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Appendices

Appendix 1: The Two-Locus Ancestral Process with Population Continuity and Ancient Sampling

We first begin with a model of constant population size and where we sample one haplotype from the present and one haplotype
at time ta ago (in coalescent units). The population is assumed to be constant in size with population scaled recombination rate
ρ = 4Ner. Since we have two-samples from different time-points, we have two phases of the process: (1) where only the modern
lineage can evolve at two loci (0 ≤ t < ta) and when both haplotypes are available to coalesce and recombine with one another
(t ≥ ta). The states and possible transitions (with their corresponding rates) are shown in Figure A1.
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Figure A1 Markov chain model for the ancestral process at two loci from Simonsen and Churchill (1997). In all settings for two mod-
ern haplotypes we assume that we start from the state in the middle (state “0”) in all applications, which means that all sampled
haplotypes are coupled. The parameter η represents the coalescent rate and the parameter ρ represents the recombination rate (mea-
sured in coalescent units). Figure adapted from Hobolth and Jensen (2014).
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Figure A2 Description of variables in the two-locus case. H is the total tree height, T is the coalescent time of the ancient and mod-
ern lineage, and ta is the sampling time of the ancient lineage (in coalescent units). Here subscripts A, B denote the two loci sepa-
rated by scaled recombination distance ρ.

Before calculating joint moments of the genealogical properties across two loci, we calculate marginal moments at individual loci:
(1) E[T], the time to coalesce between the two sequences after both are able to coalesce, (2) E[H], the height of the genealogy at a
single locus, and (3) E[L], the expected total branch length at a single locus. All of these quantities are scaled by twice the population
size (2Ne), which we refer to as the “coalescent scale” (see Figure A2 for a schematic of these marginal quantities). The variable
T ∼ Exponential(1) when both haplotypes are sampled from the same population. These marginal quantities can then be obtained
in the model with time-stratified sampling as:

E[T] = Var[T] = 1,

for the expectation and variance of T,
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E[H] = E[T + ta]

= 1 + ta,

Var[H] = Var[T + ta] = 1,

for the expectation and variance of H, and

L = 2H − ta

E[L] = E[2H − ta]

= 2 + ta,

Var[L] = Var[2H − ta]

= 4Var[H] = 4,

for the expectation and variance of L. Following the definition of these marginal moments, we calculate the covariance in the branch
lengths at each locus, Cov(LA, LB), as:

Cov(LA, LB) = E[LALB]− E[LA]E[LB]

E[LALB] = E[(2HA − ta)(2HB − ta)]

= E
[
4HA HB − 2ta HA − 2ta HB + t2

a

]
= 4E[HA HB]− 4taE[HA] + t2

a

= 4(E[TATB] + 2ta + t2
a)− 4ta(1 + ta) + t2

a .

These derivations show that we can compute Cov(LA, LB) under the time-staggered sampling model by computing E[TATB].
We approach this using a “staggered” version of the Simonsen-Churchill Model as described in the main text (Simonsen and

Churchill 1997; Hobolth and Jensen 2014) (Figure A1). In the phase where t < ta, with a single modern haplotype, we consider this
as a two-state continuous-time Markov process with the rate matrix:

Q =

− ρ
2

ρ
2

1 −1

 ,

which we use to solve for the probability that the ancestral process is in state x at time ta as:

Pta (x = (1, 1, 1)) =
(

eQta
)

0,1

=
ρ(1 − e−ta(

ρ
2 +1))

ρ + 2

Pta (x = (2, 0, 0)) = 1 − Pta (x = (1, 1, 1)),

where the state x = (2, 0, 0) represents 2 lineages that are ancestral to both locus A and locus B and the state x = (1, 1, 1) represents
1 lineage ancestral to both locus A and B, one lineage ancestral to locus A, and one lineage ancestral to locus B (Hobolth and Jensen
2014; Simonsen and Churchill 1997). This corresponds to our “uncoupled state” in the main text. The two states in the Markov
process with a single present haplotype can only be “coupled" ((2, 0, 0)) or “uncoupled" ((1, 1, 1)).

