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Dear Dr Raj, 

 

First of all, I can't thank you enough for bearing with me. I am sorry this decision has taken so long. 

 

Your Article, "Atlas of genetic effects in human microglia transcriptome across brain regions, aging and 

disease pathologies" has now been seen by 3 referees. You will see from their comments below that 

while they find your work of interest, some important points are raised. We are interested in the 

possibility of publishing your study in Nature Genetics, but would like to consider your response to 

these concerns in the form of a revised manuscript before we make a final decision on publication. 

 

To guide the scope of the revisions, the editors discuss the referee reports in detail within the team, 

including with the chief editor, with a view to identifying key priorities that should be addressed in 

revision and sometimes overruling referee requests that are deemed beyond the scope of the current 

study. In this case, we considered all the reviewers comments to be reasonable and we would expect 

you to address all of them in full. Please do not hesitate to get in touch if you would like to discuss 

these issues further. 

 

We therefore invite you to revise your manuscript taking into account all reviewer and editor 

comments. Please highlight all changes in the manuscript text file. At this stage we will need you to 

upload a copy of the manuscript in MS Word .docx or similar editable format. 

 

We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 

us if there are specific requests from the reviewers that you believe are technically impossible or 

unlikely to yield a meaningful outcome. 
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When revising your manuscript: 

 

*1) Include a “Response to referees” document detailing, point-by-point, how you addressed each 

referee comment. If no action was taken to address a point, you must provide a compelling argument. 

This response will be sent back to the referees along with the revised manuscript. 

 

*2) If you have not done so already please begin to revise your manuscript so that it conforms to our 

Article format instructions, available 

<a href="http://www.nature.com/ng/authors/article_types/index.html">here</a>. 

Refer also to any guidelines provided in this letter. 

 

*3) Include a revised version of any required Reporting Summary: 

https://www.nature.com/documents/nr-reporting-summary.pdf 

It will be available to referees (and, potentially, statisticians) to aid in their evaluation if the 

manuscript goes back for peer review. 

A revised checklist is essential for re-review of the paper. 

 

Please be aware of our <a href="https://www.nature.com/nature-research/editorial-policies/image-

integrity">guidelines on digital image standards.</a> 

 

Please use the link below to submit your revised manuscript and related files: 

 

[REDACTED] 

<strong>Note:</strong> This URL links to your confidential home page and associated information 

about manuscripts you may have submitted, or that you are reviewing for us. If you wish to forward 

this email to co-authors, please delete the link to your homepage. 

 

We can be flexible with deadlines for the revision. But do let us know if you think that you'll need 

longer than 16 weeks to complete. 

 

Please do not hesitate to contact me if you have any questions or would like to discuss these revisions 

further. 

 

Nature Genetics is committed to improving transparency in authorship. As part of our efforts in this 

direction, we are now requesting that all authors identified as ‘corresponding author’ on published 

papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 

the Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific community 

achieve unambiguous attribution of all scholarly contributions. You can create and link your ORCID 

from the home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more 

information please visit please visit <a 

href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>. 

 

We look forward to seeing the revised manuscript and thank you for the opportunity to review your 

work. 

 

Sincerely, 

 

Safia Danovi 
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Editor 

Nature Genetics 

 

 

 

Referee expertise: 

 

Referee #1: sQTLs / brain 

 

Referee #2: microglia 

 

Referee #3: immune cell genetics 

 

 

Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Lopes et al. present one of the largest human microglia resources to date, featuring 255 primary 

microglia samples isolated from four different brain regions (medial frontal gyrus, superior temporal 

gyrus, thalamus, and subventricular zone) of 100 human subjects. The authors perform pairwise 

comparisons of differential gene expression between brain regions and discover subsets of genes with 

variable patterns of expression across brain regions. They also find that age-dependent effects on 

microglial gene expression are largely shared across brain regions. 

 

The authors proceeded to catalog cis-eQTLs and cis-sQTLs in microglia for different brain regions, 

focusing on a subset of 90 subjects who were of self-reported European ancestry. They found between 

67 and 199 eGenes (genes with cis-eQTL) per region and 253 to 426 sGenes (genes with a cis-sQTL) 

per region. Given the small sample size per region and the possibility of high donor-to-donor variation 

in microglia, the authors performed a meta-analysis of all four regions to increase their power in 

discovering eGenes and sGenes. In doing so, the authors found 3,611 eGenes and 4,614 sGenes in at 

least one brain region. Although a majority of the discovered eQTLs were shared across brain regions, 

the authors highlight a few region-specific eQTLs. 

 

Finally, the authors present colocalizations between their QTLs and GWAS variants associated with 

Alzheimer’s disease, Parkinson’s disease, schizophrenia, bipolar disorder, and multiple sclerosis. They 

proceeded to only focus on microglia eQTLs that colocalized with disease GWAS loci and assess if the 

associated SNPs overlapped microglia-specific regulatory regions. Using microglia chromatin-

interaction data, the authors find several examples of eQTLs (two of which were described in detail) 

where the lead SNP was located in a putative microglia-specific enhancer. 

 

The authors acknowledge that their analysis of the microglia transcriptome data had multiple 

limitations, all of which were described in the Discussion section. For example, their meta-analysis of 

QTLs from the four brain regions failed to account for shared donors (which may increase the false 

discovery rate). They also acknowledge that additional downstream experiments would be needed to 

validate the prioritized enhancers that they discussed in their two eQTL examples. Overall, the 

manuscript is well-written and easy to follow. Given the size of their microglia dataset, I would expect 

the paper to have many citations if published. However, the paper needs to be strengthened by 
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additional computational and experimental work, before it is suitable for publication in Nature 

Genetics. 

