6752
MA0.43Cs0.383FA0.187Ge0.246Sr0.339Ca0.415I2.151Br0.849 1.6756

FA0.184Cs0.589MA0.227Ge0.038Cr0.222Ca0.739I2.443Br0.557 1.6758
MA0.094FA0.478Cs0.428Ca0.312Sn0.399Cr0.289Br0.568I2.432 1.6637
MA0.253FA0.408Cs0.339Ge0.328Pd0.062Sr0.609I2.654Br0.346 1.6634
Cs0.405MA0.115FA0.481Cr0.356Sn0.383Ge0.26I2.758Br0.242 1.6633
Cs0.837MA0.074FA0.089Sr0.608Ge0.23Pd0.162I2.995Br0.005 1.6631
Cs0.245FA0.12MA0.635Sn0.48Pd0.436Sr0.084I2.147Br0.853 1.6629

FA0.316Cs0.511MA0.173Ca0.266Cr0.365Sn0.37I1.964Br1.036 1.6629
MA0.489FA0.116Cs0.395Sr0.89Pd0.002Ge0.108Br1.063I1.937 1.6774
MA0.273Cs0.496FA0.231Sn0.187Sr0.379Pd0.435I1.927Br1.073 1.662
Cs0.795MA0.094FA0.111Sr0.658Pd0.272Ge0.069I2.581Br0.419 1.6619
MA0.366Cs0.494FA0.139Pd0.136Sr0.491Sn0.372I1.454Br1.546 1.6782
Cs0.658MA0.1FA0.242Pd0.325Sr0.273Sn0.402I2.032Br0.968 1.6786

MA0.124FA0.378Cs0.498Ca0.213Sn0.639Sr0.148Br1.457I1.543 1.6787
FA0.057Cs0.658MA0.285Ge0.388Sr0.358Ca0.254I2.417Br0.583 1.6788
MA0.402FA0.241Cs0.356Sr0.24Sn0.263Ca0.497Br1.354I1.646 1.6789
FA0.382Cs0.504MA0.114Sr0.136Cr0.422Sn0.442I1.701Br1.299 1.661
FA0.3Cs0.518MA0.182Sr0.112Cr0.266Sn0.622I1.852Br1.148 1.6609

FA0.003Cs0.798MA0.199Pd0.369Sn0.151Ca0.48Br0.981I2.019 1.6793
FA0.088Cs0.821MA0.091Ge0.376Sn0.44Sr0.184I1.997Br1.003 1.6799

Double divalent cations HOIP candidate
Predicted bandgap 

(eV)
MA0.126FA0.495Cs0.379Ca0.357Sn0.643Br1.367I1.633 1.6701
MA0.215Cs0.526FA0.259Sr0.603Sn0.396I1.635Br1.365 1.6696
MA0.329FA0.149Cs0.522Sn0.307Sr0.694Br1.338I1.662 1.6694
MA0.17FA0.451Cs0.379Ca0.438Sn0.562Br1.342I1.658 1.6694
MA0.343Cs0.498FA0.159Sn0.543Sr0.458I1.672Br1.328 1.6693
MA0.365Cs0.507FA0.129Sn0.562Sr0.437I1.583Br1.417 1.6686
MA0.201Cs0.547FA0.252Sr0.619Sn0.381I1.62Br1.38 1.6679
MA0.358Cs0.492FA0.15Sn0.514Sr0.486I1.575Br1.425 1.6677
MA0.257Cs0.436FA0.308Pd0.277Sn0.723I1.28Br1.72 1.6732
Cs0.78FA0.017MA0.203Sr0.576Ge0.425Br0.582I2.418 1.6665
Cs0.428MA0.571FA0.001Sr0.847Sn0.153I1.826Br1.174 1.6665
MA0.404FA0.06Cs0.537Sn0.459Cr0.541Br1.759I1.241 1.6663
MA0.355Cs0.614FA0.031Sn0.524Sr0.476I1.734Br1.266 1.6658
MA0.197FA0.384Cs0.42Cr0.255Sn0.745Br1.876I1.124 1.6657
MA0.034Cs0.323FA0.643Sn0.694Cr0.306I1.34Br1.66 1.6752
Cs0.763FA0.021MA0.216Sr0.58Ge0.42Br0.388I2.612 1.6644

