Supporting information

Double doping of a low-ionization energy polythiophene with a molybdenum dithiolene complex

Emmy Järsvall,^a Till Biskup,^b Yadong Zhang,^{c,d} Renee Kroon,^{a,e} Stephen Barlow,^{c,d} Seth R. Marder,^{c,d,f} Christian Müller^a*

^aDepartment of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden

^bPhysical Chemistry, University of Saarland, Saarbrücken 66123, Germany

^cGeorgia Institute of Technology, School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Atlanta, Georgia 30332-0400, United States

^dRenewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO 80303, United States

^eLaboratory of Organic Electronics, Linköping University, 60174 Norrköping, Sweden

^fDepartments of Chemical and Biological Engineering and of Chemistry, University of Colorado Boulder, Boulder, CO 80303, United States

*e-mail: christian.muller@chalmers.se

Figure S1. UV-vis spectra of $[Mo(tfd-COCF_3)_3]$ -Et₄N⁺ and $[Mo(tfd-COCF_3)_3]^2$ -(Et₄N⁺)₂ dispersed in a PEO matrix.

Figure S2. EPR spectra of a thin film of $[Mo(tfd-COCF_3)_3]^-Et_4N^+$ dispersed in a PEO matrix recorded at 0° and 90°.

Figure S3. Angular-dependent EPR spectra of a thin film of $[Mo(tfd-COCF_3)_3]$ -Et₄N⁺ dispersed in a PEO matrix. Spectra have been recorded using a motorized goniometer with an accuracy of 0.125°. The sample has been manually positioned within the spectrometer initially with the substrate plane parallel to the magnetic field (with an accuracy of ±5°).

Figure S4. Non-smoothed EPR spectra of $[Mo(tfd-COCF_3)_3]^-Et_4N^+$ and $[Mo(tfd-COCF_3)_3]^2-(Et_4N^+)_2$ dispersed in a PEO matrix.

Figure S5. EPR spectra of TQ1 sequentially doped with Mo(tfd-COCF₃)₃ recorded at 0° and 90°.

Figure S6. Angular-dependent EPR spectra of a TQ1 sequentially doped with $Mo(tfd-COCF_3)_3$. Spectra have been recorded using a motorized goniometer with an accuracy of 0.125°. The sample has been manually positioned within the spectrometer initially with the substrate plane parallel to the magnetic field (with an accuracy of $\pm 5^\circ$).

Figure S7. EPR spectra of TQ1 sequentially doped with Magic Blue recorded at 0° and 90°.

Figure S8. Angular-dependent EPR spectra of a TQ1 sequentially doped with Magic Blue. Spectra have been recorded using a motorized goniometer with an accuracy of 0.125° . The sample has been manually positioned within the spectrometer initially with the substrate plane parallel to the magnetic field (with an accuracy of $\pm 5^{\circ}$).

Figure S9. Non-smoothed EPR spectra of neat $p(g_42T-T)$ and $p(g_42T-T)$ sequentially doped with Mo(tfd-COCF₃)₃ and [Mo(tfd-COCF₃)₃]⁻Et₄N⁺.

Figure S10. UV–vis–NIR absorbance spectra displaying the difference in thickness-normalized absorbance $\Delta(A/d)$ between the spectra of neat $p(g_42T-T)$ and $p(g_42T-T)$ co-processed with 5 mol%, 10 mol% and 20 mol% of Mo(tfd-COCF₃)₃.

Figure S11. Non-smoothed EPR spectra of co-processed p(g₄2T-T):Mo(tfd-COCF₃)₃ films.