 

Major Comments: 

 

1. The authors demonstrate that microglia from different brain regions exhibit differential gene 

expression. If the authors investigated both expression and splicing QTLs in the paper, why didn’t the 

authors test for differential splicing in microglia between the brain regions? 

 

2. As related to point #1 above, the authors should also investigate the impact of aging on splicing in 

the microglial transcriptome. 

 

3. The description of the method used to test for cis-sQTLs was a bit hard to follow. It’s unclear if the 

effect sizes for SNPs from the linear regression model are accurately calculated if the model includes 

intron ratios from the same intron cluster as observations. This is because linear regression assumes 

independence of observations, whereas excision ratios for introns found in an intron cluster can be 

correlated (e.g. introns flanking a cassette exon exhibit correlated excision patterns). 

 

4. As related to point #3 above, it is somewhat surprising and counter-intuitive to see that the authors 

detected several times more sGenes than eGenes per region, as splicing analysis requires higher RNA-

seq depth and is typically underpowered in regular RNA-seq datasets. Could this be due to the method 

used for sQTL detection inflating the statistical significance? 

 

5. The authors report examples of two genes (USP6NL and P2RY12) carrying an eQTL where the 

candidate causal variant overlaps a putative microglia-specific enhancer. Do any of these variants 

disrupt motifs for known transcription factor binding sites? Given that these two genes are the only 

two concrete examples presented in this manuscript linking microglial eQTLs to neurological diseases, 

experiments to test the effects of candidate causal variants and putative microglia-specific enhancers 

are needed. 

 

6. The manuscript seems to largely focus on differential gene expression in microglia and microglia 

eQTLs (with two highlighted examples). I was a bit disappointed by the lack of discussion related to 

microglia splicing QTLs, given that the Abstract and Introduction sections seem to give equal 

importance to both eQTLs and sQTLs. It would be helpful if the authors can expand the splicing 

analysis (also see points #1 and #2 above), and discuss at least one interesting sQTL example. The 

authors’ comment in the Discussion section that long-read RNA-seq can improve the analysis and 

interpretation of sQTLs is valid, but this does not mean that they should not do a thorough splicing 

analysis on this dataset. 

 

7. Can the authors clarify if the p-values shown for eQTLs and sQTLs in figures (e.g. Fig. 4C, 4G; Fig. 

6B, 6E) are nominal or FDR-adjusted p-values? As related to this point, I don’t quite understand why 

the authors stated on line 239-240 that “eQTLs for CASS4 are highly significant in both MiGA and 

monocytes (MyND) but with opposite directions of effect”. The p-values in MiGA seem quite marginal 

according to Fig. 4G. 

 

8. For reproducibility purposes, codes used for the analysis in this paper should be made publicly 

available (e.g., GitHub). 
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9. Raw data for this work are being deposited to GEO/dbGAP. Since a major value of this work is the 

dataset as a resource, the data need to be made publicly available prior to publication. 

 

Minor Comments: 

 

1. I think there should be a comma after “aging” in the title. 

 

2. In affiliation 2, “Ronald M. Loeb Center for Alzheimer’s disease” needs to be changed to “Ronald M. 

Loeb Center for Alzheimer’s Disease” (upper case for ‘D’). 

 

3. On line 66, the sentence from the previous line ends on a comma, not a period. 

 

4. On Figure 1, is there a typo in the light purple box “Interaction with age-, and regional 

heterogeneity”? 

 

5. On Figure 2A, there is inconsistent spacing in “Ancestry -PC1”. 

 

6. On Figure 5F, there is inconsistent spacing in “PP4> 0.7”. 

 

7. In general, there is inconsistent italicization of gene names; the main text mostly has them 

italicized whereas the figures do not have them italicized. Along this note, there are instances where 

protein names are italicized (see line 323). 

 

8. Line 360 starts with an unintentional period. 

 

9. The sentence starting on line 440 is a run-on sentence. 

 

10. The sentence starting on line 447 is a sentence fragment. 

 

11. Fixed and random effects of the linear mixed model (DREAM) should be explicitly specified in the 

Methods section. Currently, the text in the Methods section just lists what features go into the model 

without explicitly specifying which is a fixed effect and which is a random effect. 

 

12. The supplementary figures could be exported with higher resolution (for example, Supplementary 

Figures 15 and 17 look very grainy upon zooming in). 

 

 

 

Reviewer #2: 

Remarks to the Author: 

In the manuscript “Atlas of genetic effects in human microglia transcriptome across brain regions, 

aging and disease pathologies” de Paiva Lopes et al describe genetic and transcriptome analysis of 

255 human microglia samples from 100 human donors. 

The paper addresses the important question to assess how genetic risk is related to microglia 

heterogeneity, function and CNS disease. 

Overall, it is well performed, elegant study, that addresses a pertinent question in the field. 

 

Below a series of comments/points that I have with the paper: 
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Major comments 

- Microglia were isolated using CD11b beads (line 88). This is relatively poor way to isolate microglia. 