Cs0.374MA0.491FA0.135Sn0.212Sr0.788I1.855Br1.145 1.6644
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Cs0.715MA0.034FA0.252Sr0.576Ge0.424Br0.644I2.356 1.6762
Cs0.419MA0.228FA0.353Sn0.613Ge0.387I2.139Br0.861 1.6634
FA0.217MA0.21Cs0.572Sn0.651Sr0.349Br1.382I1.618 1.6631

MA0.186Cs0.606FA0.208Ca0.677Ge0.323I2.901Br0.099 1.6776
FA0.311Cs0.629MA0.06Sr0.153Sn0.847I1.672Br1.328 1.6777
Cs0.544MA0.165FA0.291Sn0.712Sr0.288I1.915Br1.085 1.6622
Cs0.433FA0.325MA0.242Sn0.344Cr0.656I2.984Br0.016 1.6779
FA0.177Cs0.375MA0.448Ca0.742Sn0.258Br1.378I1.622 1.6782
MA0.319Cs0.424FA0.257Sn0.662Sr0.339I1.578Br1.422 1.6785
MA0.165Cs0.527FA0.309Sn0.617Sr0.383I1.666Br1.334 1.6787
MA0.161FA0.49Cs0.349Ca0.49Sn0.509Br1.508I1.492 1.6787

Cs0.557FA0.05MA0.393Sr0.545Sn0.455Br1.4I1.6 1.6611
Cs0.973FA0.024MA0.003Sr0.584Ge0.416Br0.354I2.646 1.6607
MA0.371Cs0.624FA0.005Sn0.524Sr0.476I1.602Br1.398 1.6794
MA0.243Cs0.618FA0.138Sn0.368Sr0.632Br1.415I1.585 1.6603
Cs0.925MA0.002FA0.072Sr0.726Ge0.274I2.996Br0.004 1.6602

FA0.28Cs0.483MA0.238Sn0.602Ca0.399I1.5Br1.5 1.6798
MA0.425Cs0.521FA0.054Sn0.51Sr0.49I1.586Br1.414 1.66

Table S11 Searched candidates for 1.2 eV. 

Double divalent cations HOIP candidate Predicted bandgap (eV)
MA0.815FA0.185Ge0.073Sn0.927I3.0 1.2190
FA0.145MA0.856Ge0.074Sn0.925I3.0 1.2191
MA0.86FA0.139Sn0.914Ge0.086I3.0 1.2227
MA0.851FA0.149Sn0.92Ge0.08I3.0 1.2235

MA0.851FA0.148Sn0.984Ge0.017I3.0 1.2263
MA0.859FA0.141Sn0.986Ge0.015I3.0 1.2264
MA0.86FA0.139Sn0.987Ge0.014I3.0 1.2265
MA0.862FA0.138Sn0.988Ge0.013I3.0 1.2266
MA0.858FA0.142Sn0.987Ge0.014I3.0 1.2266
MA0.861FA0.139Sn0.987Ge0.014I3.0 1.2266
MA0.851FA0.149Ge0.012Sn0.989I3.0 1.2266
MA0.855FA0.145Ge0.013Sn0.988I3.0 1.2266
MA0.852FA0.148Ge0.013Sn0.988I3.0 1.2266
MA0.858FA0.142Ge0.012Sn0.989I3.0 1.2266
MA0.861FA0.139Sn0.988Ge0.013I3.0 1.2266
MA0.848FA0.151Sn0.987Ge0.014I3.0 1.2267
MA0.781FA0.22Sn0.976Ge0.024I3.0 1.2276
MA0.78FA0.221Sn0.975Ge0.025I3.0 1.2276
MA0.777FA0.224Ge0.024Sn0.976I3.0 1.2277
MA0.788FA0.213Sn0.975Ge0.025I3.0 1.2279
MA0.782FA0.219Sn0.976Ge0.024I3.0 1.2279
MA0.784FA0.217Sn0.975Ge0.025I3.0 1.2279
MA0.782FA0.219Ge0.025Sn0.975I3.0 1.2279
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FA0.515Cs0.486Sn0.952Ge0.047I3.0 1.2293
Cs0.486FA0.515Ge0.051Sn0.948I3.0 1.2293

