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Bookend: precise transcript reconstruction with end-guided assembly

This document serves as an Appendix to [Schon et al. 2022], and it contains descriptions of algorithms used by
the end-guided transcript assembler Bookend. Source code can be found at
https://github.com/Gregor-Mendel-Institute/bookend.

The package can be installed from the Python Package Index on any system with Python 3.6+ using the command
pip install bookend-rna.
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Figure S1. The Bookend workflow

A Workflow diagram showing the computational steps to generate an end-guided assembly from raw FASTQ
RNA-seq files with Bookend. B Schematic of the Membership Matrix produced from a hypothetical collection
of reads from various sequencing methods; blue- frag is included, pink- frag is excluded. Elements that include
or exclude every frag are considered complete, e.g. the first and last long reads.
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Figure S2. Nucleotide-level precision of Arabidopsis assembly 5′ and 3′ ends

A Percent of the unique set of 5′ ends from different assemblies of floral bud RNA, or from reference annotations
(TAIR10, Araport11) overlapping assembled loci, that fall on or adjacent to the peak position of a CAGE cluster
from Thieffry et al. 2020. B Validation as in A for the set of unique 3′ ends against Direct RNA-Seq (DRS)
data from Sherstnev et al. 2012. C (Top) Nucleotide fold enrichment over background frequencies in a ±50nt
window around the peak positions of all CAGE clusters; (bottom left) nucleotide enrichment around assembly 5′

ends ≤ 100nt from a TAIR10 TSS; (bottom right) enrichment around all other assembly 5′ ends. D Enrichments
displayed as in C for DRS clusters and assembly 3′ ends. E Estimated read coverage distribution for assembled
transcripts grouped by their classification against TAIR10. Center line- median coverage. Outliers are not shown.
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Figure S3. Artifacts in long-read data

IGV browser image of the Arabidopsis MIA locus. From top to bottom: PacBio FLNC reads, colored by 3′ label
type; Bars demarcating genomic regions of 10 or more consecutive A’s (10 or more T’s on the reverse strand);
Direct RNA Seq (DRS) 3′ end abundance; nanoPARE 5′ end capped and noncapped read abundance; Smart-
seq2 coverage depth; TAIR10 reference; Assemblies colored by class vs. TAIR10. B (Upper panel) Nucleotide
frequency enrichment in a ±50bp window around transcription start sites (TSS) identified by CAGE (Thieffry et
al. 2020). (Lower panel) Nucleotide enrichment around 5′ ends of transcripts constructed from PacBio reads by
Iso-seq3 (top), StringTie2 (middle), and Bookend (bottom) at sites overlapping a TAIR10 TSS (left), novel TSS
at a known gene (middle), and novel antisense or intergenic loci (right). C Precision/recall plot of assemblers on
Smart-seq2 (short reads) and/or Pacbio (long reads).
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Figure S4. Single mESC assembly details

A IGV browser image of the synthetic SIRV6 locus. (Top) Mix E2 spike-in concentrations for 18 distinct RNA
molecules. (Bottom) Assembled isoforms of pooled data from Natarajan et al. 2019 of 96 SMARTer libraries
of single mESCs with SIRV spike-ins. Transcripts are colored by the concentration of their matching SIRV
transcript, if it exists. B Box plots of processing time (left) and peak memory usage (right) to assemble 96
mESCs with five transcript assemblers. C Box plots of recall and precision comparing four assembly methods to
Bookend with and without filtering incomplete transcripts. D Precision/recall plots for assemblies of 96 mESCs
whose RNA was split to generate three RNA-seq libraries from two different sequencing protocols. Black points
incorporate mESC SLIC-CAGE data from Cvetesic et al. 2018 and mESC 3P-Seq data from Nam et al. 2013 in
a hybrid assembly.
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Figure S5. Meta-assembly details

A IGV browser image of the mouse Gga1 gene. Tracks from top to bottom: read abundance of mESC SLIC-
CAGE and 3P-seq; Bookend partial assembly of SMARTer data from 96 mESC cells; meta-assembly by Bookend,
PsiClass, and TACO. B Classification of all assembled transcripts with and without meta-assembly. C Change
in transcript abundance by class after meta-assembly by TACO or Bookend. D Euler diagram of the number of
shared exon chains between Bookend mESC, RefSeq and Gencode annotations at loci assembled by Bookend.
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Table S1. Floral bud Smart-seq2 end-labeled read mapping statistics

End-labeled reads identified in three Smart-seq2 replicates from 5ng of Arabidopsis floral bud total RNA, se-
quenced single-end 50bp mode on an Illumina Hi-Seq 2500.

LABEL
Read type Rep 1 Rep 2 Rep 3 Merged

Raw reads 26,714,548 24,104,566 24,626,064 75,445,178
5′ Label 743,292 948,127 657,093 2,348,512
3′ Label 194,038 389,972 211,447 795,457

ALIGN
Read type Rep 1 Rep 2 Rep 3 Merged

Unique mappers 20,218,104 (76%) 16,552,901 (69%) 18,655,520 (76%) 55,426,525 (73%)
Start Tag 446,529 (60%) 523,009 (55%) 416,070 (63%) 1,385,608 (59%)
End Tag 126,315 (65%) 252,673 (65%) 149,980 (71%) 528,968 (66%)
Multi-mappers 5,266,353 (20%) 5,609,624 (23%) 4,645,067 (19%) 15,521,044 (21%)
Start Tag 213,413 (29%) 273,929 (29%) 165,207 (25%) 652,549 (28%)
End Tag 31,979 (16%) 53,612 (14%) 23,970 (11%) 109,561 (14%)

FILTER
Read type Rep 1 Rep 2 Rep 3 Merged

5′ TSO artifacts 71,921 (11%) 108,081 (14%) 74,085 (13%) 254,087 (12%)
5′ uuG Caps 51,748 (8%) 48,398 (6%) 39,601 (7%) 139,747 (7%)
3′ poly(A) artifacts 52,047 (33%) 91,573 (30%) 50,166 (29%) 193,786 (30%)

FINAL
Read type Rep 1 Rep 2 Rep 3 Merged

Unlabeled 24,666,221 21,059,302 22,545,360 68,270,883
Start Tags 536,273 640,459 467,591 1,644,323
Cap Tags 51,748 48,398 39,601 139,747
End Tags 126,315 214,712 123,784 464,811
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Table S2. Long-read validation of floral bud assemblies by class

Breakdown of assembled transcripts by their classification against the closest TAIR10 reference transcript, and
the number of transcripts in each class that have at least one full match (exon chain and ±100 ends) in PacBio
long-read sequencing data from 10µg of Arabidopsis thaliana stage 12 floral bud total RNA.