Using this strategy also other immune cells might be obtained, such as (infiltrating) monocytes and 

the abundance of these may vary across brain regions and diseases. Furthermore, potential cell 

doublets will be collected, if a CD11B cell is still attached to a second cell. And dead cells will also be 

obtained. CD11B bead for microglia isolation is substandard. 

 

Additionally, for the microglia isolation enzymes were used at 37C. It is well known that this causes 

microglia activation, affected gene expression, and as such likely interferes with the results. 

 

- In fig 2E the overlap between grey and white matter microglia is compared with the findings in Van 

der Poel et al. This overlap is statistically significant, however the numbers indicated in the venn 

diagrams this overlap seems low. For example, in the “upregulated grey matter” venn only 13 out of 

385 genes from MiGA overlap with Van der Poel. I have the same comment on figure 3E. 

 

- The transcriptome data is used to compare different brain region’s and aging, but why not to identify 

disease-signatures? It would be interesting to see whether there are DEGs between the different 

diagnosis groups. 

 

- Line 574: why no logFC threshold? 

 

Minor comments 

- In line 69 the paper from Young et al is cited where 93 donors were studied. In the present 

manuscript 100 donors are studied. Why do the authors claim that they have a larger sample size? 

The difference is a not so dramatic 7 donors. 

 

- The figures are not mentioned in the right order in the text. E.g Fig 2E is described before fig 2C. 

 

- The effect of ageing on the microglia transcriptome is investigated and shares some features with AD 

genes. What was the amyloid-b load in these ageing brains? It is known that amyloid can induce a 

specific gene signature in microglia. The authors need to show neuropathological data of the analysed 

tissues. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

 

A:Summary of the key results 

 

Microglia form a myeloid derived immune cell subset of the central nervous system which has been 

implicated to play a sentinel role in neuronal health and disease. In particular, there is a large overlap 

between GWAS risk variants for neurodegenerative conditions, namely Alzheimer's and regulatory 

variants in non CNS myeloid subsets (namely monocytes). These data highlight the importance of 

further dissecting determinants of microglia activity - both genetic and otherwise. 

 

Pavia Lopes, Snijders, Humphrey and colleagues present a study exploring age, anatomical and 
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genetic determinants of microglia gene expression, with particular reference to neurodegenerative 

disease genetics. They do this by examining gene expression using bulk RNAseq of microglia across a 

cohort of 115 individuals, which after QC is reduced to 255 samples from 200 donors. Whilst the 

cohort is relatively small from a genetic perspective, it is to be appreciated that these samples are not 

easy to obtain - in terms of both the source and also the methods of extraction. 

 

The authors proceed to describe anatomical determinants of microglial expression (examining four 

brain regions thalamus/ subventricular zone/, medial frontal and superior temporal gyri), and then 

explore how these interact with age and also genetics. 

 

They define four major clusters of genes with divergent properties in terms of expression based on 

anatomy – the SVZ looks most dissimilar. They demonstrate that in general age regulates expression 

in a similar manner across regions, although they show a number of genes that are regulated by age 

divergently according to anatomical location. 

 

From a genetic perspective they describe both eQTL and splicing QTL, demonstrating enrichment of 

risk loci for neurodegenerative diseases specially in microglia for eQTL, whereas control datasets for 

bipolar and schizophrenia do not show such association. The observation of splicing effects was 

interesting, although perhaps the authors could move to demonstrate the proposed transcripts 

affected – in fact little was remarked on here. 

 

In general though, I thought the paper was well written and a valuable contribution to the literature. 

The authors make clear distinctions between the genetic effect on gene expression in monocytes and 

microglia – showing that whilst there is commonality across most loci, a number show microglia 

distinct effects and, crucially these are enriched in neurodegenerative disease risk loci. 

 

 

Minor points of concern/ areas to be expanded: 

1. The authors discuss 25 genes that are differentially regulated inMFG/STG but not THA/SVZ – is 

there commonality in these genes. Are they under shared control of a transcription factor that is in 

itself differentially regulated according to region? 

2. The directional effect of genetics on CASS4 expression in monocytes versus microglia is particularly 

interesting. Are the authors able to further elucidate the mechanism here at the genomic level? 

3. The references seem out of kilter – they refence Young et al - a preprint describing microglia eQTL 

across 93 samples – this is ref. 27 – but ref 27 is to Stevens et al (!?). I have not assiduously checked 

references, but suggest this is done. 

4. The figures seem somewhat out of order especially for figure 2 where [anels exist not in the order 

that they are cited in the text – this is confusing and should be corrected (2a, 2b, 2d, 2e, 2c, 2f, 2g). 

5. Line 66 page 1, a full stop is missing between (eQTL) and Investigations. 

6. Page 2 – the authors say they observed no differentially expressed genes between males and 

females – yet they use differentially expressed genes in sex checking as far as I can see – this should 

be modified/ expanded on. 

 

B: Originality and significance: if not novel, please include reference 

There is a preprint of a smaller cohort which the authors reference – this dataset to my mind is less 

thorough than that presented and it does not detract significantly from this work. 

 

C:Data & methodology: validity of approach, quality of data, quality of presentation 
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The figures were exceptionally clear (albeit slightly out of order). The text was easy to read. 

 

D:Appropriate use of statistics and treatment of uncertainties 

The authors have been robust throughout using the latest statistical approaches and pipelines. I have 

no major concerns here. 

 

E: Conclusions: robustness, validity, reliability 

The findings appear robust and the authors do not make any far-fetched statements. 

