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Methods 

Study Subjects and Design 

A total of 605 participants from the pan-European U-BIOPRED study (Unbiased 

Biomarkers for the Prediction of Respiratory Disease outcomes) were included (Table 

1). Participants from 15 clinical sites were included and asthma was classified 

according to international guidelines on severe asthma with the following groups; 

healthy controls (HC, n=100), mild-to-moderate asthmatics (MMA, n=87), non-smoking 

severe asthmatics (SAns, n=310), and smoking/ex-smoking severe asthmatics (SAs, 

n=108) [1]. All participants provided a urine sample within 28 days of initial screening 

(baseline visit); an additional urine sample was provided by 225 SAns and 80 SAs 

participants at a longitudinal follow-up visit 12-18 months later. A brief overview of 

baseline and longitudinal clinical and demographic characteristics is shown in (Table 

1), with a more detailed baseline description found elsewhere [1]. Ethics approval was 

obtained from each participating clinical institution and all participants provided written 

informed consent. U-BIOPRED adhered to standards outlined by the International 

Conference on Harmonisation and Good Clinical Practice and is registered on 

ClinicalTrials.gov (identifier: NCT01976767). 

 

Medication use 

All MMA subjects were on ≤500 µg inhaled fluticasone equivalents/day (ICS), while all 

SA subjects received ≥1000 µg fluticasone equivalents/day. Of the severe asthmatics, 

50% were prescribed oral corticosteroids (OCS), 18% were prescribed theophylline, 

and 12% were treated with anti-IgE therapy (i.e., omalizumab). Regular use of non-

steroidal anti-inflammatory drugs (NSAIDs) was part of the exclusion criteria. Reliever 

medication, such as short/long acting b2 agonists (SABA/LABA) or combination 



Page 4 of 25  

therapy was used by all asthmatic subjects. In sub-groups of asthmatics 

anticholinergics and chromoglycate was used among others, of which use was 

reported to be 18% and 2%, respectively. 

 

Participant stratification by asthma treatment 

Severe asthmatic non-smoker participants were stratified by treatment. OCS 

stratification was previously described [2]. Participants reporting at least daily use of 

OCS and had detectable OCS metabolites in their urine were classified as confirmed 

OCS users. Participants reporting never or previous use of OCS and did not have 

detectable OCS metabolites in their urine were classified as confirmed non-users of 

OCS. Theophylline stratifications were based on participant reported use. Participants 

reporting at least daily use of theophylline were considered users; those reporting no 

prior use were considered non-users. Omalizumab stratification was based on medical 

records of administration. Serum-IgE matched individuals with no prior use were 

considered non-users using a 2:1 nested case-control design as described by Kolmert 

et al. [2]. 

 

Metabolomics analysis 

Metabolomics data were acquired by liquid chromatography – high resolution mass 

spectrometry (LC-HRMS) using previously described methods [3]. The analytical 

sequence (injection order) was randomised by clinical group, sex, age, BMI, collection 

site, and ethnicity to avoid analytical bias [4]; matching baseline and longitudinal 

samples were placed together in the analytical sequence in alternating order. To 

normalise for urine concentration and to reduce matrix effects [5], the specific gravity 

(SG) was measured. Prior to analysis, batches of 100 x 5 ml urine samples were 
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thawed at 4°C, then centrifuged for 5 minutes at 250 rcf to pellet any precipitate. For 

each sample, 100 µL was used to measure SG on a refractometer (Atago UG-a), 100 

µL was used to create a pooled quality control (QC) sample and 5 x 500 µl aliquots 

were prepared and returned to -80°C. A pooled QC was made for each daily batch. 

After the final batch, all daily pooled QC samples were thawed to prepare a final pooled 

QC; the SG was measured for this sample and sub-aliquots were prepared for each 

analytical batch. In total, samples were analysed in 17 batches with pooled quality 

control (QC) samples analysed after every 5th sample to monitor analytical drift and 

measure precision [6]. On the day of analysis, urine samples were diluted with LC-MS 

grade water (Sigma-Aldrich, St. Louis, MO, USA) to the lowest SG (1.00x) 

measurements of the sample set and prepared as described [3]. Metabolite extraction 

was then performed by adding 180 µL of LC-MS grade acetonitrile (Fisher Scientific, 

Loughborough, UK) containing internal standards to 20 µL of SG-diluted urine. 

