
Bookend User Guide

Michael A. Schon

v1.0.1, April 2022

1 Overview

Bookend is a transcript assembler that centralizes the importance of information about RNA 5′ and 3′ ends, in
addition to splice junctions. This document describes the basic workflow and algorithms behind ”end-guided
assembly” used in the Bookend package.

Bookend uses general algorithms that can work with any type of RNA-seq data, but the best results will be
achieved if the set of experiments contains at least one source of 5′-end sequencing and 3′-end sequencing. This
can be achieved through ”hybrid assembly” of standard RNA-seq, CAGE, and 3P-seq, for example, or from a
long-read sequencing method such as PacBio Iso-seq. 5′-end and 3′-end information can also be extracted directly
from reads of ”full-length sequencing methods”, such as those of the Smart-seq family optimized for single-cell
sequencing. See the subcommand bookend label for information on extracting end-labeled reads.

If Python 3.6+ is installed in your environment, the Bookend toolkit can be installed with the command:
pip install bookend-rna

Bookend can also be built from source code available at
https://github.com/Gregor-Mendel-Institute/bookend

2 The Bookend Workflow

As a reference-guided assembler, Bookend tools are written to both pre-process and post-process RNA-seq reads
aligned to a reference genome. STAR is the recommended aligner for short reads, and minimap2 for long reads.
The basic workflow from raw FASTQ files to finished assembly is below. Steps followed by * are optional, de-
pending on the RNA-seq data type and the specific use case:

label* -> [align] -> elr -> condense** -> assemble

*for reads with embedded end labels, e.g. Smart-seq

**for many-sample assemblies, e.g. single cell RNA-seq

These steps can be run via the main Bookend subcommands, namely bookend label, bookend elr,
bookend condense, and bookend assemble. Each subcommand is described below. In addition to the main
subcommands, Bookend includes a number of utilities for converting files and evaluating results. These additional
subcommands include:

classify

bedgraph

fasta

bed-to-elr

elr-combine

elr-sort

elr-subset

elr-to-bed

gtf-to-bed

gtf-ends

sam-to-sj

sj-merge

sj-to-bed

1

https://github.com/Gregor-Mendel-Institute/bookend

3 Bookend subcommands

3.1 Label: Trim and label End Tags from FASTQ files.

usage: bookend label [options] FASTQ1 [FASTQ2]

Positional arguments:

FASTQ (required) Input FASTQ file(s). 1 for single-end, 2

for paired-end.

Other arguments: Default Description

-S|--start [str] AAGCAGTGGTATCAAC

GCAGAGTACATGGG

Start Tag primer sequence (5′ end, e.g.

Smart-seq TSO)

-E|--end [str] ACGCAGAGTACTTTTT

TTTTTTTTTTTTTTT+

End Tag primer sequence (3′ end, e.g.

oligo-dT)

--umi {S,E} (None) The Start or End tag contains a UMI to

record (string of N’s)

--strand

{forward, reverse,

unstranded}

unstranded Strandedness of equencing method

--out1 [file] label.1.fq Filepath to write Mate 1 output

(paired-end)

--out2 [file] label.2.fq Filepath to write Mate 2 output

(paired-end)

--single out [file] label.single.fq Filepath for single-end output

--min start [int] 7 Minimum allowed match to Start Tag

--min end [int] 9 Minimum allowed match to End Tag

--mismatch rate [0-1] 0.06 Permit up to this percent of mismatches in

the tag match

--minlen [int] 18 Discard trimmed reads shorter than this

--minqual [float] 16 Discard any reads with a mean phred score

lower than this

--qualmask [float] 25 Set low-quality basecalls to N for more

lenient matching

--discard untrimmed False Do not keep reads without a trimmed tag

--pseudomates False Pipe single reads to --out1 with an

artificial mate pair in --out2 (overrides

--single out)

From one single-end FASTQ file or two paired-end FASTQ files, bookend label scans each read for a matching
”Start Tag” and/or ”End Tag”, then outputs between one and three trimmed FASTQ files with the type and
length of end labels appended to the read name as a ” TAG=” suffix. All labeled reads are reoriented so that
Mate 1 is sense to the original RNA strand. The Start Tag sequence can be provided with the -S argument,
and should be the sense-stranded sequence of the oligo in cDNA upstream of 5′ ends. For Smart-seq methods
this is the Template Switching Oligo (TSO). The End Tag is the sequence of the 3′ oligo used during reverse
transcription, usually an oligo-d(T) primer. To trim tags of uncertain length, a ”+” can be added after the last
nucleotide, and this will be treated as an oligomer of indefinite length. For example, passing the argument -E

