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Figure S1. Putative UPS drivers are contextually related to other pathways. Related to
Figure 2.

(A) Venn diagram displaying the overlap of significantly mutated genes in Martinez-Jimenez
et al. with this study.

(B) Number of genes overlapping with prior studies statistically implicating driver genes.

(C) Our current study has higher performance (F1 score) than Martinez-Jimenez et al., as
benchmarked against agreement with all prior studies. The F1 score is a metric that
balances the contribution of sensitivity and precision.

(D) Bar graph displaying the Gene Set Enrichment Analysis (GSEA) of the 63 UPS driver
genes.

(E) Putative driver genes implicated in the UPS pathway are expressed at the RNA-level
[Transcript Per Million (TPM) > 5] in a greater number of normal tissues in GTEx than
compared to “passenger genes” in the UPS pathway (p=0.005, Mann-Whitney U test) or
all other genes (p=2.2e-10, Mann-Whitney U test). The boxplots represent the
distribution of the number of expressed tissues across multiple genes. Boxplot whiskers
represent the quartile +/- 1.5 times the interquartile range.

(F) Conversely, putative driver genes implicated in the UPS pathway have more variability in
cell line essentiality (CERES scores) according to CRISPR screens from ~500 cell lines
in DepMap (UPS passenger: p=3e-08; non-UPS genes: p=1.2e-13; Mann-Whitney U
test), suggesting cell type specificity.

(G) We examined all UPS driver genes with tissue restricted expression, as defined by being
expressed (>5 TPM) in less than half of tissues from the Gene-Tissue Expression
(GTEXx) consortium. Only five genes met this definition of restricted tissue expression
(HECW2, NHLRC1, ZBTB3, BRCA1, and RNF43). Left, distribution of gene essentiality
scores from DepMap (https://depmap.org/portal/). CERES scores are negative when a
gene is essential for cell viability and positive when gene knockout provides a selective
advantage. Right, variability of essentiality scores from DepMAP across cell lines for all
driver genes identified in this study. Red ticks mark genes with tissue restricted
expression.

(H) Co-mutational analysis of UPS driver genes with previously identified driver genes from
the TCGA PancanAtlas consortium. A red line indicates significant co-occurrence, while
a blue line indicates significant mutual exclusivity (Mantel-Haenzel test, q<0.25, adjusted

for mutation burden).



(I) Heatmap displaying the association (t statistic) of mutations in driver genes KEAP1,
STK11 and/or KRAS with 5 immune-related biomarkers (lymphocyte infiltration, TGFB,
IFNG response, macrophage regulation and wound healing) for lung adenocarcinoma.
Asterisk indicates association is significant (q<0.1). See the “Correlation with immune-
related gene expression signatures” section in STAR methods for details. Columns with
a gene symbol marked as “Mut” indicates tumors had a mutation in that gene, while
those marked as “WT” (wildtype) indicate the absence of a mutation. KEAP1 showed an
association with immune-related biomarkers that was independent of STK11 co-
mutation.

(J) Boxplot of the betweenness centrality metric in a protein-protein interaction network
(BioGrid) of genes that were either found to be UPS driver genes, UPS passenger
genes, or all other genes. In this case, betweenness centrality measures how often a
protein is situated on shortest paths within a PPI network (see STAR methods for further
details). UPS driver genes had a significantly higher betweenness centrality than
compared to UPS passenger genes (p=2e-11, Mann-Whitney U test) and all other genes
(p=1e-26). Boxplot shows quartiles with whiskers representing the quartile +/- 1.5 times
the interquartile range.

(K) Plot of the false discovery rate from the 20/20+ method of the recently identified
deubiquitinating enzyme ZUFSP across all available cancer types and pan-cancer
analysis (“PANCAN?”, aggregate of all cancer types together). ZUFSP did not meet the
stringent requirements for statistical significance (q<0.05) in any of the analyses.

(L) Heatmap displaying the association between deubiquitinating enzyme (DUB) gene
expression and overall patient survival (Cox PH regression) for various cancer types in
the TCGA (x-axis). The significance for the combined model of 11 DUB gene expression
is shown in the top bar plot (q<0.05). *=p<0.05, **p<0.01, ***p<0.001.
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Figure S2. Detailed examples of degrons enriched for mutations. Related to Figure 3.
Lollipop diagram of TCGA mutations in: CTNNB1 for uterine and endometrial carcinoma (A),
NFE2L2 for lung squamous cell carcinoma (B), and EPAS1 for Pheochromocytoma and
Paraganglioma (C). The color of circles distinguishes the type of mutation, while colored
rectangles are annotations of the protein. Numbered text indicates the position along the protein
sequence. (D) Inferred up-regulated transcription factors (RABIT analysis) based on CTNNB1
mutant versus wildtype differential expression. (E) Inferred up-regulated transcription factors
(RABIT analysis) based on APC mutant versus wildtype differential expression. (F) Gene set
enrichment analysis of the differential gene expression profile of CTNNB1 degron mutant versus
wildtype tumors shows strong enrichment for the WNT signaling pathway hallmark from
MSigDB. (G) Heatmap displaying the association (t-statistic) of degron mutations with inferred