 

F:Suggested improvements: experiments, data for possible revision 

Limited – see minor comments. In general, this appears ready to publish. 

 

G:References: appropriate credit to previous work? 

I have not gone through every reference, but it would appear so. 

 

H: Clarity and context: lucidity of abstract/summary, appropriateness of abstract, introduction and 

conclusions 

No issue. 
 

Author Rebuttal to Initial comments   

 

Response letter 
 

NG-A56637: Atlas of genetic effects in human microglia transcriptome across brain 

regions, aging and disease pathologies 

 

Reviewers' Comments:  

 

Reviewer #1: 

Remarks to the Author: 

Lopes et al. present one of the largest human microglia resources to date, featuring 255 

primary microglia samples isolated from four different brain regions (medial frontal gyrus, 

superior temporal gyrus, thalamus, and subventricular zone) of 100 human subjects. The 

authors perform pairwise comparisons of differential gene expression between brain 

regions and discover subsets of genes with variable patterns of expression across brain 

regions. They also find that age-dependent effects on microglial gene expression are 

largely shared across brain regions.  

 

The authors proceeded to catalog cis-eQTLs and cis-sQTLs in microglia for different brain 

regions, focusing on a subset of 90 subjects who were of self-reported European ancestry. 

They found between 67 and 199 eGenes (genes with cis-eQTL) per region and 253 to 426 

sGenes (genes with a cis-sQTL) per region. Given the small sample size per region and the 
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possibility of high donor-to-donor variation in microglia, the authors performed a meta-

analysis of all four regions to increase their power in discovering eGenes and sGenes. In 

doing so, the authors found 3,611 eGenes and 4,614 sGenes in at least one brain region. 

Although a majority of the discovered eQTLs were shared across brain regions, the 

authors highlight a few region-specific eQTLs.  

 

Finally, the authors present colocalizations between their QTLs and GWAS variants 

associated with Alzheimer’s disease, Parkinson’s disease, schizophrenia, bipolar 

disorder, and multiple sclerosis. They proceeded to only focus on microglia eQTLs that 

colocalized with disease GWAS loci and assess if the associated SNPs overlapped 

microglia-specific regulatory regions. Using microglia chromatin-interaction data, the 

authors find several examples of eQTLs (two of which were described in detail) where the 

lead SNP was located in a putative microglia-specific enhancer.  

 

The authors acknowledge that their analysis of the microglia transcriptome data had 

multiple limitations, all of which were described in the Discussion section. For example, 

their meta-analysis of QTLs from the four brain regions failed to account for shared donors 

(which may increase the false discovery rate). They also acknowledge that additional 

downstream experiments would be needed to validate the prioritized enhancers that they 

discussed in their two eQTL examples. Overall, the manuscript is well-written and easy to 

follow. Given the size of their microglia dataset, I would expect the paper to have many 

citations if published. However, the paper needs to be strengthened by additional 

computational and experimental work, before it is suitable for publication in Nature 

Genetics. 

 

Thanks for your thorough assessments. 

 

Major Comments: 

 

1. The authors demonstrate that microglia from different brain regions exhibit differential 

gene expression. If the authors investigated both expression and splicing QTLs in the 

paper, why didn’t the authors test for differential splicing in microglia between the brain 

regions? 

 

We have now added analyses of differential transcript usage between microglial regions to the 

manuscript. We chose a transcript-based approach rather than the event based approach of 

Leafcutter due to the ease of biological interpretability. We identified 176 transcripts differentially 

used between regions and provide plots for an example gene RGS1, as well as ingenuity pathway 
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analysis of the gene set. The figures have been included in the supplement (Fig S8). We have 

also added methods and results for our analysis to the Methods and Results section. 

 

Method section: 

 

Differential Transcript Usage 

Transcript expression was estimated in each sample using RSEM with the GENCODE v30 

transcript reference. Lowly expressed transcripts were removed with the threshold transcript 

counts per million > 1 in at least 30% of all samples. This retained 49,694 transcripts from 10,818 

genes. Differential transcript usage was tested simultaneously between each region and with 

donor age using satuRn103, a fast method for computing differential transcript usage. No current 

differential transcript usage tool can model random effects so we were unable to account for 

shared donors, but otherwise the same technical covariates were used as in the differential 

expression modelling. Pairwise comparisons between each pair of regions were extracted using 

the limma::makeContrasts() function. To correct for test statistic inflation due to correlation across 

transcripts and donors, we employed a more stringent empirical FDR correction104, but used a 

more liberal FDR threshold of 0.1 to increase our discovery set of transcripts. Transcripts were 

considered differentially used between regions at a |log odds ratio| > 1 and an empirical FDR < 

0.1.  For aging, transcripts were filtered at an FDR < 0.1 but no effect size cutoffs were used.  

and 

 

In addition, we analyzed the canonical pathways associated with splicing in the regional 

differential transcript usage (DTU) gene set (n = 132) and aging DTU gene set (n = 150) at FDR 

< 0.01 in IPA. 

Results section: 

We examined changes in splicing between microglia regions using a differential transcript usage 

(DTU) framework. 176 transcripts in 132 genes had evidence of DTU (log odds ratio > 1; empirical 

FDR < 0.1), with the majority of transcripts coming from comparisons with the SVZ (Figure S8A). 