Samples were vortexed briefly then centrifuged at 13,000 x g for 15 minutes at 4°C; 40 

µL of the supernatant was transferred to an LC-MS vial containing an insert for 

analysis.  

 

Data were acquired using a 1290 Infinity II ultra-high performance liquid 

chromatography system coupled to an Agilent 6550 iFunnel Q-TOF mass 

spectrometer (Agilent Technologies, Santa Clara, CA, USA). Metabolites were 

separated using hydrophilic interaction liquid chromatography (SeQuant ZIC-HILIC 

column 100 Å, 100 × 2.1 mm, 3.5 μm particle size) coupled to a 2.1 × 2 mm, 3.5 μm 

particle size guard column (Merck, Darmstadt, Germany) and an inline-filter. Mass 

spectral data were acquired in both electrospray ionisation (ESI) positive and negative 

modes. The mobile phases for ESI-positive ionization mode were water containing 
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0.1% formic acid (solvent A) and acetonitrile containing 0.1% formic acid (solvent B), 

and for ESI-negative ionization mode were 10 mM ammonium acetate pH 6.7 (solvent 

A) and acetonitrile (solvent B). The elution gradient was as follows: 1.5 min at 95% [B], 

95 to 40% [B] in 12 min, maintained at 40% [B] for 2 min, then decreasing to 25% [B] 

at 14.2 min, maintained for 2.8 min, then returned to initial conditions over 1 min, and 

then the column was equilibrated at initial conditions for 7 min. The flow rate was 0.3 

mL/min; injection volume was 2 μL, and the column oven was maintained at 25 °C  

 

Data were acquired in a mass range of 40–1200 m/z using the following settings: 

sheath gas, N2, 8 L/min; drying gas, N2, 15 L/min; gas temperature, 250°C; nebulizer 

pressure, 35 psi; voltage, 3000 V; fragmentor voltage, 380 V. All data were acquired 

using all ions fragmentation (AIF) mode; this included three sequential experiments at 

three alternating collision energies (0 eV, 10 eV, and 30 eV). The data acquisition rate 

was 6 scans/s. 

 

Peak deconvolution and metabolite identification were performed using Agilent TOF-

Quant software (version B.07.00, Agilent Technologies) as described [3]. To ensure 

accurate metabolite identification, metabolites were matched against retention time, 

accurate mass, and MS/MS fragmentation patterns of 408 chemical reference 

standards in an in-house database. Metabolites were only included for statistical 

analysis if the accurate mass, retention time, and MS/MS fragmentation pattern 

matched to an authentic standard; thus, all metabolites reported have a Level 1 

identification level as defined by the Metabolite Standards Initiative [7].  
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Systematic experimental within- and between-batch variation was corrected using the 

QC- Robust Spline Correction (QC-RSC) algorithm [8]. Metabolite abundances were 

then plotted against injection order and visually inspected to identify deconvolution 

problems; deconvolution was optimised and repeated as necessary. Following this 

procedure, the relative standard deviation of the pooled QC samples (QCRSD) and the 

ratio of QC variance to sample variance (D-ratio) were calculated for each metabolite, 

aligning to community quality control best practice [6]. Quality assessment revealed 

high quality data as evidenced by an average relative standard deviation (RSDQC) of 

3.3%, an average D-Ratio of 8.2%, and 1.38% total missing values. 

 

Tryptophan quantification 

Tryptophan and 6 of its metabolites were quantified by reversed-phase liquid 

chromatography coupled to mass spectrometry (LC-MS/MS). Briefly, the urine 

samples were diluted 100 times in purified water and centrifuged (Eppendorf 

Centrifuge 5430 R) at 15,000 rcf for 10 min at 4°C. Part of the supernatant (200 μl) 

was transferred to a 96 deep well plate (Thermo Scientific 26052) and capped with a 

mat. Calibration curves were diluted in purified water and run together with the 

samples. Samples were analysed on an Agilent 1290 Infinity II system with multiwash 

function and an Agilent 6490 Ion Funnel triple quadrupole mass spectrometer. 5 μl of 

the sample extract was injected into a Zorbax Eclipse RRHD C18 column (50 × 2.1 

mm, 1.8 μm particle size). A short gradient (0.5 ml/min flow rate, 40°C column oven) 

using 0.1 % formic acid in HPLC water (mobile phase A) (Milli-Q, Millipore) and 0.1 % 

formic acid in HPLC acetonitrile (mobile phase B) (Rathburn Chemicals) was applied. 