CLASSIFICATION
Class Bookend Bookend -tags StringTie2 Scallop Cufflinks

Full match 12019 7809 10674 9068 5480
Exon match 4139 5851 4579 6717 5571
Isoform 1915 2409 5337 8317 9728
Fusion 185 1101 1049 1439 3737
Fragment 362 1325 1813 3431 3955
Intergenic 399 279 530 1113 1160
Antisense 112 70 145 3049 341
Intronic 6 3 12 51 13
Ambiguous 0 819 1910 50185 6025

Known 16158 13660 15253 15785 11051
Novel 2979 5187 8886 17400 18934
Total 19137 18847 24139 33185 29985

VALIDATION
Class Bookend Bookend (-tags) StringTie2 Scallop Cufflinks

Full match 11239 (94%) 7070 (91%) 9671 (91%) 7925 (87%) 4619 (84%)
Exon match 3033 (73%) 2450 (42%) 2124 (46%) 1961 (29%) 1252 (23%)
Isoform 903 (47%) 660 (27%) 1216 (23%) 1630 (20%) 693 (7%)
Fusion 56 (30%) 42 (4%) 60 (6%) 87 (6%) 36 (1%)
Fragment 116 (32%) 63 (8%) 80 (4%) 83 (2%) 65 (2%)
Intergenic 147 (37%) 21 (8%) 46 (9%) 68 (6%) 20 (2%)
Antisense 38 (34%) 5 (7%) 7 (5%) 150 (5%) 9 (3%)
Intronic 1 (17%) 0 (0%) 0 (0%) 2 (4%) 0 (0%)
Ambiguous N/A N/A N/A N/A N/A

Known 14272 (88%) 9520 (70%) 11795 (77%) 9886 (63%) 5871 (53%)
Novel 1261 (42%) 791 (15%) 1409 (16%) 2020 (12%) 823 (4%)
Total 15533 (81%) 10311 (55%) 13204 (55%) 11906 (36%) 6694 (22%)
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Table S3. Floral bud hybrid assembly details

Classification against the closest match in TAIR10 or Araport11 of transcripts assembled from a set of comple-
mentary datasets from floral bud RNA. Short reads- Smart-seq2; Start reads- nanoPARE; Long reads- PacBio.

Bookend arguments:
(Long reads only) –min proportion .01 –min len 60 –max gap 50 –min cov 1 –cap bonus 2
(Hybrid) –min proportion .01 –min len 60 –max gap 50 –min cov 1.5 –cap bonus 2 –cap filter 0.1
StringTie2 arguments:
(Long reads only) -f .01 -m 60 -c 1 -M 1 -L
(Hybrid) -f .01 -m 60 -c 1.5 -M 1 -L -g 50 -s 1.5 –mix

LONG READS ONLY
Class PacBio FLNC (unique) Iso-seq3 (unique) ToFU StringTie2 Bookend

Full match 292394 (16630) 23071 (12882) 14479 13131 15140
Exon match 158554 (8104) 13122 (3490) 5333 4209 4886
Isoform 33754 (20546) 3279 (2747) 3856 3018 3475
Fusion 5303 (1341) 502 (206) 596 838 403
Fragment 46952 (19525) 7045 (4804) 781 609 399
Intergenic 25346 (8177) 2457 (1784) 2305 1628 282
Antisense 7865 (4441) 956 (828) 1542 548 438
Intronic 401 (101) 42 (20) 16 8 10
Ambiguous 0 (0) 0 (0) 0 22 0

Known 450948 (24734) 36193 (16372) 19812 17340 20026
Novel 119621 (54131) 14281 (10389) 9096 6671 5007
Total 570569 (78865) 50474 (26761) 28908 24011 25033
(% Known) 79.0% (31.4%) 71.7% (61.2%) 68.5% 72.2% 80.0%

HYBRID ASSEMBLY
Assembler StringTie2 Bookend Bookend Bookend Bookend
Class Long+Short Long+Short Long+Start Short+Start Long+Short+Start (require cap)

Full match 14718 16626 14978 13921 16341 (16743)
Exon match 5468 5753 5209 5577 6312 (5814)
Isoform 4645 5382 5688 2664 6047 (5703)
Fusion 1026 587 462 328 583 (495)
Fragment 1395 313 432 670 504 (514)
Intergenic 1827 425 231 484 577 (389)
Antisense 414 476 323 408 637 (550)
Intronic 12 10 3 5 6 (11)
Ambiguous 877 0 0 0 0 (0)

Known 20186 22379 20187 19498 22653 (22557)
Novel 10196 7193 7139 4559 8354 (7662)
Total 30382 29572 27326 24057 31007 (30219)
(% Known) 66.4% 75.7% 73.9% 81.0% 73.1% (74.6%)
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Table S4. End-labeling and alignment of single mESCs

Mapping statistics for 96 single mESC SMARTer libraries from Natarajan et al. 2019.

Cell Unlabeled 5′ label 3′ label Aligned Start Tag Cap Tag (%) End Tag (%)

1 9608668 439193 100121 8934461 258330 79340 0.9% 37906 0.4%
2 9831074 618059 118804 9607068 365454 96924 1.0% 54055 0.6%
3 12146979 641146 127258 11425200 386469 105849 0.9% 51691 0.5%
4 6335181 298745 79348 5750133 178094 51310 0.9% 31671 0.6%
5 7514264 427582 90844 7177000 251555 73783 1.0% 40753 0.6%
6 6192857 424987 71214 5568044 238054 64005 1.1% 29469 0.5%
7 9413990 557275 105944 8676900 308285 97282 1.1% 41137 0.5%
8 7146811 478394 109538 6626337 303099 55831 0.8% 41087 0.6%
9 12209527 656470 119208 11653781 364251 126662 1.1% 51548 0.4%
10 4943634 249114 57765 4150020 133363 44176 1.1% 22076 0.5%
11 10289384 579612 156501 9540995 344615 107138 1.1% 67970 0.7%
12 6296290 354539 36954 5744670 207542 57459 1.0% 15386 0.3%
13 11062529 608742 107064 10588553 402291 90084 0.9% 38529 0.4%
14 5859896 372904 57864 5597543 221374 58681 1.0% 25575 0.5%
15 7438431 377316 85287 6600211 216701 60159 0.9% 31166 0.5%
16 9318662 489053 77267 8804817 287566 85378 1.0% 29135 0.3%
17 9654938 591123 111696 8821047 345010 95892 1.1% 46811 0.5%
18 4176594 309959 77647 3386566 196545 14120 0.4% 21449 0.6%
19 10166487 646012 87377 9584997 400128 99395 1.0% 34685 0.4%
20 4513269 374249 70382 3592280 232724 13498 0.4% 17983 0.5%
21 5911031 367655 77492 5715353 230948 68676 1.2% 34725 0.6%
22 8533714 500707 100164 8057641 293859 101787 1.3% 44715 0.6%
23 5507278 446779 71288 4598916 301960 17407 0.4% 19768 0.4%
24 7007715 436446 81182 6404774 243859 75132 1.2% 33581 0.5%
25 3995373 323171 74361 3632465 237703 10268 0.3% 20365 0.6%
26 5412175 277064 69361 5014494 165316 45054 0.9% 25527 0.5%
27 4498372 268910 56498 4148402 168253 40980 1.0% 23122 0.6%
28 29923526 1235689 302270 29149150 791759 206991 0.7% 117971 0.4%
29 10165433 565658 123935 9849721 358781 93532 0.9% 48662 0.5%
30 6088334 309792 72381 5791867 198551 44964 0.8% 24476 0.4%
31 7560915 419014 82924 6738642 265942 45899 0.7% 25400 0.4%
32 5485800 345511 78723 4856333 199379 50828 1.0% 29350 0.6%
33 5373713 373940 66041 4823649 224204 52800 1.1% 29194 0.6%
34 6485920 426953 71948 5608916 225477 65596 1.2% 29468 0.5%
35 6632255 360820 74635 5934034 219050 49897 0.8% 26091 0.4%
36 5977435 506299 90559 5824146 368469 27634 0.5% 32330 0.6%
37 2705467 189226 58195 1931832 118339 4561 0.2% 28556 1.5%
38 6035540 371889 79129 5753194 233286 64046 1.1% 36886 0.6%
39 4425629 292098 59420 4081161 168990 48537 1.2% 26558 0.7%
40 6388799 427916 66878 6408595 301594 60211 0.9% 32197 0.5%
41 7985364 460244 115172 7245203 269110 82244 1.1% 48552 0.7%
42 7125365 342965 73899 6819032 226665 48831 0.7% 23736 0.3%
43 3268434 287751 64027 1932186 146951 5797 0.3% 25172 1.3%
44 6776069 348272 70412 5796199 198263 51087 0.9% 26426 0.5%
45 6267559 334111 94890 5700986 202717 57249 1.0% 38813 0.7%
46 7858871 514789 85073 7257444 324611 81400 1.1% 35532 0.5%
47 6456318 295115 47795 5819580 171799 50144 0.9% 17653 0.3%
48 6404736 411525 74035 5627612 232133 63004 1.1% 29733 0.5%
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Table S4, continued.
Cell Unlabeled 5′ label 3′ label Aligned Start Tag Cap Tag (%) End Tag (%)