31 DTU genes were also differentially expressed between pairs of regions (OR = 5.47, P = 2.9 x 

10-12 ; Fisher exact test). RGS1 is an example of a gene with a shift in the ratio of the two most 

abundant isoforms in the SVZ compared to the other regions (Figure S8B). The regional DTU 

geneset includes genes that are involved in mitochondrial functions, glucocorticoid receptor 

signalling pathways, and host defense mechanism against infection (Figure S8C), pathways also 

observed in the regional expression analysis.  

2. As related to point #1 above, the authors should also investigate the impact of aging on 

splicing in the microglial transcriptome. 
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We have now performed differential transcript usage across aging. We identified 225 transcripts 

differentially used across aging and highlight P2RY12 as having a shift between a pair of long 

and short isoforms as microglia age. The figures have been included in the supplement (Fig S9) 

and we added the following sentences to the Results section: 

 

Similarly, we found 225 transcripts from 150 genes exhibiting DTU with age (FDR < 0.1) (Fig 

S9A), including P2RY12, where the balance between a long and short isoform shifts over age 

(Fig S9B). 36 of these DTU genes also showed an association with age at the gene expression 

level (OR = 3.47, P = 7 x 10-8, Fisher Exact test).  

 

and 

 

The genes associated with aging DTU were enriched in similar functions (Fig S9C).  

3. The description of the method used to test for cis-sQTLs was a bit hard to follow. It’s 

unclear if the effect sizes for SNPs from the linear regression model are accurately 

calculated if the model includes intron ratios from the same intron cluster as observations. 

This is because linear regression assumes independence of observations, whereas 

excision ratios for introns found in an intron cluster can be correlated (e.g. introns flanking 

a cassette exon exhibit correlated excision patterns). 

 

We apologise for not being clear on this point. Our pipeline for cis-sQTLs is taken directly from 

the Genotype Tissue Expression (GTEx) consortium (Auguet et al. 2020). Although overlapping 

introns are initially clustered together, the actual regression treats each intron as an independent 

phenotype. You are correct that there is redundancy in this approach and we are actively working 

on methods that account for this, for a future study. We added the following sentence to the 

Methods section: 

 

Although junctions were initially grouped together into clusters, we tested each SNP-junction pair 

separately, which is the standard approach113,117.  

4. As related to point #3 above, it is somewhat surprising and counter-intuitive to see that 

the authors detected several times more sGenes than eGenes per region, as splicing 

analysis requires higher RNA-seq depth and is typically underpowered in regular RNA-seq 

datasets. Could this be due to the method used for sQTL detection inflating the statistical 

significance?  

 

The reviewer is correct and we also expected a lower discovery rate for sQTLs. However several 

other factors are probably also involved. We deliberately set the cis-window size for sQTLs at 
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100kb around the center of each splicing cluster, whereas the eQTLs had a window of 1MB. This 

was partly due to biological considerations (majority of splicing QTLs are very close to splice sites) 

but also due to the practicality of working with smaller summary statistic files. This would have 

the effect of reducing multiple testing burden, which might account for the increased eGenes. The 

other potential mitigating factor is variability in our microglia, either biological or technical. We 

expected to see far more eGenes per region given our sample size. We note that the number of 

shared sGenes was similar to the number of shared eGenes in our MASHR analysis. 

 

5. The authors report examples of two genes (USP6NL and P2RY12) carrying an eQTL 

where the candidate causal variant overlaps a putative microglia-specific enhancer. Do 

any of these variants disrupt motifs for known transcription factor binding sites? Given 

that these two genes are the only two concrete examples presented in this manuscript 

linking microglial eQTLs to neurological diseases, experiments to test the effects of 

candidate causal variants and putative microglia-specific enhancers are needed.   

 

This is an important question. We ran a computational prediction tool, motifbreakR, to assess 

whether any of the fine-mapped or prioritized SNPs potentially disrupt transcription factor 

bindings. However, for both USP6NL and P2RY12, multiple SNPs were associated with multiple 

motifs (see Table S23), and the directionality of the disruption ran in both directions. We therefore 

felt it would be inappropriate to highlight one particular association and therefore added the 

following text to the Results section: 

 

USP6NL: 

Transcription factor binding motif analysis was inconclusive, with three of the tested SNPs 

rs143807787, rs74347557, and rs7912495 predicted to disrupt multiple motifs in different 

directions (Table S23). 

P2RY12: 

Effects on transcription factor binding were predicted for rs11707416, rs41366744, rs4680405, 

and rs62285879, again for multiple motifs (Table S23). 

And we included the following to the Method section: 

 

Predicting transcription factor binding motif disruption 

We used motifbreakR126, a package that computes the similarity of a genomic sequence to a 

range of transcription factor motifs, and calculates the potential disruption to each motif caused 

by a SNP with a score and P-value. We used as input 426 human transcription factor motifs from 

the HOCOMOCO database127 as provided by motifbreakR. We ran the package on all lead QTL, 

lead GWAS and fine-mapped SNPs found at the USP6NL locus (using the AD GWAS from 
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Jansen et al.) and the P2RY12 locus from the Nalls et al PD GWAS. Motifbreakr returns metrics 

for each tested motif on how much each allele of a SNP disrupts or enhances predicted binding. 

Each comparison then undergoes a background correction to compute p-values. Full results for 

both loci are in Table S23. 

We believe it is highly important to understand the mechanistic consequences of these enhancer 

variants but we feel that the level of experimental validation required (electrophoretic mobility shift 

assays or luciferase assays etc) is beyond the scope of the current work. 