Returning to our computation of E[TATB] in the second phase of the ancestral process (t > ta), we obtain:

E(2,0,0)[TATB] =
ρ2 + 14ρ + 36
ρ2 + 13ρ + 18

,

E(1,1,1)[TATB] =
ρ2 + 13ρ + 24
ρ2 + 13ρ + 18

,

E[TATB] = Pta (x = (2, 0, 0))E(2,0,0)[TATB]

+ Pta (x = (1, 1, 1))E(1,1,1)[TATB]

=

(
1 − ρ(1 − e−t( ρ

2 +1))

ρ + 2

)
ρ2 + 14ρ + 36
ρ2 + 13ρ + 18

+
ρ(1 − e−t( ρ

2 +1))

ρ + 2
ρ2 + 13ρ + 24
ρ2 + 13ρ + 18

,

(8)

where Ex indicates the expectation conditional on starting in state x of the ancestral process. The first two expressions above are de-
rived in Durrett 2008, Chapter 3, where both haplotypes are sampled at present. The last expression is a weighting of the expectations
from different starting states in the two-locus ancestral process, where the weight corresponds to the probabilities that the modern
haplotype is uncoupled at the time the ancient haplotype is sampled, ta. From this we can compute the covariance in the branch
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length, Cov(LA, LB) and Corr(LA, LB): by substituting the Equation 8 into the relevant expressions previously defined, leading to the
expression:

Corr(LA, LB) =
Cov(LA, LB)√

Var(LA)Var(LB)

= E[TATB]− 1,
(9)

which simplifies to Equation 4 in the main text. The lower and upper limits of ta are 0 and ∞, and we show the asymptotic behavior
of Corr(LA, LB) in terms of ρ:

2
ρ + 2

< P(x = (2, 0, 0)) ≤ 1, ∀ta ∈ [0, ∞)

Corr(LA, LB) = E[TATB]− 1

Corr(LA, LB)|ta → 0 =
ρ2 + 14ρ + 36
ρ2 + 13ρ + 18

− 1

=
ρ + 18

ρ2 + 13ρ + 18

Corr(LA, LB)|ta → ∞ =
2

ρ + 2
ρ2 + 14ρ + 36
ρ2 + 13ρ + 18

+
ρ

ρ + 2
ρ2 + 13ρ + 24
ρ2 + 13ρ + 18

− 1

=
8ρ + 36

ρ3 + 15ρ2 + 44ρ + 36
.

This derivation highlights the change in the rate of decay in the correlation of the branch length as a function of the sampling time
from O(ρ−1) to O(ρ−2).

To relate the correlation in total branch length to the correlation in the number of pairwise differences between two sequences,
we use the following identities for the case where mutations occur as a Poisson process with rate θ/2 along branches, where θ is the
population-scaled mutation rate (θ = 4Neµ) (Hobolth et al. 2019):

πA|LA ∼ Pois
(

θ

2
LA

)
,

πB|LB ∼ Pois
(

θ

2
LB

)
,

E[πA] = E[πB] = E[E[πA|LA]] =
θ

2
E[LA],

Var(πA) = E[Var(πA|LA)] + Var(E[πA|LA]),

=
θ

2
E[LA] +

(
θ

2

)2
Var(LA)

E[πAπB] = E[E[πAπB|LALB]] =
θ2

4
E[LALB],

Cov(πA, πB) = E[πAπB]− E[πA]E[πB] =
θ2

4
Cov(LA, LB),

Corr(πA, πB) =
Cov(πA, πB)√

Var(πA)Var(πB)
,

=
θ2

4 Cov(LA, LB)√(
θ
2 E[LA] +

θ2

4 Var(LA)
)2

=
Cov(LA, LB)

2
θ E[LA] + Var(LA)

=
1

1 + 2+ta
2θ

(E[TATB]− 1),

leading to a relationship with the correlation in the branch length at each locus, Corr(LA, LB):

Corr(πA, πB) =
1

1 + 2+ta
2θ

Corr(LA, LB), (10)

which is Equation 4 in the main text.
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The Two-Locus Ancestral Process with population divergence and time-stratified sampling
In this section, we assume a model with divergence between the populations containing the ancient lineage and the modern

lineage at the coalescent scaled time, tdiv. We can partition the ancestral process into three phases: (1) when the modern lineage is
the only one evolving, (2) when the ancient lineage and the modern lineage are both evolving but are not able to coalescent with one
another and (3) when both lineages are in the ancestral population and can coalesce with each other. These three phases can be seen
Figure A3.

ta

T

tdivH

Figure A3 Description of variables in the single-locus case. H is the total tree height, T is the coalescent time of the ancient and mod-
ern lineage, and ta is the sampling time of the ancient lineage (in coalescent units)

The model with population divergence has an additional parameter, tdiv, the divergence time of the two populations. We first
show the properties of the marginal tree under the divergence model (see Figure A3, for a definition of the quantities):

E[T] = Var[T] = 1,

E[H] = E[T + ta + tdiv]

= 1 + ta + tdiv,

Var[H] = Var[T + ta + tdiv]

= 1,

E[L] = E[2H − ta]

= 2E[H]− ta

= 2(1 + ta + tdiv)− ta

= 2 + ta + 2tdiv,

Var[L] = Var[2H − ta]