TTTTTTTTTT+ will cause bookend label to trim and label all sequences of 10 or more T’s/A’s. For reads that
contain a Unique Molecular Identifier (UMI) within a Start Tag or End Tag, the --umi argument specifies where
to look for the UMI sequence, which will be appended as an additional ” UMI=” suffix. For oligo-d(T) End
Tags, it is good to provide at least part of the oligo sequence upstream of the T oligomer; this helps minimize
the number of templated oligo-T/oligo-A sites that are falsely labeled as End Tags. If your files do not contain
Illumina-encoded Phred quality scores, set --minqual -1 --qualmask -1.

2

3.2 ELR: Convert aligned BAM to End-Labeled Read files.

usage: bookend elr [options] INPUT

Positional arguments:

INPUT (required) Input BAM/SAM file; must be name-sorted

Other arguments: Default Description

-o|--output [file] [INPUT].elr Path to write output ELR file

--source [str] (None) Name of the sample

--genome [file] (None) Path to reference genome FASTA (required

for artifact masking)

--start seq [str] ACATGGG Sequence to match for 5′ artifact masking

--end seq [str] RRRRRRRRRRRRRRR

RRRRRRRRRRRRRRR

Sequence to match for 3′ artifact masking

--mismatch rate [0-1] 0.2 Max mismatch rate for artifact masking

--stranded False Expect read strand to match RNA strand

-s False All reads are 5′-end reads

-c False All reads are capped 5′-end reads

-e False All reads are 3′-end reads

--no ends False Ignore all 5′ and 3′ end labels

--bed False Output a 15-column BED file (BED12+3)

--secondary False Keep secondary alignments

--header [file] (None) Write ELR header to separate file

--record artifacts False Add alternate >/] tags to artifact-masked

S/E reads

--split False Write multimappers to separate files

--remove noncanonical False Require canonical splice junctions (GT/AG)

--sj shift [int] 2 "Repair" noncanonical splice junctions by

shifting up to this distance

--minlen strict 18 Keep reads this short if unique perfect

matches with no softclipping

--minlen loose 25 Keep reads this short if they pass other

alignment parameters

--error rate [0-1] 0.1 Discard exons with higher indels/mismatches

per base

This is the main utility for generating End Labeled Read (ELR) files from aligned, name-sorted BAM/SAM
files. This step can also filter out common sources of erroneous end labels, which is strongly recommended for
accurate assemblies. Specifically, oligo-d(T) primers can bind to genome-templated A-rich sequences within the
RNA molecule in addition to non-genome-templated poly(A) tails. Depending on the experiment and organism,
this ”oligo-dT mispriming” can be extremely common, resulting in many false positive End Tags. Various 5′-end
sequencing techniques also suffer from known artifacts. Libraries that make use of Template Switching Oligos
(TSO), including the Smart-seq and IsoSeq methods and some 5′-end sequencing protocols, are susceptible to
template switching artifacts at regions that share sequence similarity to the TSO’s 3′ end. If a reference genome
is provided to bookend elr, then it can perform artifact masking for both 5′ and 3′ End Tags.

Artifact masking depends on the sequences provided by --start seq and --end seq. These two sequences
should be the expected untemplated sequence on the sense cDNA strand immediately upstream and downstream
of the RNA sequence, respectively. Default parameters are optimized based on Smart-seq2 libraries in mouse
and Arabidopsis. These include a very permissive mismatch rate (20%), and an oligo-dT mispriming site of up
to 30 purines (IUPAC code R). If a long artifact masking sequence is provided, matching is performed up to the
trimmed tag length present in the read’s ” TAG=” suffix.

When provided a reference genome, bookend label also performs Cap Inference on Start Tags. In 5′-end
labeled sequencing libraries, the presence of a non-genome-templated 5′-terminal G between the trimmed oligo
and the aligned sequence is evidence that this read possessed a 7mG cap structure. These reads can be extremely
valuable for distinguising genuine transcription start sites from the products of RNA degradation that occur both
in vivo and in vitro.