The gradient started at 2 % B increasing to 40 % B after 2 min and directly to a washing 

step at 95 % B for 0.6 minutes and then returned to initial conditions followed by an 
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0.8-minute column re-equilibration. Mass spectrometry data (MRM, multiple reaction 

monitoring) were acquired in positive electrospray ionization mode, using the 

transitions 225.09>109.9, 209.09>146.0, 205.1>188.1, 192.07>145.9, 190.05>144.0, 

177.1>160.0 and 168.03>105.9 for 3-hydroxykynurenine, kyrunenine, tryptophan, 5-

hydroxyindoleacetic acid, kynurenic acid, serotonin and quinolinic acid, respectively. 

Fragmentor voltage was set to 380 V and the Collision energies ranged from 10 to 18 

V. In positive mode, the capillary voltage was 4.0 kV with a sheath gas temperature of 

400°C and gas flow of 12 l/min. The Ion Funnel parameters were 200 and 110 for the 

high and low pressure radio frequencies. Data handling and quantification was 

performed using Agilent MassHunter B06.00 software. Samples were randomized 

across each batch to prevent potential confounding signal drift. 

 

Genotyping 

Sputum and bronchial brushing cis-eQTL summary statistic data were obtained in U-

BIOPRED. The U-BIOPRED genotype data was imputed by IMPUTE2 [9] using 

1000Genome phase 3 data [10] as the reference panel. The sputum eQTL analysis 

was performed on 91 U-BIOPRED participants that had both genetic and gene 

expression data in sputum available, and the bronchial brushing eQTL analysis was 

performed on 118 U-BIOPRED participants that had both genetic and gene expression 

data in bronchial brushings available. The eQTL analysis was performed with 

matrixEQTL in R [11] using age, sex and 10 principle components as covariates. The 

asthma GWAS summary statistics were also downloaded from a recent large scale 

GWAS study [12]. The number of cases and controls in the adult-onset GWAS were 

26,582 and 327,253, respectively. The genome build used for both the eQTL and 

GWAS summary statistic was GRCh37. To determine if any of the SLC22A5 cis-eQTLs 
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overlapped with the asthma GWAS hits, a p-value threshold of 0.05 was applied for 

sputum and bronchial brushing eQTLs and genome-wide threshold of 5e-8 for GWAS 

SNPs. A lenient threshold was applied for the eQTL due to the fact that the eQTLs in 

sputum and bronchial brushing were underpowered due to the small sample size. We 

then subset the eQTLs with their asthma GWAS summary statistics also available, and 

aligned them to have the same effect allele with their GWAS summary statistics. 

 

Statistical analysis  

Missing values were imputed using the K-nearest neighbour (K=3) method, as is 

standard practice for metabolomics [13]. Metabolomics data, expressed as relative 

abundances, were not normally distributed (Lilliefors test); non-parametric univariate 

statistical tests were subsequently used. The null hypothesis (H0), that the distribution 

of each metabolite was the same across outcomes, was tested using the Wilcoxon 

Rank-sum (2 outcomes) and Kruskal-Wallis test (more than 2 outcomes). The H0, that 

baseline and longitudinal distributions were the same for each metabolite, was tested 

using the Wilcoxon signed-rank test. The Storey positive false discovery rate (FDR) 