49 3389101 340785 115033 3422875 284973 8238 0.2% 33683 1.0%
50 5667716 363316 70312 4977135 222168 45158 0.9% 24698 0.5%
51 2690373 227903 58683 1946712 141653 5730 0.3% 29509 1.5%
52 6928921 362190 107121 6545706 225017 60246 0.9% 40119 0.6%
53 9835754 726933 136436 9463908 428107 107183 1.1% 62678 0.7%
54 3011944 270978 65486 2543453 185334 13107 0.5% 29921 1.2%
55 5142534 484427 92112 5059348 385759 18370 0.4% 36733 0.7%
56 7140952 395151 86458 6594524 251851 60822 0.9% 34039 0.5%
57 6466893 413749 63792 5598598 217828 69633 1.2% 29085 0.5%
58 3300888 266911 71045 2541725 166731 8887 0.3% 18473 0.7%
59 5043344 309051 46246 4926209 192103 48126 1.0% 20633 0.4%
60 6986624 481048 80193 6427797 279353 77828 1.2% 36246 0.6%
61 3351952 234887 76558 3319998 176381 26927 0.8% 41700 1.3%
62 3396729 339973 85217 3274103 264194 12512 0.4% 33795 1.0%
63 6461789 421328 66538 5632766 236839 57459 1.0% 26779 0.5%
64 6404975 422427 85385 5785467 270948 41527 0.7% 26209 0.5%
65 6557014 342169 117742 5717291 193178 52509 0.9% 42129 0.7%
66 3335945 307264 73995 2564465 184833 11539 0.4% 22667 0.9%
67 6375049 322527 59493 5944082 199964 47648 0.8% 22887 0.4%
68 8177038 404930 93646 7564092 252086 70170 0.9% 34101 0.5%
69 5485331 301692 84083 4864549 167140 47594 1.0% 32817 0.7%
70 14155483 792368 132139 13194440 467058 123415 0.9% 55436 0.4%
71 7022871 439562 91457 6477060 283655 61701 1.0% 33721 0.5%
72 7114718 466219 72834 6382720 262582 74644 1.2% 31258 0.5%
73 7494258 359929 110643 7266395 224032 63724 0.9% 45323 0.6%
74 9200518 599103 116324 8846834 377761 89071 1.0% 49789 0.6%
75 4351846 413743 90042 4214629 315500 19554 0.5% 33950 0.8%
76 4062440 346688 83752 3356938 233841 12302 0.4% 24880 0.7%
77 6264611 353118 100568 5758030 210097 62049 1.1% 43787 0.8%
78 6425634 332547 63487 5703753 202498 45756 0.8% 23191 0.4%
79 7234869 381668 113175 6540410 221080 65323 1.0% 48511 0.7%
80 10168955 356816 144538 8923837 176870 53756 0.6% 51863 0.6%
81 6613647 359383 55306 6380549 217473 63718 1.0% 26495 0.4%
82 3280612 308671 87547 2792536 216501 8298 0.3% 23508 0.8%
83 6292413 380969 59590 5645459 212510 67444 1.2% 25334 0.4%
84 5619685 508203 75195 5003815 349041 31826 0.6% 25397 0.5%
85 9277709 604069 92078 9040233 420256 79640 0.9% 41817 0.5%
86 6115076 342837 118423 5611657 200182 62551 1.1% 48331 0.9%
87 8466897 479130 137519 8090541 289579 83847 1.0% 56166 0.7%
88 5910776 308345 101811 5749104 198101 53210 0.9% 41257 0.7%
89 8795051 480325 131394 7941499 273086 88094 1.1% 49065 0.6%
90 6935880 397900 130562 6470810 230171 70897 1.1% 54555 0.8%
91 8114433 474650 129503 7215724 267064 79081 1.1% 45991 0.6%
92 3884626 214058 72777 3214197 115207 34069 1.1% 27498 0.9%
93 8932179 552463 99937 8764917 340984 98729 1.1% 44467 0.5%
94 8641039 533914 100584 7795662 283006 100413 1.3% 42540 0.5%
95 6281335 391868 78347 5496105 206090 62725 1.1% 29948 0.5%
96 5000892 288069 78217 4875119 174688 53544 1.1% 34999 0.7%
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Table S5. GffCompare performance statistics for mESC meta-assemblies

Comparison of mESC assemblies with and without meta-assembly vs. overlapping RefSeq transcripts. Command-
line argument: gffcompare -R --strict-match --no-merge -e 100 -s GRCm39.fasta -r [RefSeq] [Assembly]

SENSITIVITY
Base assembler Meta-assembler Nucleotide Exon Intron Intron chain Transcript

PsiCLASS PsiCLASS 41.6 44.0 49.0 13.0 13.1
StringTie2 None 50.3 55.1 59.5 15.4 15.4
StringTie2 TACO 43.3 53.7 58.4 13.3 13.1
StringTie2 Bookend 49.6 63.8 66.2 21.3 21.1

Scallop None 58.9 54.1 60.5 17.0 16.9
Scallop TACO 45.7 53.4 57.6 11.6 11.5
Scallop Bookend 49.5 62.1 64.5 20.8 20.7

Bookend None 58.1 67.4 70.0 20.0 20.1
Bookend TACO 46.3 57.9 59.4 18.0 18.0
Bookend Bookend 56.6 67.8 70.4 24.7 24.7

Bookend+ None 57.4 67.1 69.7 19.8 19.9
Bookend+ Bookend 56.7 68.7 71.5 25.0 25.0

Bookend+ Bookend (stringent) 57.9 70.2 73.0 25.5 25.5
+ Hybrid assembly with mESC CAGE and 3P-seq data

PRECISION
Base assembler Meta-assembler Nucleotide Exon Intron Intron chain Transcript

PsiCLASS PsiCLASS 36.7 61.0 95.8 28.0 14.6
StringTie2 None 32.3 52.0 86.2 29.6 12.1
StringTie2 TACO 38.8 53.0 78.8 15.9 12.1
StringTie2 Bookend 77.3 79.9 92.3 38.6 38.4

Scallop None 16.1 35.4 82.2 21.5 6.8
Scallop TACO 28.6 48.0 83.1 18.2 8.6
Scallop Bookend 59.6 74.6 92.5 38.1 30.5

Bookend None 56.8 84.1 95.0 50.8 44.7
Bookend TACO 67.2 79.3 90.4 40.8 35.4
Bookend Bookend 63.6 84.5 94.0 52.1 46.5

Bookend+ None 58.1 83.9 95.1 52.3 44.5
Bookend+ Bookend 66.6 85.8 94.5 56.2 49.9

Bookend+ Bookend (stringent) 77.8 87.8 94.8 58.3 54.1
+ Hybrid assembly with mESC CAGE and 3P-seq data
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SUPPORTING NOTES