3

3.2.1 The End Labeled Read file format

End Labeled Read (ELR) files are defined in two parts: a header that builds an index of reference chromosomes
(#C) and read sources (#S), and a 7-column body with the following contents:

1. Chromosome index [int]
2. Alignment start position [int]
3. Alignment length (including gaps) [int]
4. Strand {+, -, .}
5. ELCIGAR string describing alignment labels and gaps [str]
6. Source of read [int]
7. Weight of reads matching this description (start—cov—end) [float]—[float]—[float]

ELCIGAR strings describe the position and labels of all aligned segments of a read, patterned off of the
BAM/SAM format CIGAR strings but with additional End Label information. They are strings of Charac-
ter/Number pairs with one trailing character ([CN]xC), where C is a label and N is a numeric distance on the
genome. Each label annotates the end of the associated span as one of the following:

S Start Tag (RNA 5′ end)
C Cap Tag (5′ end with untemplated G)
E End Tag (RNA 3′ end)
D Splice junction donor
A Splice junction acceptor
. Unspecified gap/end

For example, the ELCIGAR for a 50bp paired-end read of a 185nt cDNA fragment with no introns or end
labels would be ”.50.85.50.”. A full-length transcript with the ELCIGAR ”S256D800A128D800A512E” has 3
exons of 256, 128, and 512nt, respectively, and 2 introns that are both 800nt.

Short indels and mismatches are not recorded in ELCIGAR strings, but the number of alignment errors within
each exonic region (between adjacent SD, CD, AD, and AE pairs) is tallied. If this tally exceeds --error rate

as a proportion of the number of aligned bases in that exon, then it is removed from the ELCIGAR and the
surrounding exons are bridged with an unspecified gap (.. pair). This setting prevents the use of splice junctions
from especially error-prone alignments, which can be common in some long-read sequencing protocols.

During assembly, the ”weight” column will be used to determine read coverage depth for exonic frags and
for end positions. It can either be a single float value (coverage), or a set of 3 floats separated by pipe symbols,
indicating start tags—coverage—end tags. These values will only differ if the ELR feature is the product of
assembly. If a Start Tag, Cap Tag, or End Tag is lowercase (s, c, e), bookend assemble will treat these ends
as having a weight of 1 instead of the read weight. This can be beneficial for partial assembly (discussed in the
next section) of sparsely-labeled samples.

4

3.3 Condense: Partial assembly

usage: bookend condense [options] INPUT

Positional arguments:

INPUT (required) Input single sorted ELR file

Other arguments: Default Description

--starts False Sample is a Start Tag (5′-capture) file,

e.g. CAGE

--ends False Sample is an End Tag (5′-capture) file,

e.g. 3P-Seq

--sparse False Sample is sparsely end-labeled, e.g.

Smart-seq

-o|--output [file] [INPUT].cond.elr Path to write output ELR file

--max gap [int] 50 Largest tolerable gap size between reads

--end cluster [int] 50 Merge End Tags within this distance into

one cluster

--min overhang [int] 3 Smallest exonic overhang to keep

--min cov [float] 1 Discard partial transcripts below this

coverage depth

--min len [int] 20 Discard partial transcripts shorter than

this

--min intron len [int] 50 Discard introns below this size

--min proportion

[0-1]

0.01 Signal threshold: discard ends, junctions,

frags, or isoforms below this percentage

--intron filter [0-1] 0.15 Coverage filter used for retained introns

--cap bonus [float] 5 Multiply the weight of Cap Tags by this

value

--cap filter [0-1] 0.1 Require downstream start sites to contain

at least this proportion of Cap Tags

This function is a special case of end-guided assembly, in which assemblies are not penalized or filtered out
if they are not end-to-end complete. This ”partial assembly” is specifically designed for single-cell RNA-seq
datasets, so that the reads from each cell can be condensed for efficient meta-assembly.

Partial assembly takes a single ELR file input and writes a single ELR file. By default all reads are reported
with minimal filtering. All loci with multiple overlapping reads are assembled using the standard end-guided
assembly algorithms, but no penalty is applied for incomplete starts/ends. These output files can then be used as
input to bookend assemble. Assembling first on the single-cell level guarantees that exon chains from each cell
remain coherent during the full-scale assembly. End-capture libraries can be condensed in a way that exclusively
retains end clusters and their abundance using the argument --start or --end. For sparsely labeled samples, like
short reads from full-length sequencing protocols, coverage depth of the condensed read will not be representative
of of the Start Tag and End Tag abundance, so the --sparse argument writes end labels as lowercase to drop
their priority during assembly.