immune-related biomarkers based on gene expression using a Wald test (Methods). *=q<0.1.
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Figure S3. Overview of deepDegron. Related to Figure 4.
(A) Diagram of the Global Protein Stability (GPS) assay to measure protein stability.
(B) Neural network architecture of deepDegron to predict the instability conferred by
peptides in the Global Protein Stability (GPS) assay.
(C) Performance evaluation procedure for deepDegron. Area under Receiver Operating
Characteristic curve = auROC.
(D-E) Gene set enrichment analysis of the degron potential score for C-terminal and N-

terminal peptides, respectively, from the human proteome.
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Figure S4. Comparison of degron motifs found by deepDegron to those previously
reported. Related to Figure 4.

Venn diagram comparing (A) C-terminal and (B) N-terminal degron motifs identified by
deepDegron to those found by Koren et al. and Timms et al., respectively. (C) Comparison of
overall amino acid usage in identified motifs. (D) Distribution of delta degron potential for
mutations observed in our TCGA mutation dataset. (E) Pearson correlation coefficients for all
saturation mutagenesis experiments of C-terminal peptides in Koren et al. Blue lines indicate
95% bootstrapped confidence intervals (1,000 iterations). (F) Pearson correlations for all
saturation mutagenesis experiments of N-terminal peptides in Timms et al. (G) Remaining GPS
stability measurements of C-terminal (top) or N-terminal (bottom) peptides derived from the
indicated genes, comparing wild-type (gray histograms) and double mutant (red histograms)
sequences. Mutated residues are indicated in red font. X-axis is proportional to GFP / DsRed

signal as measured by flow cytometry (see STAR methods); Y-axis is normalized cell count.
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Figure S5. Detailed examination of genes whose truncating mutations are predicted to
result in C-terminal degron loss. Related to Figure 5.

(A) Scatter plot showing the results of the mutational enrichment for N-end degron loss
across all analyses (33 cancer types and pan-cancer). P-value resolution is limited to
0.0001.

(B) Essentiality of genes based on CRISPR screens of cells found in DepMap (lower
CERES scores indicate a gene is more essential). Results are stratified by the mutation
status of the gene (blue=putative driver mutation, orange=wildtype). GATAS essentiality
is shown for breast cancer cell lines and is compared to BRAF (an oncogene), FBXW?7
(dominant-negative tumor suppressor), RB1 (tumor suppressor gene) and TTN (a highly
mutated, common false positive gene in DNA sequencing studies). GATA3 showed a
similar pattern of essentiality as BRAF. Boxplot shows quartiles with whiskers
representing the quartile +/- 1.5 times the interquartile range.

(C) GPS stability measurements of the wild-type GATA3 C-terminal peptide (gray) versus
the double mutant peptide (red).

(D) Protein expression of wildtype and mutant GATA3 with or without proteasome inhibitor
treatment (MG132, 50 uM, 8 hours) in MDA-MB-231 cells, a triple-negative breast
cancer cell line.

(E) RNA expression of GATA3 in MDA-MB-231 cells by qPCR. Error bars represent
standard error.

(F) Protein expression of wildtype compared to mutant GATA3 in HEK293FT cells. F=FLAG
tag.

(G) Protein expression of wildtype and mutant GATA3 with or without proteasome inhibitor
treatment (MG132, 50 uM, 8 hours) in HEK293FT cells.

(H) RNA expression of GATA3 in HEK293FT cells by gPCR. Error bars represent standard
error.

() Heatmap displaying normalized read coverage of peaks identified by GATA3-flag ChIP-
seq.

(J) Heatmap displaying normalized read coverage of peaks identified by GATA3-flag ChIP-
seq.

(K) Overlap of significantly up-regulated ChlP-seq peaks for GATA3 point mutants (p.A442M
or p.G444E) with a FLAG-tag.

(L) Average read coverage profile for GATA3-flag ChlP-seq peaks (per million reads).



(M) Distribution of expression for genes nearby up-regulated peaks of mutant GATA3-flag,
stratified by tumor subtype. Boxplot shows quartiles with whiskers representing the
quartile +/- 1.5 times the interquartile range.

(N) Lollipop diagram of TCGA mutations in PPM1D (top) and St. Jude pediatric cancer
mutations (bottom). The color of circles distinguishes the type of mutation, while colored
rectangles are annotations of the protein. Numbered text indicates the position along the
protein sequence.