The End Labeled Read file format

End Labeled Read (ELR) files are defined in two parts: a header that builds an index of reference chromosomes
(#C) and read sources (#S), and a 7-column body with the following contents:

1. Chromosome index [int]
2. Alignment start position [int]
3. Alignment length (including gaps) [int]
4. Strand {+, -, .}
5. ELCIGAR string describing alignment labels and gaps [str]
6. Source of read [int]
7. Weight of all reads matching this description [float]

ELCIGAR strings describe the position and labels of all aligned segments of a read, patterned off of the
BAM/SAM format CIGAR strings but with additional End Label information. They are strings of Charac-
ter/Number pairs with one trailing character ([CN ]xC), where C is a label and N is a numeric distance on the
genome. Each label annotates the end of the associated span as one of the following:

S Start Tag (RNA 5′ end)
C Capped Tag (5′ end with untemplated G)
E End Tag (RNA 3′ end)
D Splice junction donor
A Splice junction acceptor
. Unspecified gap/end

For example, the ELCIGAR for a 50bp paired-end read of a 185nt cDNA fragment with no introns or end
labels would be ”.50.85.50.”. A full-length transcript with the ELCIGAR ”S256D800A128D800A512E” has 3
exons of 256, 128, and 512nt, respectively, and 2 introns that are both 800nt.

Short indels and mismatches are not recorded in ELCIGAR strings, but the number of alignment errors within
each exonic region (between adjacent SD, CD, AD, and AE pairs) is tallied. If this tally exceeds the user-specified
error rate as a proportion of the number of aligned bases in that exon, then it is removed from the ELCIGAR
and the surrounding exons are bridged with an unspecified gap (.. pair). This setting prevents the use of splice
junctions from especially error-prone alignments, which can be common in some long-read sequencing protocols.

During assembly, the ”weight” column will be used to determine read coverage depth for exonic frags and
for end positions. However, if a Start Tag, Capped Tag, or End Tag is lowercase (s, c, e), bookend assemble

will treat these ends as having a weight of 1 instead of the read weight. This is beneficial for partial assembly of
sparsely-labeled samples.
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Assembly Algorithms

This section lays out pseudocode for the essential elements of end-guided assembly. Pseudocode is written in a
”Pythonic” way, e.g. indices and ranges are 0-indexed open.

NOTE: Some basic mathematical notation is used.∑
Sum

|A| Number of elements in A
a : b Iterate from a to b
a|b a or b
a ∈ A a is in set A
A
⋃
B Union of sets A and B

A ⊂ B A is a subset of B
A \B The subset of A not shared with B

First, the input reads must be grouped into Chunks. To assemble each chunk, the branchpoints must first
be generated, a list of all start clusters, end clusters, splice donors, and splice acceptors on each strand. Splice
junctions are cataloged first and rare junctions are removed. Then, Tag Clustering is performed to generate two
strand-specific lists of Start Clusters and Tag Clusters. Each adjacent pair of branchpoints demarcates a ”frag”,
and the Membership of reads is calculated in which each read either includes (1), excludes (-1) or does not overlap
with (0) each frag. Rows with identical memberships are combined to produce the Membership Matrix, and from
here the Overlap Matrix can be calculated. The Overlap Matrix is further simplified by collapsing Linear Chains,
after which the Overlap Graph can be defined. The weights of shorter reads fully contained within one or more
longer reads are redistributed via the Resolve Containment algorithm.

Assembly is carried out on the Overlap Graph using the Greedy Paths algorithm, where a set of optimal
paths through the Overlap Graph is produced. After addition of each path, the weights of all reads are assigned
proportionally to each path. Finally, the optimal set of paths is filtered to remove incomplete and low-confidence
models, and the remaining paths are output as assembled transcripts.

The assembly environment is built around the RNAseqMapping object, which acts as a general container
for RNA-seq data or transcript models, and possesses a number of methods for conversion from/to various RNA-
seq file formats (BED, BED12, BAM/SAM, ELR, GTF/GFF3). The data contained in each RNAseqMapping
object includes:

RNAseqMapping attributes:
name data type description
chrom int Chromosome number
source int Source number
strand {1,−1, 0} Alignment strand (forward, reverse, unstranded)
ranges list Ordered list of (left,right) aligned segments
splice list List of bools |ranges| − 1; is the gap an intron?
weight float Abundance (counts) of the Object
s tag bool Object contains a Start Tag?
capped bool Object contains a Capped Tag?
e tag bool Object contains an End Tag?
complete bool Object is a full-length gapless transcript
is reference bool Object came from a reference annotation file
condensed bool Object is a product of bookend condense

s len int Length of trimmed Start Tag
e len int Length of trimmed End Tag
attributes dict Container for additional key : value information
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Generate Chunks

Assembly begins by building coherent chunks of overlapping reads that could putatively be considered ”genes”
or ”loci”. Each time there is a gap greater than the specified --maxgap between the rightmost edge of the reads
in the chunk and the left edge of the next read, a chunk is completed. Within this chunk, false positive splice
junctions may skip over gaps. To filter spurious spliced reads, read coverage (sum of read.weight) is calculated
for each base in the chunk, and the weight of each splice junction is compared to the coverage of its flanking
positions to discard all reads with sufficiently rare junctions.

Algorithm 1: GenerateChunks

Data: Reads = a sorted list of RNAseqMapping objects
g = the maximum tolerable gap length
p = the minimum proportion of coverage needed to treat a splice junction as valid
Result: An ordered set of Chunks, each a subset of Reads separated by a gap > g
begin

chunk ← An empty list
chrom← −1
for read ∈ Reads do

if chunk is empty then
spanRight← read.right

else if read.chrom 6= chrom or read.left > spanRight + g then
junctions← Unique set of spliced positions in chunk
junctionWeights← Dict of

∑
r.weight for r ∈ chunk which contain each j ∈ junctions

cov ←
∑

r.weight for all r ∈ chunk overlapping each genomic position in chunk
badJunctions← All j ∈ junctions where
junctionWeights[j] < p ∗max(cov[j.left], cov[j.right])

chunk ← Subset of r ∈ chunk that do not contain badJunctions
breaks← Runs > g where no reads in chunk overlap
for b ∈ breaks do

subchunk ← Subset of r ∈ chunk where r.right < b
yield subchunk

chunk ← [read] /* Start a new chunk containing only the current read */

spanRight← read.right

else
spanRight← max(spanRight, read.right)

chunk.append(read)

yield chunk
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Tag Clustering

From an array of Start Tag or End Tag positions (the 5′ or 3′ terminus of all tagged reads, respectively), Tag
Clusters are determined independently on each strand. Clusters are not allowed to span same-stranded splice
junctions, which could yield malformed transcript models with termini (defined as the peak signal position within
a Tag Cluster) internal to a splice site. For the same reason, same-stranded Start Clusters and End Clusters that
overlap are further subdivided in a way that prevents malformed transcripts with a 3′ end upstream of the 5′

end. These two rules are implemented through the algorithms GenerateTagClusters and ResolveOverlap,
respectively. See the diagrams below for examples of malformed transcript models:

5′ label

cluster distance

Resolve Overlaps

malformed transcript

malformed transcript

putative
transcripts

without junction splitting

out-of-order
peaks

Cluster Rules:
1) Split on junctions
2) Most common
3) Most upstream S,
most downstream E

with junction splitting

3′ label
donor
acceptor

S+ E+

S+ S+ E+

resolution

Algorithm 2: GenerateTagClusters

Data: counts = Array of tag weights of one type (Start, End) and one strand (+,-) by genomic position
coverage = Array of weights of all overlapping reads by genomic position
junctions = Array of splice donor and acceptor site positions on the same strand as counts
strandRatio = Array by genomic position of inferred proportion of overlapping reads that align to the
input strand [0-1]
overhang = Minimum distance allowed between a splice site and a Tag Cluster
g = the maximum tolerable gap between tags of the same cluster
p = minimum proportion of tag weights to use as signal threshold
Result: List of TagCluster objects that record left, right, and most abundant positions
begin

values← counts2 ∗ strandRatio/coverage where counts 6= 0
prohibited← iterator({junctions± overhang,−1})
threshold← p ∗

∑
values

passPositions← positions where values > threshold
TagClusters← An empty list
boundary ← −1
cluster ← TagCluster(passPositions[0])
while prohibited exists and boundary < cluster.left do

boundary ← next(prohibited)

for p ∈ order(passPositions[1 :], key = values[passPositions[1 :]]) do
crossedBoundary ← boundary > −1 and p > boundary
if crossedBoundary or p− g > cluster.right then

TagClusters.append(cluster)
cluster ← TagCluster(p)
if crossedBoundary then

while prohibited exists and boundary < p do
boundary ← next(prohibited)

else
cluster.add(p)

TagClusters.append(cluster)
return TagClusters
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Algorithm 3: ResolveOverlap

Data: LeftRanges = Sorted list of TagCluster objects of type S+ or E−
RightRanges = Sorted list of TagCluster objects complementary to the type of LeftRanges (E+ if
S+, S− if E−)
Result: A copy of LeftRanges and RightRanges in which overlapping TagClusters with out-of-order

peaks have been split.
begin

NewLefts,NewRights← Empty lists
AddedLefts,AddedRights← Empty sets
for L ∈ LeftRanges do

for R ∈ RightRanges do
if R.peak not in AddedRights then

if R.right < L.left then
NewRights.append(R)
AddedRights.add(R.peak)
continue

else if R.left > L.right then
if L.peak not in AddedLefts then

NewLefts.append(L)
AddedLefts.add(L.peak)

continue

if L.right > R.left and L.left < R.right then
if L.peak > R.peak then

LeftPositions← subset of L.positions < R.peak
if |LeftPositions| > 0 then

SplitLL← TagCluster(LeftPositions)
NewLefts.append(SplitLL)

RightPositions← subset of L.positions > R.peak
if |RightPositions| > 0 then

SplitLR← TagCluster(RightPositions)
NewLefts.append(SplitLR)
if R.right > SplitLR.peak then

LeftPositions← subset of R.positions < SplitLR.peak
RightPositions← subset of R.positions > SplitLR.peak
if |LeftPositions| > 0 then

NewRights.append(TagCluster(LeftPositions))

if |RightPositions| > 0 then
NewRights.append(TagCluster(RightPositions))

else
NewRights.append(R)
AddedRights.add(R.peak)

AddedLefts.add(L.peak)
AddedRights.add(R.peak)

else if L.peak not in AddedLefts then
NewLefts.append(L)
AddedLefts.add(L.peak)

if L.peak not in AddedLefts then
NewLefts.append(L)
AddedLefts.add(L.peak)

for R ∈ RightRanges do
if R.peak not in AddedRights then

NewRights.append(R)
AddedRights.add(R.peak)

return NewLefts,NewRights
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Calculate Membership Matrix

Using the set of splice junctions and tag clusters a locus can be divided into frags, defined as a (left, right) range
of positions between two adjacent ”branchpoints”: splice donor/acceptor sites, the upstream-most position of a
Start Tag Cluster, or the downstream-most position of an End Tag Cluster. The ”membership” of a read is an
integer array of length |frags|+ 4 that records whether it overlaps (1), does not overlap (0), or excludes (-1) the
frag. 4 extra integers record presence/absence/exclusion of the 4 rag types: S+, E+, S−, E−. A frag excluded
by a read cannot be part of the same transcript; either the read passes over frag via an intron, or the read has
a Start/End Tag that terminates outside frag. Reads with the same membership arrays are identical for the
purposes of assembly and are collapsed into a single element. The Membership Matrix records the membership
arrays of all elements in a matrix of shape |elements| × |frags|. The weight of each element is calculated as the
total number of bases in reads contained in the element divided by the number of nucleotides included in the
element frags. Element weights are recorded separately in a Weight Matrix of shape |elements| × |sources|.

Algorithm 4: CalculateMembershipMatrix

Data: Reads = a sorted list of RNAseqMapping objects
frags = Ordered list of (left, right) positions of all adjacent non-overlapping branchpoints
TagClusters = Collection of clusters defined by GenerateTagClusters
Result: Membership : A |elements| × |frags|+ 4 matrix associating each frag and Tag type to each

unique element
Weights : A |elements| × |sources| float matrix recording summed weights by source of each element
begin

Sp,Ep, Sm,Em← |frags|, |frags|+ 1, |frags|+ 2, |frags|+ 3
elements← An empty set
elementWeights← An empty dict
for i ∈ |Reads| do

read← Reads[i]
membership← [0]× (|frags|+ 4)
if read.strand = 1 then

membership[Sp]← int(read.s tag and read starts in a Start+ Cluster)
membership[Ep]← int(read.e tag and read ends in an End+ Cluster)
membership[Sm]← −1
membership[Em]← −1

else if read.strand = −1 then
membership[Sm]← int(read.s tag and read starts in a Start− Cluster)
membership[Em]← int(read.e tag and read ends in an End− Cluster)
membership[Sp]← −1
membership[Ep]← −1

previousFrag ← −1
for j ∈ |read.ranges| do

left, right← read.ranges[j]
leftFrag ← which frag contains left
rightFrag ← which frag contains right
membership[leftFrag : (rightFrag + 1)]← 1
if j > 0 then

gapRange← (prevFrag + 1) : leftFrag
membership[gapRange]←
−1, if read.splice[j − 1]

1, if !read.splice[j − 1] and gapRange overlaps no junctions

0, otherwise

hash← asString(membership)
elements.add(hash)
elementWeights[hash, read.source]←
read.weight ∗

∑
r∈read.ranges(r[1]− r[0])/

∑
m∈members(frags[m][1]− frags[m][0])

orderedElements← sort(asArray(h) for h ∈ elements)
Membership←Matrix(orderedElements)
Weights←Matrix(elementWeights[e] for e ∈ orderedElements)
return Membership,Weights
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Calculate Overlap Matrix

The Overlap Matrix (O) is a |elements| × |elements| square matrix that describes the relationship between each
element pair. It is asymmetric; each pair of elements {a,b} has two coordinates on the matrix, Oab and Oba.
There are four possible overlap relationships: ”does not overlap” (0), ”extends” (1), ”cannot extend” (-1), and
”is subset of” (2). For example, if element b contains all members of a, then ”a is subset of b” and Oab = 2. All
elements necessarily are subsets of themselves, so the main diagonal of O is 2. ”Extension” can be understood
as the ability to traverse (from left to right) the frags of one element onto the frags of another. Examples of
element pairs are given in the table below. The symbol set {−, ,+} is used for membership values of {−1, 0, 1},
respectively. Because alignments can contain gaps, it is possible that ”a extends b” and ”b extends a”. Positive
values in O will form edges in a directed graph (the Overlap Graph). Negative values in O can form an
undirected graph (incompatibility is symmetric) that imposes limits on traversal of the Overlap Graph.