= 4Var[H] = 4,

where tdiv is the population divergence times in coalescent units, ta is the sampling time of the ancient lineage, T is the exponentially
distributed time after both lineages are able to coalesce that they coalesce with one another. Using these results, we can calculate
moments of the joint distribution of genealogical properties like the tree height (H), and total branch length (L). Specifically, the
two-locus ancestral process behaves independently within each population for time ta and tdiv and each population is assumed to
have the same population size. We begin by deriving the joint expectation of tree-height HA HB:

E[HA HB] = E[(TA + ta + tdiv)(TB + ta + tdiv)]

= E[TATB] + 2tdiv + 2ta + (ta + tdiv)
2,

and joint tree length LALB:

E[LALB] = E[(2HA − ta)(2HB − ta)]

= 4E[HA HB]− 4ta + t2
a ,

where we must solve for the joint expectation of E[TATB], but with the additional complication of population divergence. In order
to do this we must calculate the probability of being in one of three starting states at time ta + tdiv: (1) the state x = (2, 0, 0) where
both the ancient and modern haplotypes are “coupled”, (2) the state x = (0, 2, 2) where both the ancient and modern haplotype are
“uncoupled”, which is possible due to the independent evolution of both lineages during ta < t < ta + tdiv, and (3) state x = (1, 1, 1)
where one haplotype is uncoupled while the other is coupled. We consider the two independent processes within each population
until the divergence time and calculate the probabilities of being in each starting state as follows:
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P(x = (2, 0, 0)|ta, tdiv) = P(x1 = (1, 0, 0)|ta + tdiv)P(x2 = (1, 0, 0)|tdiv)

=
ρe−(ta+tdiv)(ρ/2+1) + 2

ρ + 2
ρe−tdiv(ρ/2+1) + 2

ρ + 2
,

P(x = (0, 2, 2)|ta, tdiv) = P(x1 = (0, 1, 1)|ta + tdiv)P(x2 = (0, 1, 1)|tdiv)

=
ρ(1 − e−(ta+tdiv)(ρ/2+1))

ρ + 2
ρ(1 − e−tdiv(ρ/2+1))

ρ + 2
,

and
P(x = (1, 1, 1)|ta, tdiv) = P(x1 = (1, 0, 0)|ta + tdiv)P(x2 = (0, 1, 1)|tdiv)

+ P(x1 = (0, 1, 1)|ta + tdiv)P(x2 = (1, 0, 0)|tdiv)

=

(
ρe−(ta+tdiv)(ρ/2+1) + 2

ρ + 2
ρ(1 − e−tdiv(ρ/2+1))

ρ + 2

)

+

(
ρ(1 − e−(ta+tdiv)(ρ/2+1))

ρ + 2
ρe−tdiv(ρ/2+1) + 2

ρ + 2

)
.

From these probabilities we calculate the expectation of the joint coalescent times conditional on being in a specified state at time
ta + tdiv is obtained as:

E[TATB] = ∑
x∈{(1,1,1),(2,0,0),(0,2,2)}

P(x = x|ta, tdiv)Ex[TATB],

where each of Ex[TATB] are defined using previously derived results under the two-locus ancestral process conditional on being
in a starting state x (Simonsen and Churchill 1997; Durrett 2008, Chapter 3). This is different from the model under population
continuity (where the x = (0, 2, 2) state was not possible). If we set tdiv = 0, then this corresponds exactly to the model without
population divergence. While the underlying mathematical results are more involved, they provide insights on how population
divergence affects joint coalescent times.

We can now compute joint statistics (e.g. correlation) of the tree properties at each of the loci following common formulas, for
example for the correlation in total branch length at each locus:

Corr(LA, LB) = E[TATB]− 1.

Expectations of joint coalescent times under the time-stratified model
We assume that the following results on the joint coalescent times for two contemporary haplotypes starting in the same state in

the two-locus ancestral process as defined in Durrett 2008, Chapter 3 are known:

E0[TATB|x = (2, 0, 0)] =
ρ2 + 14ρ + 36
ρ2 + 13ρ + 18

E0[TATB|x = (1, 1, 1)] =
ρ2 + 13ρ + 24
ρ2 + 13ρ + 18

E0[TATB|x = (0, 2, 2)] =
ρ2 + 13ρ + 22
ρ2 + 13ρ + 18

,

and now we will go through the individual cases for the time-stratified case: (1) both modern and ancient haplotypes start coupled,
(2) both modern and ancient haplotypes are “uncoupled” and finally (3) where only one of the modern and ancient haplotypes are
coupled (the other is uncoupled).