(O) gRNA depletion from DepMap CRISPR screens for PPM1D stratified by TP53 mutation
status. Driver missense mutations were defined by CHASMplus (q<0.01) and LOF (loss-
of-function) consists of frameshift indels, nonsense, splice site and lost start mutations.
Mann-Whitney U test was used. Boxplot shows quartiles with whiskers representing the
quartile +/- 1.5 times the interquartile range.

(P) GPS stability measurements of the wild-type PPM1D C-terminal peptide (gray) versus
the double mutant peptide (red).



<

) [=] 1 Q 0 o 0 o
~ 5 2] @ N I3 - -

suopeoosse jueoyiubls #

.
.
o e,

T T T T T T
© < o o © ©0 ~

(anjea-d)g L Bol-

THA
LPINIEL
€4dNZ
dOds
€1n0
LOYTHN
CMOIH
[3-f02-1c ]
90419
sn4
Laxigl
cdiedvdl
diAo
E€P4INA
gdan
LLLdNA
LMXad
Ldv3aM
L
arino
ldva

effect size

o | ©
© —
P
=)
([
[SR=]
=
2 |l=
~ 9V o
=
N =g
© O
2 RY
S o
c o 9
e gloe®
UGB« [o &
2 ¢€ =2 [
<2 =
2z7| 8
S
Maa |A%
Ige ° s
QU w
2 X
omm
I ] s
o
L2
o
T T T T T T
(=) @ © < N o
— o o o [=] o
93eJ aAIsod anu
= L™~
= S
w
&
2 L ©
° P =]
e 7}
$ (a3
s [o8
S 0
2 |Y«
y S e
o I Q
g [m2
c SR
g
s o
9 IS
"
—
- o - o m < e

I ) I
(2402s uonduny) Aesse TyoYd



Figure S6. UPS-substrate inference by Reverse Phase Protein Arrays (RPPA) reveals few
putative substrates. Related to Figure 6.

(A) Volcano plot showing the results of the correlation of UPS mutation status with protein
abundance for all analyses. Effect size is the regression coefficient in the association.

(B) Number of significantly associated proteins (q<0.1) for each UPS gene across all cancer
types.

(C) The small number of associated UPS genes is unlikely to be explained by labeling of
driver mutated tumor samples. Predictions from CHASMplus are strongly negatively
correlated with the function of BRCA1, an E3 ubiquitin ligase, from a prior saturation
mutagenesis study.

(D) Performance of CHASMplus at distinguishing pathogenic from benign variants of BRCA1

from ClinVar.
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Figure S7. Quality control for UPS-TF substrate inference. Related to Figure 6 and Table 1.
(A) Proof-of-principle that a known transcription factor (NFE2L2) can be retrieved as the top

hit when analyzing its own degron-containing mutations (left, PDB: 2FLU). A differential
expression profile was generated based on comparing NFE2L2 mutant vs wildtype
samples in lung squamous cell carcinoma (middle) after adjusting for covariates. Right,
bar graph of the statistical significance (negative log-transformed p-values) of
transcription factors identified as explaining the differential expression profile by RABIT.
RABIT leverages thousands of uniformly processed ChlP-seq profiles to identify which
genes are likely to be regulated by a transcription factor based on their binding location
profiles.

(B) A Venn diagram displaying the greater extent of genes analyzed as potential UPS
substrates in this study compared to Martinez-Jimenez et al., which did not analyze
transcription factors.

(C) The distribution of ChIP-seq quality control metrics for transcription factors implicated
with UPS genes are identical to those that were not associated. FastQC=median read
quality scores from FastQC, FRiP=fraction of reads in peaks,
PeaksUnionDHSRatio=proportion of peaks that overlap with open chromatin,
UniquelyMappedRatio=proportion of reads that are uniquely mapped,
Log2(PeaksFoldChange10)=log-transform of the number of peaks with at least 10 fold
enrichment above background, and PBC=pcr bottleneck coefficient.

(D) Outlier analysis of the results reported by RABIT. RABIT selects a minimum set of
transcription factors (based on corresponding ChlP-seq profiles) to explain a differential
expression profile. Robust-covariance estimation analysis showed that several
transcription factors were outliers in terms of the median p-value and the number of
times they appeared in the RABIT results.

(E) Heatmap displaying ChIP-seq quality control (QC) metrics for the two biggest outliers:
SCML2 and ZNF274.

(F) Statistical comparison of the distribution of QC metrics for SCML2 and ZNF274 showed
substantially worse quality. Boxplot shows quartiles with whiskers representing the
quartile +/- 1.5 times the interquartile range.

(G) Association of NRF2 protein abundance (encoded by the NFE2L2 gene) with overall
patient survival (Kaplan-Meier curves) has an interaction effect with a cytotoxic t
lymphocyte (CTL) signature. Statistical significance assessed by Wald test of Cox

Proportional Hazard model (Methods).