Examples of Overlap between element pairs
Membership Oab Oba

a ++ 0 0
b ++

a ++ 1 0
b ++

a +++ 0 2
b ++

a ++-++ -1 -1
b +++

a ++ ++ 1 1
b +++

Algorithm 5: GetOverlap

Data: a = A single row of the Membership Matrix (integer array length |frags|+ 4)
b = A second row of the Membership Matrix
Result: (Oab, Oba) : Overlap relationship of a→ b and b→ a, respectively
begin

infoa ←
∑

a 6= 0
infob ←

∑
b 6= 0

buffer ← (False, False, False, False) /* Stores membership transition states for

(ai, ai−1, bi, bi−1) */

shared, extab, extba ← 0
overlapping, ina, inb ← False
for i ∈ 0 : |a| do

if (ai = 1 and bi = −1) or (ai = −1 and bi = 1) then
return (−1,−1)

shared.add(int(ai = bi and ai 6= 0))
overlapping ← overlapping or (ai + bi = 2)
buffer ← (ai 6= 0, buffer[0], bi 6= 0, buffer[2])
extab.add(int(ina and buffer = (False, True, True, True)))
extba.add(int(inb and buffer = (True, True, False, True)))
ina ← ia 6= 0 and (ina or ai = 1)
inb ← ib 6= 0 and (inb or bi = 1)

if shared ≤ 0 then
return (0, 0)

if shared = infoa then
Oab ← 2

else if shared = infob then
Oba ← 2

else
Oab ← int(overlapping and extab > 0)
Oba ← int(overlapping and extba > 0)

return (Oab, Oba)
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Algorithm 6: CalculateOverlapMatrix

Data: Membership = Output from CalculateMembershipMatrix
Strand = Array of length |elements| of alignment strands {−1, 0, 1}
Result: Overlap : Overlap Matrix, integer array of shape |elements| × |elements|
begin

Overlap← 0-matrix of shape |elements| × |elements|
for a ∈ 0 : |elements| do

for b ∈ a : |elements| do
if b = a then

Overlapab, Overlapba ← 2

else
if (Stranda = 1 and Strandb = −1) or (Stranda = −1 and Strandb = 1) then

Overlapab, Overlapba ← −1
next

Overlapab, Overlapba ← GetOverlap(a,b)

return Overlap
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Collapse Linear Chains

When considering paths that join sets of elements, some relationships between elements are trivial, meaning
that there are no branches in the path. For assembly, a non-branching set of elements can be treated as a single
element that contains the sum of membership information in the set. To identify all non-branching element sets
(Linear Chains), a strategy was developed to traverse the positive edges of the Overlap Matrix via Depth First
Search (DFS). The elements are ordered by increasing information content, and all elements are visited by DFS.
Upon postvisit, a ”chain number” is assigned to the element based on the set of chains seen during the visit.
The strategy defined below is sufficient to resolve both trivial cases and nested cases, where gapped reads create
cycles in the Overlap Matrix. After labeling each element according to its chain, a new Reduced Membership
Matrix (RMM) and Reduced Overlap Matrix (ROM) can be created from the set of unique chains, rather than
all unique elements. The example below shows the Membership and Overlap of a Locus before (left) and after
(right) reduction. This Locus contains (1) a long linear chain, (2) a nested loop, and (3) a ”long read” element
that has complete information. The chain of each element defined by IdentifyLinearChains is shown in the
rightmost column. The RMM and ROM produced by CollapseLinearChains are shown to the right, where
elements that gained information from their chain are capitalized. It is important to note here that even though
every element except h are contained in a, they are assigned to a different chain than a because, for example,
elements b through g could belong to a valid path containing either h or i, but a is only compatible with i. If
the contained elements were merged into a chain with a, then no complete path containing h could exist. For
Overlap and ROM , the symbol set {−, , ◦, •} is used to replace {−1, 0, 1, 2}, respectively.

Membership Overlap chain
abcdefghijk

a ++-+-+-++++++ • - 1
b ++ • • ◦ 5
c +-+ • •◦ 5
d +-+ • •◦ 5
e +-+ • • ◦ 5
f + + • •◦ 5
g ++ + • • ◦ ◦ ◦ 5
h +-+ - •-◦ 3
i +++ • -•◦ 4
j ++ • •◦ 2
k ++ • • 2

RMM ROM
aBhiJ

a ++-+-+-++++++ • -

B ++-+-+-++ ++ • • ◦◦
h +-+ - •-◦
i +++ • -•◦
J +++ • •
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Algorithm 7: IdentifyLinearChains

Data: O = An adjacency list {a→ [b, ...]} for all a ∈ |elements| where Overlapab > 0
X = An adjacency list {a→ [b, ...]} for all a ∈ |elements| where Overlapab = −1
searchOrder = order(

∑
e 6= 0 for e ∈ elements)

Result: chains : List of length |elements| of chain ID numbers
begin

CO ← An empty adjacency list
CX ← An empty adjacency list
vertices← |O|
visited← Empty boolean array of length vertices
component← −1 integer array of length vertices
chainCount← 0
for v ∈ searchOrder do

Visit(v)

method Visit(v):
visitedv ← True
for w ∈ O[v] do
if not visitedw then

Visit(w)

outgroups← unique(chainO[v])
outgroups.remove(−1)
for out ∈ outgroups do
if O[v] ⊂ CO[out] and X[v] = CX[out] then

chainv ← out
CO[out].add(v)
return

chainCount+ = 1
chainv ← chainCount
CO[chainCount]← {O[v], v]}
CX[chainCount]← X[v]

Algorithm 8: CollapseLinearChains

Data: Membership = Output from CalculateMembershipMatrix
chains = Output from IdentifyLinearChains
Result: RMM : Reduced Membership Matrix of shape |chains| × |frags|+ 4
begin

RMM ← copy(Membership)
chainIndices← An empty list
chainDict← An empty dict
for i ∈ |vertices| do

if chaini ∈ keys(chainDict) then
parent← chainDict[chaini]
newInfo← where(Membership[i, :] 6= 0
RMM [parent, newInfo]←Membership[i, newInfo]

else
chainIndices.append(i) chainDict[chaini]← i

return RMM [chainIndices, :]
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Generate Overlap Graph

With matrices of Membership, Overlap, Weights calculated for all chains, it is now possible to construct the
Overlap Graph where Node objects are assembled into Paths. A Node object is constructed for each chain, and
Paths across multiple chains can also be expressed as a Node:

Node attributes:
name data type description
index int Ordered ID number
length int Total exonic length (nucleotides)
IC int Information Content,

∑
info 6= 0

maxIC int |frags|+ 4
left int Lowest index of contained Nodes
right int Highest index of contained Nodes
members set f ∈ frag where membershipf = 1
nonmembers set f ∈ frag where membershipf = −1
LM int min(members)
RM int max(members)
strand {−1, 0, 1} Alignment strand
bases float Total sequenced bases contained in Node
cov float bases/length
weights array |sources|, cov contributed by each source
member weights array |frags|, estimated cov of each frag
ingroup set {i ∈ |Nodes| where Overlapi,Node.index = 1}
outgroup set {i ∈ |Nodes| where OverlapNode.index,i = 1}
contains set {i ∈ |Nodes| where Overlapi,Node.index = 2}
contained set {i ∈ |Nodes| where OverlapNode.index,i = 2}
excludes set {i ∈ |Nodes| where OverlapNode.index,i = −1}
includes set Set of indices of Nodes included in Path
assigned to set Set of Paths this Node is part of
complete bool This Node is a full-length, gapless transcript
s tag bool This Node has a Start Tag
e tag bool This Node has an End Tag
is spliced bool This Node contains at least one intron
has gaps bool This Node contains at least one internal gap

The set of Nodes generated for the Overlap Graph are elementNodes; they map 1-to-1 to the rows of the
Reduced Membership Matrix. New Node objects can be constructed by combining multiple elementNodes, and
any valid set of elementNodes connected by edges in the Overlap Matrix with no incompatibilities is a Path.