MA0.823FA0.176Sn0.989Ge0.012I3.0 1.2295
FA0.516Cs0.485Ge0.048Sn0.952I3.0 1.2299

Table S12 Predictions for the candidates from ref41

Formula Bandgap (eV) τf Of tf

ASnI3 1.2864 4.162 0.523 0.871
AGSnI3 1.2894 3.828 0.523 0.939
XQSnI3 1.2994 3.884 0.523 0.923
ATmI3 1.3506 4.124 0.468 0.903

MASmI3 1.3584 3.748 0.555 0.939
AGSmI3 1.3850 3.816 0.555 0.92
XQTmI3 1.3867 3.963 0.468 0.957
XQSmI3 1.3879 3.891 0.555 0.904
ASmI3 1.3918 4.263 0.555 0.853

AGTmI3 1.4048 3.931 0.468 0.974
AYbI3 1.4335 4.128 0.464 0.906

AGEuI3 1.4420 3.821 0.532 0.934
MAEuI3 1.4538 3.765 0.532 0.953
AEuI3 1.4562 4.184 0.532 0.866

XQEuI3 1.4591 3.882 0.532 0.917
XQYbI3 1.4782 3.975 0.464 0.96
AGSrI3 1.5007 3.818 0.536 0.931
ACaI3 1.5067 4.139 0.455 0.912

XQSrI3 1.5217 3.882 0.536 0.914
AScI3 1.5222 4.675 0.339 0.99

AGYbI3 1.5256 3.945 0.464 0.977
ASrI3 1.5269 4.198 0.536 0.863

XQCaI3 1.5521 4.001 0.455 0.966
MATmI3 1.5748 3.904 0.468 0.994

ANbI3 1.6656 4.774 0.327 0.999
MAYbI3 1.6839 3.92 0.464 0.997
XQTiI3 1.7123 4.284 0.391 1.01
AASmI3 1.7285 3.906 0.555 0.901
AGCaI3 1.7294 3.974 0.455 0.983
AMgI3 1.7704 4.774 0.327 0.999
AGTiI3 1.8425 3.999 0.439 1.056
AGScI3 1.8717 4.363 0.38 1.101
MAScI3 1.8972 4.697 0.339 1.09
AASnI3 1.9007 3.895 0.523 0.92
AZrI3 1.9103 5.081 0.301 1.077

ASmF3 1.9188 3.55 0.917 0.903
XQScI3 1.9255 4.678 0.339 1.05
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AGZrI3 1.9400 4.103 0.444 1.319
XQZrI3 1.9735 5.553 0.268 1.1
ATmBr3 1.9825 3.891 0.526 0.919
ASnF3 1.9827 3.406 0.865 0.928

AGMgI3 1.9849 4.465 0.367 1.111
AATmI3 1.9909 3.969 0.468 0.954
ASnBr3 1.9916 3.953 0.587 0.883
AGNbI3 2.0059 4.465 0.367 1.111
AGNbI3 2.0059 3.62 0.541 1.293

XQSnBr3 2.0097 3.675 0.587 0.939
AAScI3 2.0180 4.354 0.38 1.076
MANbI3 2.0182 4.813 0.327 1.1
AATiI3 2.0199 4.286 0.391 1.007

AGSnBr3 2.0236 3.619 0.587 0.957
ATiBr3 2.0257 4.057 0.439 0.974

XQMgI3 2.0262 4.788 0.327 1.058
XQNbI3 2.0366 4.788 0.327 1.058
AAEuI3 2.0524 3.894 0.532 0.914