5

3.4 Assemble: End-guided assembly/meta-assembly

usage: bookend assemble [options] INPUT

Positional arguments:

INPUT[...] (required) Input one or more sorted ELR files

Other arguments: Default Description

-o|--output [file] bookend assembly.gtf Path to write assembled output

--max gap [int] 50 Largest tolerable gap size between

reads

--cov out [file] None Destination for a TSV of estimated

coverage by source

--end cluster [int] 50 Merge End Tags within this distance

into one cluster

--max gap [int] 50 Largest gap to tolerate with no

coverage

--end cluster 200 Largest distance between end-labeled

reads to count in the same cluster

--min overhang [int] 3 Smallest exonic overhang to keep

--min cov [float] 2 Discard partial transcripts below this

coverage depth

--allow incomplete False Keep assemblies that are gapped or

missing ends

--min unstranded cov

[float]

20 If --allow incomplete, coverage

required for assemblies with no strand

--min start [float] 1 Minimum read number in a 5′ cluster

--min end [float] 1 Minimum read number in a 3′ cluster

--min len [int] 50 Discard partial transcripts shorter

than this

--min intron len [int] 50 Discard introns below this size

--min proportion [0-1] 0.01 Signal threshold: discard ends,

junctions, frags, or isoforms below

this percentage

--intron filter [0-1] 0.15 Coverage filter used for retained

introns

--cap bonus [float] 5 Multiply the weight of Cap Tags by

this value

--cap filter [0-1] 0.02 Require downstream start sites to

contain at least this proportion of

Cap Tags

--require cap False Require all start sites to pass

--cap filter

--ignore labels False Assemble without using any end label

information

--use sources False Maximize read source coherence during

assembly

This is the main Bookend subcommand. From one or more sorted ELR files, bookend assemble packages
reads into loci, then resolves each locus via end-guided assembly. The algorithms are more fully described as
pseudocode in the manuscript appendix ”Assembly Algorithms”.

Assembly begins by reading through the input file(s) and packaging reads into discrete chunks. If a gap
between adjacent aligned reads larger than --max gap exists, the current chunk of reads is processed and a new
one is started. The argument --min proportion is used as a global ”noise filter” and sets the threshold below
which rare features should be filtered out. After filtering low-abundance splice junctions within the chunk, it can
be further split into subchunks if gaps appear that were previously passed over by a filtered splice junction.

In addition to the global noise filter, the user has control over a number of other filters that can be modified to
either retain or remove lower-confidence assemblies. --min cov, --min start, and --min end set the threshold
of evidence required for a transcript’s estimated abundance, Start Tags, and End Tags, respectively. Limits
can also be imposed on the structure of the transcript with --min len to exclude very short transcripts and

6

--min intron len to ignore very short introns.

The user can also determine the characteristics of Start Tag and End Tag clustering. Both Transcription
Start Sites (TSS) and Polyadenylation Sites (PAS) can occur in broad clusters, sometimes spanning hundreds
of bases on the genome. The End Clustering algorithm treats Start Tags on the same strand within a distance
--end cluster to belong to the same Start Cluster, and the same is done for End Tags. Additionally, the weight
of Cap Tags (Start Tags with an upstream untemplated G) is multiplied by --cap bonus. To further minimize
the chance of false positive TSS from RNA cleavage or degradation, a --cap filter is enforced for Start Clusters
not at the extreme ends of a locus. Finally, passing the argument --require cap excludes even terminal Start
Clusters if they do not pass the --cap filter.

Finally, Bookend can source information in the edge weights of its Overlap Graph, which reduces the chances
of producing chimeric transcripts with making an assembly from multiple samples. The estimate coverage of
each source in each sample can be written to a TSV file if the filepath is provided to --cov out. In some cases
it may be beneficial to ignore source, like in a hybrid assembly that uses reads from multiple library types (in
the manuscript this is demonstrated with short-read + long-read + 5′-end libraries). By default assembly is
”source-naive”; --use source may improve assembly, but it can be very resource intensive if there are many
input samples. If more than 50 samples are being combined, use bookend condense on each sample beforehand,
then assemble the set of condensed assemblies.