6. The manuscript seems to largely focus on differential gene expression in microglia and 

microglia eQTLs (with two highlighted examples). I was a bit disappointed by the lack of 

discussion related to microglia splicing QTLs, given that the Abstract and Introduction 

sections seem to give equal importance to both eQTLs and sQTLs. It would be helpful if 

the authors can expand the splicing analysis (also see points #1 and #2 above), and 

discuss at least one interesting sQTL example. The authors’ comment in the Discussion 

section that long-read RNA-seq can improve the analysis and interpretation of sQTLs is 

valid, but this does not mean that they should not do a thorough splicing analysis on this 

dataset.  

 

This was a shortcoming on our part. We have now added an additional figure (Figure 7) showing 

two splicing QTLs which colocalize with Alzheimer’s disease risk loci. CD33 has been previously 

observed and characterised in myeloid cells (Raj et al. 2014 HMG) and we show that the same 

mechanism of exon 2 splicing is also in microglia. For our second locus, MS4A6A, we show a 

complex splicing pattern where introns from multiple transcripts are associated with the risk locus. 

We believe this example in particular is a motivating example for future long read RNA-seq 

experiments that we bring up in the discussion. 

 

New results included in the Results section: 

 

Splicing QTLs implicate complex isoform changes at particular GWAS loci 

We repeated our colocalization and fine-mapping analyses with sQTLs across the different 

diseases. Overall we found 81 splicing junctions in 31 genes with a colocalized sQTL at PP4 > 

0.7 with 26 GWAS loci (Table S20). We highlight two examples of sQTLs associated with 

Alzheimer’s Disease and identify key challenges ahead for the interpretation of such events. The 

CD33 risk locus has been implicated in AD susceptibility67. Previous analyses in peripheral 

monocytes found association between lead GWAS SNP rs3865444 and the inclusion of CD33 

exon 267. In MiGA, we also found a strong colocalization with an sQTL associating the same SNP 

rs3865444-A with reduced intron usage of intron 1, corresponding to reduced inclusion of exon 2 

(Figure 7A-E). Another example of sQTL is MS4A6A. The MS4A gene cluster is a gene-dense 
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region spanning 600kb, containing 12 genes. We observed colocalization with eQTLs and sQTLs 

in MS4A6A, as well as eQTLs in MS4A4A and MS4A4E (Figure 5F). In MiGA, we observed 

colocalization solely with sQTLs in MS4A6A (Figure 7F-J). We overlaid all associated sQTL 

junctions that colocalized with the AD risk locus and found that the strongest colocalization signals 

highlighted a cluster of introns in the middle of the gene, with the 5’ intron in the cluster having 

the strongest colocalization. Notably, 2 transcripts containing this intron have a premature 

polyadenylation site. rs2162254-A is associated with an increased usage of this intron, which may 

result in increased production of the shorter isoforms, which could have a downstream 

consequence of MS4A6A protein function. 

 

7. Can the authors clarify if the p-values shown for eQTLs and sQTLs in figures (e.g. Fig. 

4C, 4G; Fig. 6B, 6E) are nominal or FDR-adjusted p-values? As related to this point, I don’t 

quite understand why the authors stated on line 239-240 that “eQTLs for CASS4 are highly 

significant in both MiGA and monocytes (MyND) but with opposite directions of effect”. 

The p-values in MiGA seem quite marginal according to Fig. 4G. 

 

The p-values are nominal from the region by region QTL analysis. The figures 6B and 6E also 

shows the p-value (RE2 model) from the meta-analysis using METASOFT. We have clarified it in 

the legends of the respective figures, as follow:  

 

Fig. 4C: Examples of shared (CTSB gene, rs12338) and region-specific effect (RNF40, 

rs56039835). eQTL boxplots with residual gene expression (PEER adjusted) per individual 

stratified by genotype. The eQTL nominal P-value and effect size are listed on top. 

 

Fig. 4G: Example of discordant eQTL effects for CASS4 (rs6069736) between microglia and 

monocytes. The P-values are nominal from the region by region eQTL analysis.  

 

Fig. 6B: USP6NL expression is associated with the rs7912495 genotype in all four microglia 

regions. The nominal P-value from eQTL analysis is indicated on top of the boxplots by region. 

The beta and P-value from the meta-analysis are also indicated on top of the Figure. 

 

Fig. 6E: P2RY12 expression is associated with the rs3732765 genotype. The nominal P-value 

from eQTL analysis is indicated on top of the boxplots by region. The beta and P-value from the 

meta-analysis are also indicated on top of the Figure. 

 

About the eQTLs for CASS4, we removed the highly from the phrase as follow: 

 

eQTLs for CASS4 are significant in both MiGA and monocytes (MyND) but with opposite 

directions of effect.    
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8. For reproducibility purposes, codes used for the analysis in this paper should be made 

publicly available (e.g., GitHub).  

 

The code is publicly available at https://github.com/RajLabMSSM/MiGA_public_release. We also 

included the link in the text under the URLs subtitle.  

 

9. Raw data for this work are being deposited to GEO/dbGAP. Since a major value of this 

work is the dataset as a resource, the data need to be made publicly available prior to 

publication.  

 

Raw and processed RNA-seq and genotype data sets are deposited in the National Institute on 

Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS; Accession ID: ng00105). 

All raw data will be available for download via NIAGADS https://dss.niagads.org/. 