AGTmBr3 2.0542 3.698 0.526 0.996
AASrI3 2.0558 3.895 0.536 0.911
AScF3 2.0576 3.507 0.56 1.109

ASmBr3 2.0610 4.066 0.622 0.864
XQTmBr3 2.0620 3.73 0.526 0.977
XQSmBr3 2.0649 3.694 0.622 0.919

AAZrI3 2.0715 4.888 0.326 1.169
AAYbI3 2.0732 3.981 0.464 0.957
XQSrBr3 2.0752 3.679 0.602 0.93
ACaBr3 2.0761 3.899 0.51 0.928
AMgF3 2.0786 3.566 0.541 1.123
XBNbI3 2.0846 4.832 0.327 1.124

AGSmBr3 2.0869 3.619 0.622 0.936
ASrBr3 2.0926 3.994 0.602 0.875
AACaI3 2.1017 4.006 0.455 0.963
AGSrBr3 2.1076 3.615 0.602 0.948
AEuBr3 2.1088 3.979 0.597 0.878
AYbBr3 2.1102 3.893 0.52 0.922

MASmBr3 2.1112 3.551 0.622 0.956
MAEuBr3 2.1166 3.56 0.597 0.972
XQEuBr3 2.1167 3.677 0.597 0.933
AAMgI3 2.1251 4.453 0.367 1.086
AASnF3 2.1285 3.139 0.865 0.994
XQSnF3 2.1317 3.127 0.865 0.998
ASrF3 2.1327 3.46 0.887 0.917

AANbI3 2.1345 4.453 0.367 1.086
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AGEuBr3 2.1366 3.616 0.597 0.951
XQSmF3 2.1416 3.178 0.917 0.971
AASmF3 2.1505 3.193 0.917 0.967
FANbI3 2.1541 3.627 0.541 1.305
AATiF3 2.1545 3.274 0.647 1.126

AGScBr3 2.1569 4.162 0.412 1.124
XQCaBr3 2.1576 3.761 0.51 0.987

ANbF3 2.1580 3.566 0.541 1.123
XQTiF3 2.1586 3.273 0.647 1.13

AATmF3 2.1679 3.125 0.774 1.045
AGSnF3 2.1685 3.071 0.865 1.021

AGMgBr3 2.1687 4.257 0.398 1.135
XQMgBr3 2.1695 4.454 0.367 1.09
AMgBr3 2.1711 4.441 0.367 1.025
AScBr3 2.1818 4.353 0.38 1.016
AEuF3 2.1819 3.441 0.88 0.921
AZrBr3 2.1880 4.827 0.326 1.1

MAScBr3 2.1933 4.375 0.38 1.124
AGTiBr3 2.1944 3.825 0.475 1.075
AACaF3 2.1954 3.136 0.752 1.058
AGSmF3 2.1959 3.103 0.917 0.993
MACaF3 2.2007 3.082 0.752 1.114
AASrF3 2.2010 3.158 0.887 0.982
ATmF3 2.2020 3.28 0.774 0.975

AAMgBr3 2.2027 4.244 0.398 1.109
AAScBr3 2.2158 4.153 0.412 1.098
MATmF3 2.2162 3.06 0.774 1.1
AATiBr3 2.2165 4.007 0.439 1.032
XQScBr3 2.2225 4.355 0.38 1.08

MATmBr3 2.2244 3.671 0.526 1.017
AGNbBr3 2.2291 4.257 0.398 1.135
XQTiBr3 2.2298 4.005 0.439 1.036

ATiF3 2.2382 3.324 0.647 1.051
AAZrBr3 2.2384 4.074 0.444 1.284
AGCaBr3 2.2454 3.734 0.51 1.006
AAEuF3 2.2493 3.151 0.88 0.986
MASnF3 2.2507 3.777 0.523 0.958
AAYbF3 2.2509 3.128 0.767 1.049
ASnCl3 2.2520 3.823 0.635 0.892