We first define two quantities, called γ and η. The variable γ refers to the probability of starting in the coupled ((1, 0, 0)) state and
ending in the uncoupled state ((0, 1, 1)) at time ta for a single haplotype (which is Equation (3) in the main text). The variable η is the
converse, the probability of starting in the uncoupled state and ending in the coupled state at time ta. Using the matrix exponential
e−Qta of the following rate matrix for the process with a single haplotype:

Q =

− ρ
2

ρ
2

1 −1

 ,

we arrive at the following expressions for γ and η:

γ =
ρ(1 − e−ta(

ρ
2 +1))

ρ + 2
,

η =
2(1 − e−ta(

ρ
2 +1))

ρ + 2
.
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With these in hand we can start tackling our first case (1) from above:

Eta [TATB|xta = (1, 0, 0), x0 = (1, 0, 0)] = (1 − γ)E0[TATB|x = (2, 0, 0)]

+ γE0[TATB|x = (1, 1, 1)],
(11)

where, x0 = (1, 0, 0) indicates that the modern haplotype is coupled, and xta = (1, 0, 0) indicates that the ancient haplotype is
coupled as well. This holds because the modern haplotype can be coupled with probability 1 − γ leading to state x = (2, 0, 0) for
the joint ancestral process, or it can be uncoupled with probability γ resulting in state x = (1, 1, 1). For case (2) (both haplotypes
uncoupled) we obtain:

Eta [TATB|xta = (0, 1, 1), x0 = (0, 1, 1)] = (1 − η)E0[TATB|x = (0, 2, 2)]

+ ηE0[TATB|x = (1, 1, 1)].
(12)

The final case (3) is the most complicated and we break this into a further two sub-cases below:

Eta [TATB|xta = (1, 0, 0), x0 = (0, 1, 1)] = (1 − η)E0[TATB|x = (1, 1, 1)]

+ ηE0[TATB|x = (2, 0, 0)],

Eta [TATB|xta = (0, 1, 1), x0 = (1, 0, 0)] = (1 − γ)E0[TATB|x = (1, 1, 1)]

+ γE0[TATB|x = (0, 2, 2)],

(13)

where the first case corresponds to the modern haplotype starting in the “uncoupled” state (denoted by the x0 in the expectation)
and the second case corresponds to the modern haplotype starting in the “coupled” state.

Appendix 2: The expected product of linkage disequilibrium between time-stratified samples

t
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B

i j k

t A
i(0)j(t)

tBi(0)k(t)

Figure A4 Schematic describing properties of lineages re-
quired for estimation of E[tA

i(0) j(t) t
B
i(0)k(t) ] in the case with

time-stratification. Figure adapted from McVean (2002) for
our case of time-stratification.

Here, we derive the scaled product of linkage disequilibrium between time-stratified samples normalized by the heterozygosity
across both sites and time points. We first start from the definition of the statistic in terms of haplotype and allele frequencies in the
ancient and modern samples:

σ2
d =

E[D(0)D(t)]

E
[

p0
A(1 − p(t)A )p(0)B (1 − p(t)B )

]
=

E
[
(p(0)AB − p(0)A p(0)B )(p(t)AB − p(t)A p(t)B )

]
E
[

p(0)A (1 − p(t)A )p(0)B (1 − p(t)B )
] ,

(14)

where p(t)AB is the frequency of the haplotype with the derived alleles at both loci at time t, p(t)A is the frequency of the derived allele

at the first locus, and p(t)B is the frequency of the derived allele at the second locus. Using the approach of McVean (2002) we define
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this ratio using branch lengths in the genealogy relating modern and ancient samples, where a mutation would result in a observed
pattern of identity by state (Figure A4). We first expand the numerator as follows:

E[D(0)D(t)] = E[(p0
AB − p0

A p0
B)(pt

AB − pt
A pt

B)]

= E[p(0)AB p(t)AB]− E[p(0)AB p(t)A p(t)B ]− E[p(0)A p(0)B p(t)AB] + E[p(0)A p(0)B p(t)A p(t)B ],

≈
E[IA

i(0) j(t) IB
i(0) j(t) ]− E[IA

i(0) j(t) IB
i(0)k(t) ]− E[IA

i(0) j(t) IB
k(0) j(t) ] + E[IA

i(0) j(t) IB
k(0) l(t) ]

E[LALB]
,

where i, j, k, l denote sampled haplotypes. Furthermore, Ix
(i(0) j(t)) is the branch length leading from the Tmrca of the samples i(0) at time

0 and j(t) at time t to the Tmrca of the total population (including the ancient individuals) at locus x. E[LALB] is the joint expectation
of the total genealogical branch length for the complete population at both loci. The approximation in the final step above follows
from assuming a small mutation rate (McVean 2002). We use the definition IA

i(0) j(t) = TA − tA
i(0) j(t) , where TA is the Tmrca for the total

population (modern and ancient) at locus A and tA
i(0) j(t) is the pairwise coalescent time for samples i(0), j(t) at locus A. Using this

relationship between coalescent times and identity coefficients, we arrive at:

E[D(0)D(t)] = E[(TA − tA
i(0) j(t) )(TB − tB

i(0) j(t) )]− E[(TA − tA
i(0) j(t) )(TB − tB

i(0)k(t) )]

− E[(TA − tA
i(0) j(t)))(TB − tB

(k(0) j(t)))] + E[(TA − tA
i(0) j(t) )(TB − tB

k(0) l(t) )]

=
E[tA

i(0) j(t) t
B
i(0) j(t) ]− E[tA

i(0) j(t) t
B
i(0)k(t) ]− E[tA

i(0)k(t) t
B
i(0) j(t) ] + E[tA

i(0) j(t) t
B
k(0) l(t) ]

E[LALB]
,

where the product of pairwise coalescent times at one locus and the total Tmrca at the other locus (e.g. E[T1t2
(i(0) j(0))]) do not

depend on the indices i, j (Durrett 2008, Chapter 3). This means that the numerator of the expression above can be computed using
the expectations of pairwise coalescent times in the time-stratified model.

The denominator of our expression (E[p(0)A (1 − p(t)A )p(0)B (1 − p(t)B )]) is the probability of drawing two haplotypes at the first locus
that are at different time points and differ in their allelic identity, and drawing two haplotypes at the second locus from different
timepoints that also differ in their allelic identity. This is a measure of the time-stratified joint heterozygosity at both sites. We note
that this is different from the interpretation of E[p(1 − p)q(1 − q)] which is the probability of a difference at the first locus and a
difference at the second locus under a random draw from of a sample from a contemporary population and is the denominator of σ2

d
(McVean 2002). We define the denominator similarly using pairwise coalescent times as:

E[p(0)A (1 − p(t)A )p(0)B (1 − p(t)B )] ≈
E[tA

i(0) j(t) t
B
k(0) l(t))]

E[LALB]
,

where we see that joint total branch length term E[LALB] will cancel out when evaluating the ratio. We can now turn to actually
computing this expression using the joint expectations for coalescent times calculated in our time-stratified model (see Appendix 1
for the derivation of these joint coalescent times):

E[D(0)D(t)]

E[p(0)A (1 − p(t)A )p(0)B (1 − p(t)B )]
=

1
E[TATB|xta = (0, 1, 1), x0 = (0, 1, 1)]

[
E[TATB|xta = (1, 0, 0), x0 = (1, 0, 0)]

− E[TATB|xta = (0, 1, 1), x0 = (1, 0, 0)]

− E[TATB|xta = (1, 0, 0), x0 = (0, 1, 1)]

+ E[TATB|xta = (0, 1, 1), x0 = (0, 1, 1)]
]

,

which can be simplified to the following expression after substituting the proper expressions for the joint coalescent times derived
in Appendix 1:

(ρ + 2) (ρ + 10)

ρ3e
t(ρ+2)

2 + 15ρ2e
t(ρ+2)

2 + 48ρe
t(ρ+2)

2 + 48e
t(ρ+2)

2 − 4
,

which is the expression reported in the main text (Equation 7). Importantly, we find that when t = 0, the expression simplifies to
ρ+10

ρ2+13ρ+22 which is the expression for σ2
d in the case with two contemporary samples (McVean 2002).

Appendix 3: Expected-Time to First Coalescent for an Ancient Sample

Here we consider a single ancient haplotype sampled at a time ta in the past and how it coalesces into the ancestral lineages of a
reference panel of size K haplotypes sampled at the present. We define the random variable T∗ as the additional time of a coalescent
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event involving the ancient haplotype and a lineage ancestral to the modern reference panel after the time that the ancient haplotype
is sampled (ta). The expectation of this quantity can be written as:

Eta ,K [T∗] = E[E[T∗|AK(ta)]]

= E

E

AK(ta)+1

∑
j=2

P(Ij)
j

∑
i=AK(ta)+1

Ti

 |AK(ta)

 ,

where AK(ta) is the number of lineages ancestral to the modern reference panel at time ta, P(Ij) is the probability that the jth coales-
cent event involves the ancient lineage, and Ti is the ith inter-coalescent time.

Starting at time ta with nt lineages, we calculate the probability that the jth coalescent event involves the ancient lineage as:

P(Ij) =

(
1 −

(j−1
2 )

( j
2)

)
j+1

∏
k=An(ta)

(k−1
2 )

(k
2)

=
2
j

j+1

∏
k=An(ta)

(
1 − 2

k

)
.