 

Minor Comments: 

 

10. I think there should be a comma after “aging” in the title. 

 

We added a comma after aging in the title.  

 

11. In affiliation 2, “Ronald M. Loeb Center for Alzheimer’s disease” needs to be changed 

to “Ronald M. Loeb Center for Alzheimer’s Disease” (upper case for ‘D’). 

 

We changed the typographical error.  

 

12. On line 66, the sentence from the previous line ends on a comma, not a period. 

 

We corrected this in the revision. 

 

13. On Figure 1, is there a typo in the light purple box “Interaction with age-, and regional 

heterogeneity”? 

 

We corrected the typo in Figure 1. 

 

14. On Figure 2A, there is inconsistent spacing in “Ancestry -PC1”. 

 

We adjusted the inconsistent spacing in Figure 2A. 
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15. On Figure 5F, there is inconsistent spacing in “PP4> 0.7”. 

 

We adjusted the inconsistent spacing on Figure 5F. 

 

16. In general, there is inconsistent italicization of gene names; the main text mostly has 

them italicized whereas the figures do not have them italicized. Along this note, there are 

instances where protein names are italicized (see line 323). 

 

We corrected this throughout the revised manuscript. 

 

17. Line 360 starts with an unintentional period. 

 

We removed the unintentional period in line 360. 

 

18. The sentence starting on line 440 is a run-on sentence. 

 

We rewrote the sentence as following: 

 

There are several methodological differences (recruitment of tissue, studied brain region, 

postmortem delay, pH, age, diagnosis, medication use) that could interfere with the interpretation 

of comparisons between MiGA and other microglial datasets45,15,5.  

 

19. The sentence starting on line 447 is a sentence fragment. 

 

We rewrote the sentence as following:  

 

although single-cell data is in general sparse and noisy, which may result in reduced power 

compared to bulk RNA-seq85. 

 

20. Fixed and random effects of the linear mixed model (DREAM) should be explicitly 

specified in the Methods section. Currently, the text in the Methods section just lists what 

features go into the model without explicitly specifying which is a fixed effect and which 

is a random effect.  

 

For all the Differential Expression Analysis, donor ID and cause of death covariates were modeled 

as random effects and the others covariates modeled as fixed effects. As described in the 

Variance Partition (R package with DREAM embedded) vignette, "the difference between 

modeling a categorical variable as a fixed versus random effect is minimal when the sample size 

is large compared to the number of categories (Hoffman, 2020)." So, variables like diagnosis or 
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sex will not be sensitive to modeling as a fixed or random effect. However, Donor ID must be 

modeled as a random effect in order to obtain statistically valid results, as we have considered in 

our model. The design for each Differential Expressed Analysis is described along with the code 

on the Github page.  

 

We have included the following text in the Methods section:  

 

For all the Differential Expression Analysis, donor ID and cause of death covariates were modeled 

as random effects and the others covariates modeled as fixed effects (see URL session for GitHub 

repository page with code). 

 

21. The supplementary figures could be exported with higher resolution (for example, 

Supplementary Figures 15 and 17 look very grainy upon zooming in). 

 

We have now updated the supplementary colocalization figures (Figures S16-25) with higher 

resolution versions. 

 

Reviewer #2: 

Remarks to the Author: 

In the manuscript “Atlas of genetic effects in human microglia transcriptome across brain 

regions, aging and disease pathologies” de Paiva Lopes et al describe genetic and 

transcriptome analysis of 255 human microglia samples from 100 human donors.  

The paper addresses the important question to assess how genetic risk is related to 

microglia heterogeneity, function and CNS disease. 

Overall, it is well performed, elegant study, that addresses a pertinent question in the field. 

 

Thank you for the remarks. 

 

Below a series of comments/points that I have with the paper: 

 

Major comments 

1. Microglia were isolated using CD11b beads (line 88). This is relatively poor way to isolate 

microglia. Using this strategy also other immune cells might be obtained, such as 

(infiltrating) monocytes and the abundance of these may vary across brain regions and 

diseases.  

 

We agree with the reviewer that different isolation methods challenge different strengths and 

weaknesses. We used the more gentle approach of CD11b+ MACS sorting to reduce 

phenotypical microglial changes that may occur after FACS sorting. However, the purity of the 
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cells is less with MACS sorting compared to FACS. To check for the purity of the microglial cells 

and the amount of contamination  with other (immune) cell types we applied several methods: 

 

1. In the manuscript, we checked the expression of several cell-type specific markers for 

astrocytes, neurons, oligodendrocytes in our RNA-seq data (see Figure S2C) and these 

markers were either not or lowly expressed. In addition, we checked the expression levels 

of two well-known monocyte markers (CCR, FCER1A) in the RNA seq data and added 

these findings to the heatmap in Figure S2C. We changed the Results section 

accordingly:  

All microglial samples expressed known microglia-specific genes at high levels, with 

marker genes for neurons, astrocytes, oligodendrocytes, and monocytes being lowly or 

not expressed (Figure S2C).  

2. We did additional single-cell mass cytometry by time of flight (CyTOF) in a subsample of 

our cohort and single-cell RNA seq to comprehensively characterize the phenotype of 

our CD11b+ isolated cells and to check the level of contamination. We analyzed the 

level of contamination across brain regions.  