XQYbBr3 2.2573 3.739 0.52 0.98
ACaF3 2.2622 3.269 0.752 0.988

ANbBr3 2.2630 4.441 0.367 1.025
MASmF3 2.2650 3.035 0.917 1.018
AGSrF3 2.2676 3.081 0.887 1.009
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AGYbBr3 2.2684 3.71 0.52 0.999
AScCl3 2.2696 4.151 0.412 1.034
AGEuF3 2.2738 3.077 0.88 1.013
AMgCl3 2.2819 4.233 0.398 1.044
AGTiCl3 2.2826 3.267 0.647 1.156
AGCaF3 2.2849 3.104 0.752 1.087

XQNbBr3 2.2864 4.454 0.367 1.09
MANbBr3 2.2901 4.48 0.367 1.135
AGScCl3 2.2929 3.518 0.56 1.22
ATiCl3 2.2944 3.883 0.475 0.989
AZrCl3 2.2949 4.013 0.444 1.199

AGTmF3 2.2959 3.087 0.774 1.073
MAYbF3 2.2998 3.067 0.767 1.104
AATmBr3 2.3010 3.736 0.526 0.974
AGMgCl3 2.3052 3.59 0.541 1.235
XQCaF3 2.3086 3.131 0.752 1.062
XQTmF3 2.3119 3.118 0.774 1.049
XQSrF3 2.3152 3.145 0.887 0.986
XQScCl3 2.3176 4.154 0.412 1.102
AATiCl3 2.3177 3.832 0.475 1.051
AAScCl3 2.3182 3.509 0.56 1.188
XQTiCl3 2.3190 3.831 0.475 1.054

AAMgCl3 2.3227 3.578 0.541 1.203
XQMgCl3 2.3251 4.246 0.398 1.113
MASrF3 2.3307 3.023 0.887 1.034
AACaBr3 2.3384 3.766 0.51 0.983
ATmCl3 2.3401 3.746 0.569 0.93
ASmCl3 2.3483 3.943 0.674 0.872

AANbBr3 2.3501 4.244 0.398 1.109
AGYbF3 2.3598 3.092 0.767 1.077
AYbF3 2.3701 3.275 0.767 0.979

XQSnCl3 2.3706 3.545 0.635 0.951
ANbCl3 2.3730 4.233 0.398 1.044

XQSmCl3 2.3733 3.571 0.674 0.929
XQEuF3 2.3736 3.138 0.88 0.99

MAYbBr3 2.3750 3.684 0.52 1.02
AGNbCl3 2.3753 3.59 0.541 1.235
AGCaCl3 2.3854 3.584 0.552 1.022
XQYbF3 2.3929 3.122 0.767 1.053

AGTmCl3 2.3960 3.553 0.569 1.011
MAEuF3 2.4035 3.022 0.88 1.038
ACaCl3 2.4182 3.749 0.552 0.94

AANbCl3 2.4239 3.578 0.541 1.203
MATmCl3 2.4412 3.526 0.569 1.033
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XQNbCl3 2.4470 4.246 0.398 1.113
AGYbCl3 2.4524 3.563 0.564 1.015
AATmCl3 2.4559 3.591 0.569 0.988
AACaCl3 2.4597 3.616 0.552 0.998
XQCaCl3 2.4665 3.611 0.552 1.002
XQTmCl3 2.4732 3.584 0.569 0.991

ASrCl3 2.4733 3.867 0.652 0.883
AAYbBr3 2.4961 3.745 0.52 0.977
AAYbCl3 2.5073 3.598 0.564 0.991
AYbCl3 2.5105 3.746 0.564 0.933

AGSnCl3 2.5318 3.489 0.635 0.97
AEuCl3 2.5444 3.851 0.646 0.886

AASnBr3 2.5577 3.687 0.587 0.936
XQSrCl3 2.5628 3.552 0.652 0.941
AGSmCl3 2.5693 3.496 0.674 0.948
MAYbCl3 2.5957 3.537 0.564 1.037
XQYbCl3 2.6447 3.592 0.564 0.995
AASnCl3 2.6492 3.556 0.635 0.948
XQEuCl3 2.6625 3.549 0.646 0.945
AGSrCl3 2.6785 3.488 0.652 0.96
AASmCl3 2.6810 3.587 0.674 0.926
AASmBr3 2.6977 3.709 0.622 0.915
AASrBr3 2.7253 3.692 0.602 0.927