7

3.5 Classify: Comparison of two annotation files

usage: bookend classify [options] -r REFERENCE -i INPUT

Required arguments:

-r [file] (required) GTF/GFF3/BED12 file of reference

annotations

-i [file] (required) Input GTF/GFF3/BED12 file of query

annotations

Other arguments: Default Description

-o|--output [file] classify.tsv Path to write output TSV file

--end buffer [int] 100 Distance between ends to consider a match

--ref parent [list] mRNA transcript Line type(s) signifying a parent object

--ref child [list] exon Line type(s) signifying a child object

--parent attr gene [str] gene id (GTF/GFF) Attribute that stores gene id

in parent objects

--child attr gene [str] gene id (GTF/GFF) Attribute that stores gene id

in child objects (exons)

--parent attr transcript

[list]

transcript id (GTF/GFF) Attribute(s) storing

transcript id in parent objects

--child attr transcript

[list]

transcript id (GTF/GFF) Attribute(s) storing

transcript id in child objects (exons)

--bed gene delim [str] . String that splits gene name from isoform

number

This utility compares two annotation files; one acts as a ”reference”, and the other acts as ”input”. For each
transcript model in the input annotation, the reference annotation is queried for the closest structural match. A
hierarchy of classifications is used to define each input transcript:

full match Exact exon chain, starts and ends closer than --end buffer

exon match Exact exon chain, but ends do not match
fusion Shares exons with 2 or more reference genes
fragment Contained in a reference transcript, missing exon(s)
isoform Closest match has incompatible exon chain
intronic Fully contained in a reference intron (sense)
antisense Only overlaps a reference transcript on antisense strand
ambiguous Nonstranded transcript overlaps a reference transcript
intergenic No reference overlap

The output file is a 13-column TSV file with the following information:

assembly id Input transcript name
classification Class of the reference match
ref match Transcript ID of the reference match
ref gene Gene ID of the reference match
assembly len Total length (nucleotides) of input transcript’s exons
ref len Exonic length (nucleotides) of reference match
overlap len Exonic length of overlap between input and reference match
diff5p Distance (nucleotides) between input Start and reference Start
diff3p Distance (nucleotides) between input End and reference End
cov Weight per base of input transcript
S.reads Total weight of Start Tags in the input’s Start Cluster
S.capped Total weight of Cap Tags in the input’s Start Cluster
E.reads Total weight of End Tags in the input’s End Cluster

8

3.6 Bedgraph: Generate coverage tracks of ELR files

usage: bookend bedgraph [options] INPUT

Positional arguments:

INPUT[...] (required) Input one or more ELR files

Other arguments: Default Description

-o|--output [file] bookend.bedgraph Path to write output BEDGRAPH file

-t|--type

{COV,5P,3P,S,E,C}
COV Type of feature to sum in bedgraph

-s|--strand {.,+,-} . Output strand; default . (both strands)

This utility compares takes one or more ELR files as input and generates a bedgraph file that summarizes
read abundance by genomic position. By default, the entire aligned length of all reads will be ”piled up”. It can
be more informative to examine only the 5′ end of start-labeled reads or the 3′ end of end-labeled reads. with the
--type argument, you can choose to quantify only the 5′- or 3′-terminal positions of starts and ends, respectively.
-t E and -t 3P are identical; however, -t 5P counts all start-labeled reads regardless of the presence/absence
of a cap, whereas -t C only counts caps and -t S only counts start tags without caps.

When counting ends, the behavior of --strand . changes. If no strand is specified for -t COV, it is assumed
that read coverage is not strand-specific, and all reads will be piled up as positive values. However, if counting
start tags or end tags, --strand . will add forward-stranded tags as positive values and reverse-stranded tags
as negative values. This is a more compact representation than a separate bedgraph file for each strand, but
caution! In the even of tags occupying the same genomic position on opposite strands, they will cancel each
other out.

3.7 Fasta: Generate transcript FASTA files for an annotation

usage: bookend fasta [options] --genome [file] INPUT

Positional arguments:

INPUT (required) One feature file [GTF/GFF3/BED/ELR]

Required arguments:

--genome [file] (required) FASTA file of reference genome

Other arguments: Default Description

-o|--output [file] bookend.fasta Path to write output FASTA file

--allow unstranded False Write unstranded transcripts to FASTA

file (forward strand)

bookend fasta converts an annotation from a set of genomic coordinates (stored as a GTF, GFF3, BED12,
or ELR file) to a set of transcript sequences in FASTA format. Introns are removed and the reverse complement
is written for reverse-stranded features.