[14] was calculated for all univariate analyses. Median fold-changes and confidence 

intervals were estimated using 500 iterations of bootstrap resampling [15] as previously 

reported [16]. Confounder correction was performed on the log urinary carnitine 

abundances using multiple linear regression, adjusting the clinical outcome for sex, 

age, and BMI. To provide robustness against heteroscedasticity, Huber’s sandwich 

estimator for the regression coefficient standard errors was used [17]. Collection site-

specific batch effects upon the observed metabotypes were evaluated and found to 

vary with metabolite. 
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To identify similarities between metabolites, hierarchical cluster analysis (HCA) was 

performed using a multivariate Spearman correlation distance metric and Ward’s group 

linkage. The most similar metabolites form the lowest linkages in the resulting circular 

dendrogram; thus, emergent clusters represent similar trends. The mean of the log-

transformed and z-scaled data of the resulting clusters were plotted against clinical 

groups to qualitatively visualise metabolite patterns across clinical groups. Principal 

Components – Canonical Variate Analysis (PC-CVA) was then performed, as 

previously described [16], to assess the multifactorial and correlated discrimination 

between clinical groups. Leave-one-out cross validation was used to determine the 

optimal number of PCs to be used in the model (Figure E1). 

 

The targeted tryptophan data included 7 metabolites, including tryptophan and 6 

downstream intermediates along 3 different pathways. Univariate analyses were 

performed using non-parametric tests (as described above). To visualise and assess 

clinical group differences across each pathway, mean data were presented in a bar 

graph and MANOVA was performed. Prior to MANOVA, data were normalised to 

tryptophan, log-transformed, and z-scaled.  

 

In order to investigate the genetic impact of SLC22A5 on gene expression, we applied 

a linear regression framework to identify the cis-eQLTs associated with expression of 

SLC22A5. SNPs that were up to 1 MB (megabase) away from the TSS (transcription 

start site) of the gene were used in the association test. In the regression model, the 

genetic effect was assumed to be “additive”, and standard linear regression was 

considered to model the genetic association with gene expression in SLC22A5:  
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𝐸 = 𝛽! + 𝛽"𝐺 +&𝛽#

$

#%&

𝐶# 

 

Where E is log2-scaled gene expression, 𝛽! is the intercept term, 𝐺 is the copies of 

effect allele, 𝐶#%&,(…$ 	are the covariates including age, sex, asthma groups and 10 

principal components extracted from the genetic related matrix. Our null hypothesis 

(𝐻!)	was that effect size 𝛽"=0, i.e., there was no genetic association to the gene 

expression. A p-value of 𝛽" 	less than a given threshold was then used to determine 

the significant genetic association. We used a p-value threshold 0.05 here without 

considering the multiple testing correction due to the smaller sample size, and we have 

therefore emphasised caution when interpreting the result. 

 

Individual subject clinical and biochemical data were collected from the U-BIOPRED 

TranSMART platform (eTRIKS). All statistical analyses were performed using the 

MATLAB scripting language (Mathworks, Natick, MA, USA), R (3.4.4, CRAN Network), 

and STATA v14 (StataCorp LLC, College Station, TX, USA). 
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Results of the tryptophan pathway analyses 

Targeted quantitative analyses were performed to further elucidate tryptophan 

metabolite alterations (Figure E9, Table E10). No changes were observed in 

tryptophan levels. Given the variability in the response, downstream metabolites were 

normalized to tryptophan levels on an intra-individual basis (Figure E9). Tryptophan 

metabolism was divided into 3 metabolic pathways: Monoamine oxidase (MAO), 

Indoleamine 2,3-dioxygenase (IDO), and Kynurenine 3-monooxygenase (KMO). Mild-

to-moderate asthmatics had similar levels in all 3 pathways relative to healthy 

participants, while severe asthmatics were dysregulated relative to healthy 

participants. Smoking status exerted a minor effect upon the pathways. The observed 

patterns reached significance for the IDO and KMO pathways (p=0.01 and 0.03, 

respectively) and were replicated at the 12-to-18-month follow-up. Tryptophan 

metabolism was further probed at the mRNA level (Table E11). Of the detected 

transcripts from enzymes in these pathways, the majority exhibited no change in 

association with asthma status. However, IDO1 transcripts significantly increased in 

bronchial brushings, PBMCs, and sputum. The magnitude of the observed shifts for 

other transcripts was nominal and most likely not of importance. 