In a constant population size model, we have E[Tj] =
2

j(j−1) . Using this fact, the expected time until the first coalescence involving
the ancient lineage (T∗) is:

E[T∗|AK(ta)] = E

AK(ta)+1

∑
j=2

P(Ij)
j

∑
i=AK(ta)+1

Ti


=

2

∑
j=AK(ta)+1

2
j

j+1

∏
k=AK(ta)+1

(
1 − 2

k

) j

∑
i=AK(ta)+1

2
i(i − 1)

 ,

and considering the summation over AK(ta), we arrive at our final expression:

Eta ,K [T∗] = E[E[T∗|AK(ta)]]

=
1

∑
a=K

P(AK(ta) = a)

 2

∑
j=a+1

[
2
j

j+1

∏
k=a+1

(
1 − 2

k

) j

∑
i=a+1

2
i(i − 1)

] .
(15)

The probability distribution P(AK(t) = a) involves a number of alternating sums and leads rapidly to numerical error as the
sample size gets large (see Equation 15 in Chen and Chen (2013)). To alleviate this issue, following Jewett and Rosenberg (2014) we
approximate P(AK(t) = a) as δ(AK(t) = E[AK(t)]). That is, rather than calculate the probability distribution of AK(t) across states
1...K, we will approximate it with its expectation E[AK(t)]. One approximation for E[AK(t)] is found in Griffiths (1984):

E[AK(t)] ≈
K

K + (1 − K)e−t .

Further approximations for this expectation exist and are explored in greater detail in Jewett and Rosenberg (2014). We chose
the above approximation largely for computational convenience as it does not involve any summation, has a simple form, and is
comparably accurate when compared to other approximations (Jewett and Rosenberg 2014).

The additional time to coalescence for the ancient sample (E[T∗]) is proportional to the number of recombination events that
can affect the genealogical closest haplotype to the ancient sample that is in the modern panel. For example, for a sample with
ta = 2 × 10−4 there is E[T∗] ≈ 2 × 10−3 and 2 × 10−4 with a panel size of K = 1000 and 10000 respectively (Figure S5). This guides
the intuition that for large panel sizes and recent sampling times, the time for the ancient haplotype to coalesce with the panel is
quite small, and therefore we expect the haplotype copying rate to be fairly small (leading to longer shared blocks). This is the key
intuition behind long-range phasing methods that take advantage of recent relatedness (e.g. Loh et al. 2016). For samples on the order
of ∼ 10−2 coalescent units, the relative ratio is 1.17 for E[T∗] with modern panel sizes of K = 1000 and K = 10000 (as opposed to 6.99
when ta = 10−4). This highlights a saturation effect of within-panel coalescence at deeper times, limiting the expected utility of large
modern panels for the setting with substantially ancient samples (Figure S5).
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Supplementary Figures
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Figure S1 Theoretical correlation in pairwise differences for samples under a model
with divergence. Divergence times tdiv are (A) 0, (B) 100, and (C) 1000 generations in
the past.
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Figure S2 Effect of demographic history on the correlation in the total branch length be-
tween two loci. For all simulations, the recombination rate was set to 10−4 per generation.
Simulated scenarios include: (A) constant population size, (B) inferred models of popula-
tion growth, and (C) models of instantaneous population growth.
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Figure S3 Effect of demographic history on the correlation in pairwise differences. Recombination
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Figure S6 (A) Map of samples < 1500 kilometers from hypothetical location of central Europe (see Methods) (B) Decrease in esti-
mated λ̂ as a function of sample age in generations when estimated from male X chromosomes using all male X chromosomes from
samples in the CEU population (n = 49) from Auton et al. (2015).
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Figure S7 The impact of panel size on the estimated haplotype copying jump rate. (A) Using all male CEU individuals (n=49),
(B) using all male individuals from the european (EUR) regional grouping (n=240), and (C) using all male individuals in the 1000
Genomes (n=1233). As the panel size increases, the estimated jump rate decreases in terms of the absolute scale, indicating longer
shared haplotypes due to closer relatedness. However, in all cases we still find that the jump rate decrease as a function of the sam-
ple age (p < 0.05; linear regression). For all simulations we use the same set of samples as shown in the main text (restricting to
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Figure S8 Schematic illustration of the impact of conditioning on the Tmrca with simulated data.
(A) In the case of no-conditioning, we simulate the time to first coalescence for an ancient sample
with a lineage ancestral to a member of a modern panel (K = 100) in a constant population size
scenario of Ne = 104. (B) To mimic the case of conditioning on the Tmrca, we simulate instanta-
neous growth at 400 generations from a population size of 104 to 106. In both simulations, ancient
haplotypes are sampled every 20 generations, are conducted using 5000 replicates and error bars
represent 2 standard deviations from the mean time to first coalescence.
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Figure S9 The effect of filtering by coverage on the estimated jump rate as a function of time. (A)
The original dataset restricted to European individuals. (B) The evaluation of the haplotype copy-
ing jump rate restricted to individuals with the top 25% of the empirical autosomal coverage distri-
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0 100 200 300 400
Age Generations