9

3.8 Other Utilities

3.8.1 bed-to-elr

usage: bookend bed-to-elr [options] INPUT -o OUTPUT

Positional arguments:

INPUT (required) Input BED file

-o [file] (required) Output ELR file

Other arguments: Default Description

--header [file] None Optional separate filepath to write the ELR

header

--source [str] None Source name of the BED file

-j False BED entries are splice junctions

-s False All BED entry 5′ ends have Start Tags

-c False All BED entry 5′ ends have Cap Tags

-e False All BED entry 3′ ends have End Tags

bookend bed-to-elr can be used to convert any BED (5-column or 12-column) to an ELR file. The argu-
ments -s, -c, -e can specify that the BED file describes 5′ and/or 3′ features. This allows bookend assemble

to utilize existing TSS/PAS resources for assembly, like the FANTOM CAGE datasets.

3.8.2 elr-combine

usage: bookend elr-combine [options] INPUTS -o OUTPUT

Positional arguments:

INPUT [...] (required) A list of input sorted ELR files

-o [file] (required) Output combined ELR file

Other arguments: Default Description

--temp [str] combinetmp Prefix for temporary files

Combine more than one ELR file into a single position-sorted file with a uniform header. If the number of
input files exceeds your open file resource limits, the files will be sent to a set of temp files with the --temp prefix,
then these temp files will be combined.

3.8.3 elr-sort

usage: bookend elr-sort [options] INPUT

Positional arguments:

INPUT (required) Input ELR file

Other arguments: Default Description

-o|--output [file] stdout Path to write sorted ELR file

-f|--force False Force overwrite of output file if it exists

Sorts an ELR file to guarantee that it is properly formatted for assembly.

3.8.4 elr-subset

usage: bookend elr-subset [options] INPUT

Positional arguments:

INPUT (required) Input BAM/SAM file; must be name-sorted

-r|--region [str] (required) [chrom:start-end] Region to write to output

Other arguments: Default Description

-o|--output [file] stdout Path to write output ELR file

-f|--force False Force overwrite of output file if it exists

Write a smaller ELR that only contains reads overlapping the specified genomic range.

10

3.8.5 elr-to-bed

usage: bookend elr-to-bed [options] INPUT -o OUTPUT

Positional arguments:

INPUT (required) Input ELR file

-o [file] (required) Output BED file

Other arguments: Default Description

--header [file] None Optional separate filepath to write the ELR

header

Converts an ELR file to a BED12 file. 3 extra columns are appended to the end of the file (BED12+3) to
record the read weight, source, and ELCIGAR, in that order.

3.8.6 gtf-to-bed

usage: bookend gtf-to-bed [options] INPUT

Positional arguments:

INPUT (required) Input BAM/SAM file; must be name-sorted

Other arguments: Default Description

-o|--output [file] stdout Path to write output BED12 file

-f|--force False Force overwrite of output file if it

exists

--name [str] transcript id GTF attribute to pass to the BED name

column

--score [str] None GTF attribute to pass to the BED score

column

--gtf parent [list] transcript Line type(s) in GTF file that define a

Parent object

--gtf child [list] exon Line type(s) in GTF file that define a

Child object

--gff parent [list] mRNA transcript Line type(s) in GFF3 file that define a

Parent object

--gff child [list] exon Line type(s) in GFF3 file that define a

Child object

--child attr gene [str] gene id (GTF/GFF) Attribute that stores gene id

in child objects (exons)

--parent attr transcript

[list]

transcript id (GTF/GFF) Attribute(s) storing

transcript id in parent objects

--child attr transcript

[list]

transcript id (GTF/GFF) Attribute(s) storing

transcript id in child objects (exons)

--color code [file] None Tab-separated file of transcript types

-> R,G,B colors

--color key [str] None GTF/GFF3 attribute name to lookup

transcript type

Converts a GTF/GFF3 file to BED12. This can be used, for example, to convert an annotation file into
a format that can be used in assembly. It is also recommended to convert GTF or GFF3 annotations for
bookend classify, since these file formats can have inconsistent formatting that results in improper parsing of
the transcript models.