MASmCl3 2.7719 3.428 0.674 0.969
AASrCl3 2.7744 3.565 0.652 0.938
AGEuCl3 2.7978 3.487 0.646 0.964
AAEuCl3 2.8295 3.561 0.646 0.941
AAEuBr3 2.8484 3.689 0.597 0.93
MAEuCl3 3.0856 3.432 0.646 0.985
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Section S3 Experimental Validation

Figure S24 XRD patterns of (a) MASnxGe1-xI3 (x=1, 0.85, 0.74, 0.66, 0) and partial enlarged plots 
around (b) 14.30° and (c) 28.70° of 2-Theta.

Figure S25 Absorbance spectra of MASnxGe1-xI3 (x=1, 0.85, 0.74, 0.66, 0).

Figure S26 XRD patterns of (a) MASnI3 and (b) MAGeI3. The diffraction peaks of MASnI3 and 
MAGeI3 prepared are consistent with the theoretical values, corresponding to the cubic structure (space 

group: Pm3m) and tetragonal structure (space group: P4mm), respectively.
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Figure S27 Diffraction peaks of MAGeI3 at (a) 14.46° and (b) 29.20° of 2-Theta.

Experimental
Methylammonium iodide (MAI, 99.8%) was purchased from GreatCell. Tin (II) iodide (SnI2, 

99.99%) and tin (II) fluoride (SnF2, 99%) were purchased from Sigma-Aldrich. N, N-
dimethylformamide (DMF, 99.8%) and dimethylsulfoxide (DMSO, 99.9%) were purchased from 
Admas-beta. Germanium powder (Ge, 99.999%) and iodine pellets (I2, 99.999%) were purchased 
from Aladdin and Admas-beta, respectively. All the above materials were used as received. GeI2 
was synthesized by sintering a sealed quartz tube containing equimolar amounts of germanium 
powder and iodine pellets at 600°C for 10 hours. The MASnI3 precursor solution was prepared by 
dissolving 15.9 mg MAI, 37.2 mg SnI2 and 3.13 mg SnF2 additives in a mixed solvent of 100 μL 
DMF and 25 μL DMSO while stirring at 60 °C for 2 hours. The MAGeI3 precursor solution was 
prepared by dissolving 15.9 mg MAI and 32.6 mg GeI2 in a solvent of 125 μL DMF while stirring 
at 60 °C for 2 hours. The MASnxGe1-xI3 (x=0.85, 0.74, 0.66) precursor solution was prepared by 
dissolving 15.9 mg MAI and different molar ratios of SnI2 and GeI2 in a mixed solvent of 100 μL 
DMF and 25 μL DMSO while stirring at 60 °C for 2 hours. The MASnI3, MAGeI3 and MASnxGe1-

xI3 films were deposited by spin-coating the precursor solution onto a glass substrate at 1000-4000 
rpm for 45 s in a glove box. All the films were annealed at 100°C for 10 minutes.
Material Characterization:
The crystal structure of perovskite films was examined by a D2-phaser diffractometer from Bruker 
with a CuKα radiation. The UV-Vis-IR measurement was performed using a Lambda 750 
UV/Vis/NIR spectrophotometer from PerkinElmer. The optical band gap ( ) of the material was 𝐸𝑔
obtained using the following Tauc formula:

（𝛼ℎ𝑣）𝛾 = 𝐴(ℎ𝑣 ― 𝐸𝑔 )
where ,   are absorption coefficient, Planck's constant, the incident photon frequency and 𝛼,  ℎ 𝑣 and 𝐴
proportionality constant, respectively.  represents the nature of the electronic transition and is equal to 𝛾
2 for direct allowed transitions condition. 
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