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Figure S10 Estimated haplotype-copying error rate as a func-
tion of sample age. There is a weak anti-correlation between
the estimated error rate and the sample age (r = −0.17, 95%
CI=[−0.27,−0.06]).
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Supplementary Data

Sample Identifiers Citation

RISE479.SG, RISE98.SG Allentoft et al. Population genomics
of Bronze Age Eurasia. Nature. 2015
Jun 11;522(7555):167-72.

CL94, SZ18, CL92, SZ22, SZ7, SZ23, CL93, CL38, SZ36.SG, SZ3.SG,
CL57, SZ5.SG, SZ2.SG, CL84, SZ16, SZ42, CL146, CL145, SZ27, CL121,
SZ43.SG, SZ4.SG, SZ15.SG, CL30, SZ11.SG, SZ13, CL63, CL23, SZ45.SG

Amorim et al. Understanding 6th-
century barbarian social organiza-
tion and migration through pale-
ogenomics. Nature Communications.
2018 Sep 11;9(1):3547.

R36.SG, R1286.SG, R53.SG, R68.SG, R1221.SG, R474.SG, R4.SG,
R1287.SG, R47.SG, R115.SG, R70.SG, R108.SG, R1224.SG, R44.SG,
R105.SG, R437.SG, R1219.SG, R59.SG, R969.SG, R111.SG, R31.SG,
R63.SG, R64.SG, R136.SG, R33.SG, R1283.SG, R58.SG, R1545.SG,
R132.SG, R107.SG, R15.SG, R61.SG, R55.SG, R7.SG, R30.SG, R130.SG,
R116.SG, R34.SG, R113.SG, R851.SG, R1547.SG, R835.SG, R1551.SG,
R104.SG, R52.SG, R1550.SG, R27.SG, R1548.SG, R970.SG, R1014.SG,
R123.SG, R11.SG, R32.SG, R117.SG, R128.SG, R1543.SG, R131.SG,
R1549.SG, R1220.SG, R850.SG, R1285.SG, R435.SG, R76.SG, R110.SG,
R9.SG, R6.SG, R118.SG

Antonio et al. Ancient Rome: A ge-
netic crossroads of Europe and the
Mediterranean. Science. 2019 Nov
8;366(6466):708-714.

I6757, I6753_all.SG, I6767_all.SG, I6760_all.SG, I6747_all.SG,
I6762_all.SG

Brace et al. Ancient genomes in-
dicate population replacement
in Early Neolithic Britain. Na-
ture Ecology and Evolution. 2019
May;3(5):765-771.

rath1.SG, rath3.SG, rath2.SG Cassidy et al. Neolithic and Bronze
Age migration to Ireland and es-
tablishment of the insular Atlantic
genome. Proceedings of the Na-
tional Academy of Sciences 2016 Jan
12;113(2):368-73.

N47.SG, N17.SG, N27.SG, N20.SG, N49.SG, N26.SG, N28.SG Fernandes et al. A genomic Ne-
olithic time transect of hunter-
farmer admixture in central
Poland.Scientific Reports. 2018 Oct
5;8(1):14879.

Villabruna Fu et al. The genetic history of
Ice Age Europe. Nature. 2016 Jun
9;534(7606):200-5.

KO1_published.SG, NE5.SG, NE7.SG, NE6.SG, BR2.SG, IR1.SG Gamba et al. Genome flux and sta-
sis in a five millennium transect of
European prehistory. Nature Com-
munications. 2014 Oct 21;5:5257. doi:
10.1038/ncomms6257.

OC.SG, M95.SG, M96.SG Gonzalez-Fortes et al. Pale-
ogenomic Evidence for Multi-
generational Mixing between Ne-
olithic Farmers and Mesolithic
Hunter-Gatherers in the Lower
Danube Basin. Current Biology. 2017
Jun 19;27(12):1801-1810.e10.

Bichon.SG Jones et al. Upper Palaeolithic
genomes reveal deep roots of mod-
ern Eurasians. Nature Communica-
tions. 2015 Nov 16;6:8912.
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I2793_published, I2753, I1904, I2367_published, I0449, I5838, I2369,
I3269, I2377, I1565, I2379, I1878_published, I2739_published,
I2366_published, I1877_all, I2384_published, I2783, I1880,
I3276_published, I2788, I2791_published, I0821_published,
I0659_published

Lipson et al. Parallel palaeogenomic
transects reveal complex genetic
history of early European farmers.
Nature. 2017 Nov 16;551(7680):368-
372.