11

3.8.7 gtf-ends

usage: bookend gtf-ends [options] INPUT

Positional arguments:

INPUT (required) Input position-sorted GTF/GFF3/BED file

Other arguments: Default Description

--extend [int] 0 Extend each feature a fixed distance up

and down from the peak position

-t|--type {all,S,E} all Write end type: Starts (S), Ends (E),

or both.

-o|--output [file] stdout Path to write output BED file

-f|--force False Force overwrite of output file if it

exists

--name [str] transcript id GTF attribute to pass to the BED name

column

--score [str] None GTF attribute to pass to the BED score

column

--gtf parent [list] transcript Line type(s) in GTF file that define a

Parent object

--gtf child [list] exon Line type(s) in GTF file that define a

Child object

--gff parent [list] mRNA transcript Line type(s) in GFF3 file that define a

Parent object

--gff child [list] exon Line type(s) in GFF3 file that define a

Child object

--child attr gene [str] gene id (GTF/GFF) Attribute that stores gene id

in child objects (exons)

--parent attr transcript

[list]

transcript id (GTF/GFF) Attribute(s) storing

transcript id in parent objects

--child attr transcript

[list]

transcript id (GTF/GFF) Attribute(s) storing

transcript id in child objects (exons)

Iterates over every locus with one or more features, and reports the unique set of 5′ and/or 3′ ends in a BED
file. Features that share the same end (or up to --extend distance away) are collapsed into a single end cluster,
and the name of each feature belonging to an end cluster is saved as a comma-separated list in the end cluster’s
name column. The name is additionally give a 2-letter prefix: S/E for start or end, and P/M for alignment to the
plus or minus strand. For example, if a Bookend assembly is sorted into a reference annotation, an end cluster
name might look like:

”SP:Reference.01110.1,bookend.46.1,bookend.46.2”

This end cluster was a plus-stranded Start site that belonged to one reference transcript (named Reference.0110.1)
and two bookend assemblies (bookend.46.1 and bookend.46.2).

12

3.8.8 sam-to-sj

usage: bookend elr [options] INPUT

Positional arguments:

INPUT (required) Input BAM/SAM file; must be name-sorted

-F|--fasta (required) Genome FASTA file

Other arguments: Default Description

--format star,bed star Output file format

--filter False Remove noncanonical splice junctions from

the output

From an aligned SAM/BAM file, writes an SJ.out.tab file containing all splice junctions. Output can be
either in the STAR format or standard BED format. The provided genome FASTA file is used to identify and
filter out noncanonical splice junctions.

3.8.9 sj-merge

usage: bookend elr [options] INPUT

Positional arguments:

INPUT [...] (required) Multiple input SJ.out.tab files

Other arguments: Default Description

-o|--output [file] sj merge.out.tab Filepath to write merged file

--format star, bed star Output file format

--min unique [int] 0 Filter SJs with fewer unique reads

--min reps [int] 1 Filter SJs detected in fewer than this many

files

--new False Keep only SJs not present in the reference

SJDB

For STAR SJ.out.tab files. Combine multiple SJ files into one, and apply optional filters. This utility can
be used to create a high-confidence SJDB file from first-pass-aligned reads to improve sensitivity of novel splice
junctions during second-pass alignment.

3.8.10 sj-to-bed

usage: bookend elr [options] INPUT

Positional arguments:

INPUT (required) Input SJ.out.tab file

Other arguments: Default Description

-o|--output [file] SJ.bed Path to write output BED file

Some aligners may ask for an SJDB file in BED format, like minimap2. This utility converts the STAR
SJ.out.tab format to a standard 5-column BED file.

13

	Overview
	The Bookend Workflow
	Bookend subcommands
	Label: Trim and label End Tags from FASTQ files.
	ELR: Convert aligned BAM to End-Labeled Read files.
	The End Labeled Read file format

	Condense: Partial assembly
	Assemble: End-guided assembly/meta-assembly
	Classify: Comparison of two annotation files
	Bedgraph: Generate coverage tracks of ELR files
	Fasta: Generate transcript FASTA files for an annotation
	Other Utilities
	bed-to-elr
	elr-combine
	elr-sort
	elr-subset
	elr-to-bed
	gtf-to-bed
	gtf-ends
	sam-to-sj
	sj-merge
	sj-to-bed