 

Discussion of the tryptophan pathway analyses 

There is significant interest in the potential role of tryptophan and its metabolites in 

multiple inflammatory diseases [18], including obstructive lung disease [19]. However, 

the literature is unclear in relation to asthma. We accordingly used the scale of the U-

BIOPRED study to address this question. Tryptophan itself was unchanged in 

association with asthma severity or smoking status. However, the downstream 

metabolites were dysregulated with asthma severity and further perturbed by smoking 
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status (Figure E9). In the current study, the strongest observed changes were in the 

IDO pathway, which has previously been reported to be associated with allergic airway 

inflammation [19]. Of particular interest is that the transcript levels of IDO1 increased 

in bronchial brushings, sputum, and PBMCs, suggesting a systemic upregulation in 

this pathway that was reflected in the urinary metabotype. These profiles were 

generally stable at the 12-18 months longitudinal sampling. Serotonin was affected by 

smoking status as previously reported [20, 21], as well as OCS treatment. An intriguing 

hypothesis is that the tryptophan metabolites are produced by microbiota involved in 

the gut-lung axis [22], reflecting asthma-associated dysbiosis.  

 
List of Supplementary Tables: 
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Table E2. Baseline versus Longitudinal Analysis  
Table E3. Effects of OCS on Metabolite Abundance 
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Figure E1. Principal Components – Canonical Variate Analysis (PC-CVA). (A) 
Scores plot of baseline data, labelled by clinical class. Blue, healthy controls; yellow, 
mild-to-moderate asthma (MMA); red, severe asthma non-smokers (SAns); green, 
severe asthma smokers (SAs). (B) Longitudinal data for severe asthma groups 
projected into the baseline model. B, baseline data; L, longitudinal data. +, mean of 
each baseline group; •, mean of each longitudinal group; solid circles, 95% confidence 
intervals of the mean of baseline groups; dashed circles, 95% confidence interval of 
the mean of longitudinal groups. (C) Loadings plots for Canonical Variate 1 (CV1, left 
panel) and CV2 (right panel). Red, metabolites that significantly (p<0.05) contribute to 
separation in the CV; blue, metabolites that do not significantly contribute to the 
separation in the CV. (D) Leave-one-out cross validation; 5 principal components were 
chosen as the number of optimal components to use in the model. 
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Figure E2. Cross Validation for the PC-CVA model presented in Figure 2. Leave-
one-out cross validation was performed, identifying 5 principal components as the 
optimal number for the model. 
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Figure E3. Principal Components – Canonical Variate Analysis (PC-CVA) with 
non-smoking severe asthmatics stratified by theophylline use. (A) Leave-one-out 
cross validation; 6 principal components were chosen as the number of optimal 
components to use in the model. (B) Scores plot labelled by outcome. HC, healthy 
control participants; MMA, mild-to-moderate asthmatics; SAns, severe asthma non-
smokers; SAns + Theophylline, severe asthma non-smokers taking theophylline 
treatment. +, mean of each group; dashed circles, 95% confidence interval of the mean 
of each group. (C) Loadings plot displaying metabolites that significantly (p<0.05) 
contribute to the model. Metabolite position displays the magnitude and direction of 
affect in CV1 (x-axis) and CV2 (y-axis). The quadrant positions of metabolites are 
related to those of the clinical groups in the scores plots. In other words, metabolites 
are most abundant in the clinical groups with which they share a quadrant. Metabolites 
are colour-coded based on corresponding cluster as identified in Figure 1 and 
according to the figure legend.  
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Figure E4. Individual 
Canonical Variate (CV) 
loadings for the PC-CVA 
with non-smoking severe 
asthmatics stratified by 
theophylline use. Loadings 
plots for Canonical Variate 1 
(CV1, left panel) and CV2 
(right panel) are shown. 
Red, metabolites that 
significantly (p<0.05) 
contribute to separation in 
the CV based on 500 
iterations of bootstrap 