3DT26.SG, 6DT23.SG, 6DT21.SG, 3DT16.SG, 6DT3.SG, 6DT22.SG,
6DT18.SG, NO3423.SG, I0099_published, I0114, I0012, I0172, I0104,
I0017, I0412, I0406, I0585, I1504, I1495, I1507, I1496, I1500

Martiniano et al. Genomic signals
of migration and continuity in
Britain before the Anglo-Saxons.
Nature Communications. 2016 Jan
19;7:10326.

I4882, I4089, I4870, I5070, I5240, I5204, I4916, I4331, I5207, I5235, I5402,
I4914_published, I5237, I5077, I4881_published, I4878, I1131, I4915,
I5078, I3947, I5232, I5411, I3948, I0676, I0634, I5236, I4880

Mathieson et al. The genomic his-
tory of southeastern Europe. Nature.
2018 Mar 8;555(7695):197-203.

POST_6, WEHR_1192SkA, OBKR_80, AITI_43, UNTA85_1343 Mittnik et al. Kinship-based social
inequality in Bronze Age Europe.
Science. 2019 Nov 8;366(6466):731-
734.

I7207, I6696, I6677, I7208, I7949, I7209 Narasimhan et al. The formation
of human populations in South
and Central Asia. Science. 2019 Sep
6;365(6457).

LaBrana1_published.SG Olalde et al. Derived immune and
ancestral pigmentation alleles in a
7,000-year-old Mesolithic European.
Nature. 2014 Mar 13;507(7491):225-8.

I2787, I7279, I7572, I7286, I6774, I7043, I6581, I1382, I7249, I2478, I2606,
I4304, I2660, I7287, I3875, I3135, I7042, I2452, I2445, I2860, I2932, I2630,
I2935, I2447, I5835, I2859, I4893, I5514, I4889, I2933, I4888, I4886, I3134,
I2978, I3132, I3133, I2979, I2618, I4887, I2977, I5748, I4884, I4895, I4891,
I2631, I5377, I4070, I2602, I4303, I7276, I5833, I5118, I2417, I2650, I2597,
I2635, I2365, I7289, I7282, I7269, I2786, I3256, I2364, I1767, I2567, I2741,
I4073, I5379, I7280, I4885, I4069, I2691, I7044, I5750, I6759, I5513, I6680,
I7272, I3041, I2655, I2457, I7275, I7554, I4074, I7640, I2637, I6531, I7212,
I7210, I7251, I5519, I1381, I7278

Olalde et al. The Beaker phe-
nomenon and the genomic transfor-
mation of northwest Europe. Nature.
2018 Mar 8;555(7695):190-196.

I7606, I8209, I11248, I12209, I7642, I3759, I8364, I7602, EHU002, I8569,
I7604, I8199, I3756, I1840, I10287_published, I3494, I8365, I0843, I11249,
I4565, I10895, I12410, I3983

Olalde et al. The genomic history
of the Iberian Peninsula over the
past 8000 years. Science. 2019 Mar
15;363(6432):1230-1234.

Loschbour_snpAD.DG Prüfer et al. A high-coverage Ne-
andertal genome from Vindija
Cave in Croatia. Science. 2017
Nov 3;358(6363):655-658. doi:
10.1126/science.aao1887.

prs009-ALL_DATA.SG, prs013-ALL_DATA.SG, ans017.SG, prs016-
ALL_DATA.SG, ans008.SG, ans014.SG

Sanchez-Quinto et al. Megalithic
tombs in western and northern Ne-
olithic Europe were linked to a kin-
dred society. Proceedings of the Na-
tional Academy of Sciences 2019 May
7;116(19):9469-9474.

I0156.SG, I0160.SG Schiffels et al. Iron Age and Anglo-
Saxon genomes from East England
reveal British migration history.
Nature Communications. 2016 Jan
19;7:10408.
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RISE1162.SG, RISE1241.SG, RISE1173.SG, RISE1168.SG, RISE1160.SG,
RISE1163.SG, RISE1169.SG, RISE1165.SG, RISE1171.SG

Schroeder et al. Unraveling ances-
try, kinship, and violence in a Late
Neolithic mass grave. Proceedings of
the National Academy of Sciences 2019
May 28;116(22):10705-10710.

Ajvide58.SG Skoglund et al. Genomic diversity
and admixture differs for Stone-Age
Scandinavian foragers and farmers.
Science. 2014 May 16;344(6185):747-
50.

Table S1 Sample identifier information and corresponding publication citation for ancient DNA samples used from Allen Ancient
DNA Resource.