Algorithm 9: OverlapGraph Constructor

Data: M = Reduced Membership Matrix, shape |chains| × |frags|+ 4
O = Reduced Overlap Matrix, shape |chains| × |chains|
sourceWeights = Matrix recording sequenced bases/length, shape |chains| × |sources|
fragWeights = Matrix estimating coverage by frag for each chain, shape |chains| × |frags|
Result: OverlapGraph object: Container for the lists of elementNodes and Paths
begin

OG← An empty OverlapGraph object
OG.elementNodes← An empty list
OG.Paths← An empty list
for i ∈ |chains| do

OG.elementNodes.append(Node(M [i, :], O[i, ], sourceWeights[i, :], fragWeights[i, :])
if OG.elementNodesi.complete then

OG.Paths.append(copy(OG.elementNodesi))

OG.bases←
∑

(e.bases for e ∈ OG.elementNodes)
return OG
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Resolve Containment

When the OverlapGraph object is constructed, there will usually be a number of Nodes that are contained by
other Nodes. A contained Node is a subset of one or more containers, and assembly performance is improved
the weight of contained Nodes is passed proportionally to its containers prior to calculating Paths. The Resolve
Containment algorithm ”bubbles up” weight from contained Nodes in order of decreasing information content
(longest first). The total weight of the Locus is preserved, but the weights of all contained elements that cannot
form a Path incompatible with their containers are set to zero. This allows the shorter elementNodes to be
ignored during assembly without losing their coverage information.

Algorithm 10: ResolveContainment

Data: OG = Overlap Graph Object
Result: In-place update of weights in OG.elementNodes
begin

zeros← Set of all OG.elementNodes with cov = 0
containedNodes← which |e.contained| > 0 for e ∈ OG.elementNodes
resolveOrder ← order(containedNodes, key1 = IC, key2 = |contained|)
for i ∈ resolveOrder do

element = OG.elementNodesi
if element.cov > 0 then

containers← element.contained \ zeros
incompatible← set(0 : |OG.elementNodes|) \ zeros
for c ∈ containers do

incompatible← incompatible
⋂

OG.elementNodesc.excludes

incompatible← incompatible \ element.excludes
if |incompatible| = 0 then

containerCov ← Array of OG.elementNodesc.cov for c ∈ containers
totalCov ←

∑
containerCov

defaultProportions← Array length |containers| of containerCov/totalCov
proportions← 0-array shape |containers| × |sources|
for i ∈ 0 : |containers| do

c← containersi
weights← OG.elementNodesc.weights
proportions[i, :]← defaultProportions× weights/

∑
weights

for i ∈ 0 : |sources| do
if

∑
proportions[:, i] = 0 then

proportions[:, i]← defaultProportions

else
proportions[:, i]← proportions[:, i]/

∑
proportions[:, i]

for i ∈ 0 : |containers| do
c← containersi
cNode← OG.elementNodesc
cNode.weights.add(element.weights× proportions[i, :])

element.weights← 0-array of length |sources|
zeros.add(i)
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Greedy Paths

The Overlap Graph can be understood to have a source(s) and sink(t), and regardless of alignment strand, all
edges between Nodes describe flow from left to right in genomic positions. The four Tag types connect to the
source(Start+, End−) and sink(Start−, End+), so any complete s → t Path must contain a same-stranded
pair of Start/End Tags. To find an optimal path through the OverlapGraph, search begins at the Node with
the greatest weight, and examines each edge to continue outward in a Breadth-First Search that always traverses
the edge with the highest ”Extension Score”. This score is an estimate of the total available weight along the
extending edge, counterbalanced by 3 separate penalties:

sourceSimilarity: [0-1] Distance between the relative source contributions of the Path and the Extension.
variancePenalty: [0-1] Ratio between the mean sectional coverage and max sectional coverage of the Path.
deadEndPenalty: [0-1] Multiplier imposed if no complete Paths can extend through this edge.

When the search terminates, the resulting set of Nodes is combined to yield an ”Optimal Path”, and is
stored in a list of Paths. Assembly of the locus is complete when less than --min proportion of the reads are
unassigned or the same path is generated twice.

Algorithm 11: ExtensionScore

Data: Path = A Node object representing an incomplete set of elementNodes
extension = A candidate list of elementNodes to add to Path
p = minimum proportion
Result: score : Float that evaluates the extension to Path (higher is score better)
begin

extensionWeights← 0-array of length |frags|
sourceProportions← 0-array of length |sources|
newFrags← An empty set
for node ∈ extension do

newFrags.add(frags in node and not in Path)
newProportions← Array of length |sources|,{

1-array if node is unassigned

otherwise Path.weights/(Path.weights +
∑

(p.weights for p ∈ node.assigned to))

available←
∑

newProportions/|newProportions|
if available < p then

available← 0

extensionWeights.add(available ∗ node.member weights)
sourceProportions.add(newProportions/|extension|)

extensionCov ← max(extensionWeights[newFrags])
combinedWeights← Path.member weights + extensionWeights
pathProportions← Path.weights/|Path.weights|
sourceSimilarity ← .5 ∗ (2−

∑
(abs(pathProportions− sourceProportions)))

variancePenalty ← mean(combinedWeights)/max(combinedWeights)

deadEndPenalty ←

{
0 if s or t are unreachable from Path+extension

1 otherwise

score← extensionCov ∗ sourceSimilarity ∗ variancePenalty ∗ deadEndPenalty
return score

Using default arguments for assembly, deadEndPenalty is absolute and yields a score of 0 for any extension
to a Path that cannot be part of an s→ t Path. If assembly is run with the argument --allow incomplete, the
penalty is instead a multiplier of .1 if s is unreachable, and a second .1 multiplier if t is unreachable. Complete
Paths are still heavily favored, but a Path will nonetheless be produced if s → t Paths do not exist or are
extremely poor. Each step of the Greedy Paths algorithm begins by generating a set of possible extensions. Each
extension within extensions is a set of mutually compatible elementNodes that can extend the given Path
exactly one step to the left and/or right. Each extension is composed of an ingroup (a node with an edge to
Path) and an outgroup (a node that Path has an edge to), and any nodes that may be contained by the union of
the ingroup, outgroup, and Path. The Greedy Path algorithm begins at the heaviest unassigned elementNode,
and each extension step lengthens the Path toward both the source and sink.
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Algorithm 12: GenerateExtensions

Data: OG = Overlap Graph object
Path = An incomplete merged set of elementNodes
Result: extensions : A list of candidate sets of elementNodes to extend Path
begin

extensions← An empty list of sets
ingroup← Path.ingroup

⋃
Path.contained

outgroup← Path.outgroup
⋃
Path.contained

freeNodes← Path.contains \ Path.includes
if |freeNodes| > 0 then

Path.extend(freeNodes)
ingroup← Path.ingroup
outgroup← Path.outgroup

if |ingroup \ Path.contained| > 0 then
if |outgroup \ Path.contained| > 0 then

pairs← List of all (i, o) pairs for i ∈ ingroup, o ∈ outgroup if Overlap[i, o] > −1

else
pairs← List (i, Path.index) for i ∈ ingroup

else
pairs← List (Path.index, o) for o ∈ outgroup

for (in, out) ∈ pairs do
ein ← OG.elementNodesin
eout ← OG.elementNodesout
contained← ein.outgroup