resampling / remodelling; 
blue, metabolites that do not 
significantly contribute to the 
separation in the CV. 
Metabolites are ordered and 
colour-coded by cluster as 
defined in Figure 1. The 
cluster label is presented on 
the left side of the figure. 
HC, healthy control 
participants; MMA, mild-to-
moderate asthma; SAns, 
severe asthma non-
smokers; SAs, severe 
asthma ex/smokers; T, 
theophylline. 
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Figure E5. Sex-specific differences in urinary carnitine levels. (A) The four U-
BIOPRED groups stratified by sex. (B) The four U-BIOPRED groups compared 
separately for each sex. C) The fold-change estimates with 95% confidence intervals 
of the 3 carnitine species within each U-BIOPRED group stratified by sex relative to 
healthy participants. The urinary carnitine composite value was calculated by summing 
the log-transformed, z-scaled relative abundances of acetylcarnitine, carnitine, and 
propionylcarnitine. MMA, mild-to-moderate asthma; SAns, severe asthma non-
smokers; SAs, severe asthma smokers and ex-smokers; SAnsL, severe asthma non-
smokers longitudinal; SAsL, severe asthma smokers and ex-smokers longitudinal.  
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Figure E6. Dependency of urinary carnitine levels upon clinical recruitment site. 
The U-BIOPRED study consisted of 15 different patient recruitment sites across 
Europe. Boxplots are shown of the relative abundance of each carnitine metabolite 
stratified by clinical recruitment site code. Data are shown as post QC-corrected 
intensity values from the mass spectrometer in units of relative abundance. The 
Kruskal-Wallis p-values are reported in the figure. 
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Figure E7. Molecular signatures of carnitine metabolism. Scatter-overlaid boxplots 
stratified by Type-2 classification. (A) Urinary carnitine composite variable. Relative 
abundances of carnitine, acetylcarnitine, and propionylcarnitine were log-transformed, 
z-scaled, and summed (p=0.031). (B) Sputum and (C) Bronchial brushings (BB) fatty 
acid metabolism enrichment score (ES) (p=0.038). (D) Sputum SLC22A5 expression 
levels. (E) Bronchial brushings (BB) SLC22A5 expression levels (p=9.7x10-4). 
Inferential statistics were not performed for (B) and (D) due to small sample sizes. The 
Type-2 patient stratification was based on the ES of the IL-13-induced gene expression 
patterns in human bronchial epithelial cells using GSVA [23, 24]. Open circles, 
observations; box, median and interquartile range (IQR) of the data; whiskers, range 
of data up to 1.5 times of IQR above Q3 or below Q1; +, outliers. Kruskal-wallis p-
values are reported, with posthoc pairwise comparisons shown on the figure. *, p<0.05; 
***, p<0.001. HC, healthy control participants; Low, Type-2 low; High, Type-2 high.  
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Figure E8. Molecular signatures of carnitine metabolism. Scatter-overlaid boxplots 
stratified by transcriptome-associated cluster (TAC) classification membership [23]. 
(A) Sputum fatty acid metabolism enrichment score (ES) (p=2.1x10-14). (B) Sputum 
SLC22A5 expression levels (p=1.2x10-8). Open circles, observations; box, median and 
interquartile range (IQR) of the data; whiskers, range of data up to 1.5 times of IQR 
above Q3 or below Q1; +, outliers. Kruskal-wallis p-values are reported here, with 
posthoc pairwise comparisons shown on the figure. ***, p<0.001.  
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Figure E9. Tryptophan metabolism. Tryptophan and 6 downstream metabolites 
were quantified in urine and divided into 3 biochemical pathways: monoamine oxidase 
(MAO), indoleamine 2,3-dioxygenase (IDO), and kynurenine 3-monooxygenase 
(KMO). Downstream metabolites were normalised to tryptophan levels on an intra-
individual basis, log-transformed, then z-scaled. To visualise and assess clinical group 
differences across each pathway, mean data were presented in a bar graph and 
MANOVA was performed. The quantified metabolite levels are provided in Table E7. 
Trp, tryptophan; Ser, serotonin; HIAA, 5-hydroxyindoleacetic acid; Kyn, kynurenine; 
KynA, kynurenic acid; QuinA, quinolinic acid. HC, healthy control participants; MMA, 
mild-to-moderate asthma; SAns, severe asthma non-smokers; SAs, severe asthma 
ex/smokers; L, longitudinal data. 
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