⋃
eout.ingroup

⋃
ein.contains

⋃
eout.contains

/* Filter 1: All elements already included or excluded in the extension */

exclude← ein.includes|Path.includes|eout.includes|ein.excludes|Path.excludes|eout.excludes
contained← contained \ exclude
/* Filter 2: All elements that add information not contained in the extension */

stranded← ein.strand 6= 0 or eout.strand 6= 0 or Path.strand 6= 0
extMembers← ein.members

⋃
Path.members

⋃
eout.members

extNonmembers← ein.nonmembers
⋃

Path.nonmembers
⋃
eout.nonmembers

exclude← Set of contained elements if not contained.members ⊂ extMembers or not
contained.nonmembers ⊂ extNonmembers
contained.add(in, out)
contained← contained \ exclude
extensions.add(contained)

return extensions

Algorithm 13: GreedyPaths

Data: OG = Overlap Graph object
p = minimum proportion
Result: Path : The highest-scoring complete s→ t path through the heaviest unassigned elementNode
begin

Path← node with max(node.cov for node ∈ OG.elementNodes) where |node.assignments| = 0
Path.extend(Path.contains)
extensions←GenerateExtensions(Path)
while |extensions| > 0 do

if |extensions| = 1 then
Path.extend(extensions0)

else
bestExtension← ext ∈ extensions with max(ExtensionScore(Path, ext))
Path.extend(bestExtension)

extensions←GenerateExtensions(Path)

return Path
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Assign Weights to Paths

If an OverlapGraph has one or more Paths, the weights of individual Nodes must be assigned proportionally to
the Paths of which they are parts. A Node assigned to a single Path assigns all its weight to that Path, but
if multiple overlapping Paths exist, weight must be assigned proportionally to each. The estimated weight of
each Path is calculated by using the previous Path weights as priors. Nodes are resolved in increasing order of
number of assignments, and their weight is added proportionally to the priors of all assigned Paths.

Algorithm 14: AssignWeightsToPaths

Data: OG = Overlap Graph object
Result: In-place update of weights in OG.Paths
begin

priors← 0-array of shape |OG.Paths| × |sources|
for i ∈ 0 : |OG.paths| do

priors[i, :]← OG.Pathsi.weights
OG.Pathsi.weights← 0− arrayoflength|sources|

pathCovs←
∑|sources|

j=0 priorsij

sampleCovs←
∑|OG.Paths|

i=0 priorsij
pathProportions← pathCovs/

∑
pathCovs

proportions← Array shape |OG.Paths| × |sources| column-filled with pathCovs
for i where sampleCovs > 0 do

proportions[:, i]← priors[:, i]/sampleCovsi

for i ∈ order(OG.assignments) do
element← OG.elementNodesi
if OG.assignmentsi = 1 then

OG.Pathselement.assigned to.weight.add(element.weights)

else if OG.assignmentsi > 1 then
/* Assigned paths must compete for element.weight */

assigned← element.assigned to
assignedProportions← proportions[assigned, :]
for jin0 : |assigned| do

Path← OG.Pathsassignedj

Path.weight.add(element.weight ∗ element.length ∗ assignedProportions[j, :])
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Path Filtering

For a signal threshold p, assembly is complete after > (1 − p) bases in the Overlap Graph have been assigned
to Paths. However, due to incomplete or error-prone data, the optimal set of Paths may still contain a num-
ber of errors that should be removed prior to exporting the remaining Paths and transcript models. Five types
of possible error are identified in the order listed below and are either removed or subject to more stringent filters.

Incomplete assemblies: Any Path that has gaps or is missing a Start or End Tag.
Fused assemblies: A Path that fully contains two non-overlapping Paths.
Truncated assemblies: A Path fully contained within a longer path.
Retained introns: An overlapping Path has a superset of introns.
Minimum isoform proportion: A Path is assigned < p of the summed bases of overlapping Paths

The definition of a complete Path is built into the Node object, but the other filters need to be calculated
with reference to other Paths in the Overlap Graph. Each filter defines a subset of Paths to keep, and in
the FilterPaths method weights are reassigned after each filter because the total number of Paths may have
changed.

Algorithm 15: FilterFusions

Data: OG = Overlap Graph object
Result: filteredPaths : Subset of OG.Paths that passed the filter
begin

badPaths← Empty boolean array length |OG.Paths|
for i ∈ |OG.Paths| do

p1← OG.Pathsi
containedRanges← An empty list
for j ∈ |OG.Paths| 6= i do

p2← OG.Pathsj
if p2.members ⊂ p1.members and p2.weight ≥ p1.weight then

containedRanges.append((p2.LM, p2.RM))

for c1 ∈ containedRanges do
for c2 ∈ containedRanges do

if c10 > c21 or c20 > c11 then
badPathsi ← True

filteredPaths← OG.Paths[!badPaths]
return filteredPaths

Algorithm 16: FilterTruncations

Data: OG = Overlap Graph object
Result: filteredPaths : Subset of OG.Paths that passed the filter
begin

badPaths← Empty boolean array length |OG.Paths|
for i ∈ |OG.Paths| do

containerCov ← 0
p1← OG.Pathsi
for j ∈ |OG.Paths| do

p2← OG.Pathsj
if p1 overlaps p2 and p1.members ⊂ p2.members then

containerCov.add(p2.cov)

if containerCov > 0 and p1.cov < p1.cov + containerCov then
badPathsi ← True

filteredPaths← OG.Paths[!badPaths]
return filteredPaths
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Algorithm 17: FilterRetainedIntrons

Data: OG = Overlap Graph object
intronFilter = Minimum proportion of coverage to keep a retained intron
Result: filteredPaths : Subset of OG.Paths that passed the filter
begin

badPaths← Empty boolean array length |OG.Paths|
for i ∈ |OG.Paths| do

containerCov ← 0
p1← OG.Pathsi
for j ∈ |OG.Paths| do

p2← OG.Pathsj
if p1.LM = p2.LM and p1.RM = p2.RM then

if introns(p1) ⊂ introns(p2) then
containerCov.add(p2.cov)

if containerCov > 0 and p1.cov < intronFilter ∗ (p1.cov + containerCov) then
badPathsi ← True

filteredPaths← OG.Paths[!badPaths]
return filteredPaths

Algorithm 18: FilterMinimumProportion

Data: OG = Overlap Graph object
p = Minimum proportion
Result: filteredPaths : Subset of OG.Paths that passed the filter
begin

badPaths← Empty boolean array length |OG.Paths|
for i ∈ |OG.Paths| do

overlapCov ← 0
p1← OG.Pathsi
for j ∈ |OG.Paths| do

p2← OG.Pathsj
if |p1.members

⋂
p2.members| ≥ .5 ∗min(|p1.members|, |p2.members|) then

overlapCov.add(p2.cov)

if overlapCov > 0 and p1.cov < p ∗ (p1.cov + overlapCov) then
badPathsi ← True

filteredPaths← OG.Paths[!badPaths]
return filteredPaths

Algorithm 19: FilterPaths

Data: OG = Overlap Graph object with a complete set of Optimal Paths
Result: In-place update of OG.Paths to retain only unfiltered Paths
begin

OG.Paths← p ∈ OG.Paths if p.complete
AssignWeightsToPaths(OG)
OG.Paths← FilterFusions(OG)
AssignWeightsToPaths(OG)
OG.Paths← FilterTruncations(OG)
AssignWeightsToPaths(OG)
OG.Paths← FilterRetainedIntrons(OG)
AssignWeightsToPaths(OG)
OG.Paths← FilterMinimumProportion(OG)
AssignWeightsToPaths(OG)
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