 

CyTOF: 

We show in a subsample of our cohort (n = 92 samples derived from 30 donors) that the 

mean percentage of P2Y12+CD64+ expressing cells is 96%, ranging between 56.6% to 

99.9%. The P2Y12 receptor is a purinergic receptor that is exclusively expressed by 

microglial cells in the central nervous system. CD64 is a well-known marker for myeloid 

cells. The mean percentage of P2Y12-CD64+ cells was 3%, indicating low levels of 

infiltrating myeloid cells. This is in line with previous results by mass cytometry, showing 

that the percentage of (perivascular) macrophages (CD206high) was < 5% in P2Y12+ 

expressing microglial cells (Böttcher et al. 2019). In addition, we checked the percentage 

of (infiltrating) monocytes by measuring migration inhibitory factor related protein 14 

(MRP14+) cells in a subsample of the cohort (n = 57 samples derived from 17 donors). 

The percentage of MRP14+ was 0.37 % on average, suggesting very little infiltration of 

monocytes. We did not see any differences between brain regions as could be seen in 

Figure S2A and SB. The disease groups were underpowered to detect differences.  

 

We show these findings in Figure S2A and S2B and added these findings to the Methods 

section as follows: 

 

However, we have previously shown by mass cytometry that the percentage of 

macrophages (CD206high) was low31. In a subsample of our cohort we checked the 
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percentage of (infiltrating) monocytes by measuring migration inhibitory factor related 

protein 14 (MRP14+) cells (n = 56 samples derived from 19 donors).The percentage of 

(infiltrating) monocytes was 0.04 % on average. Moreover, we showed in a subsample (n 

= 91 samples derived from 30 donors) of our cohort that the mean percentage of microglia 

(P2Y12+CD64+) cells is 95%, ranging from 56.6% to 99.9%. The percentage of P2Y12-

CD64+ is 3.2%, suggesting low levels of infiltration of macrophages/monocytes (see 

Figure S2).   

 

Single-cell RNA sequencing 

 

We generated new single-cell data to reveal the level of contamination of other cell types. 

We isolated CD11b+ microglial cells of the medial frontal gyrus and hippocampus of one 

donor (diagnosis: Parkinson disease) and constructed scRNAseq barcoded libraries with 

10x genomics Chromium Single-Cell 3’. Around 94% of the CD11b+ isolated microglial 

cells express microglial specific markers, such as P2Y12 and TMEM119, 5% represent 

myeloid cells, the remaining part contains non-myeloid cells. We added these findings 

Figure S3.  

 

We explained the single-cell analyses in the Method section as follows: 

 

Single-cell sequencing  

 

To generate single-cell data we isolated CD11b+ microglial cells from the medial frontal 

gyrus and hippocampus of one additional donor (MG-22). We used the instructions of the 

Single-Cell 3’ Reagent Kits v2 (10 x Genomics) to construct scRNAseq barcoded libraries. 

In short, we loaded ~10.000 microglial cells from both regions separately into a slot of 

Chromium Chip. GEMs were incubated in a thermal cycler for the generation of barcoded 

cDNA. The cDNA was fragmented after amplification and processed for sequencing by 

ligating adapters and sample indices. The libraries were sequenced on an Illumina Hi-Seq 

system. The average sequencing depth was 2197.959 raw reads per cell, and the average 

was 1108.241 UMIs per cell. We analyzed 8589 cells for the two brain regions combined. 

Low-quality cells with >10% mitochondrial gene content were removed. Duplicate cells 

were filtered by removing cells with greater than 10000 transcripts. Genes not 

detected in at least 3 cells were removed. After rigorous quality control, we analyzed 

5990 single cells in total. We used the standard Seurat workflow (Seurat v. 3.2.3) to 

normalize (NormalizeData; default parameters), scale (ScaleData; on all genes 

regressing out total UMI count and mitochondrial percentage per cell), and performed 

dimensionality reduction using principal component analysis with the top 2000 highly 
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variable genes (RunPCA). The first 13 principal components were used for PCA-

Louvain clustering (FindNeighbors and FindClusters). To gain sufficient detail to detect 

small subpopulations within one donor, the cluster resolution was set to 0.1. We used 

UMAP, a non-linear dimensionality reduction, to visualize the data (RunUMAP with 

the first 13 PCs) and produce feature plots in low dimensional space (DimPlot and 

FeaturePlot). Cluster-enriched genes were identified using logistic regression 

(FindAllMarkers function with default thresholds and only.pos = TRUE) and were used 

to manually annotate clusters by cell type. 

 

We added both the CyTOF and scRNAseq findings to the Result section: 

 

Mass cytometry (CyTOF) proteomic and scRNA-seq analyses were used to analyze the 

cell composition and showed an average of 95% of cells being positive for the microglia 

specific markers P2Y12 and TMEM119 (Figure S2A and S3). The other cells are mainly 

from myeloid origin, based on the expression of monocyte markers (CD64+/P2Y12- and 

MRP+ in CyTOF; MRC1/LYV1 in scRNA-seq).  

 

Additionally, we added the following limitation to the Discussion section: 

 

We sorted the microglial cells with CD11b+ beads. This marker is not restricted to 

microglia and may capture small fractions of other myeloid cells. 

 

Furthermore, potential cell doublets will be collected, if a CD11B cell is still attached to a 

second cell. And dead cells will also be obtained. CD11B bead for microglia isolation are 

substandard. 

Cell doublets are associated with higher contamination. Additional mass spectrometry and 

sRNAseq analyses showed that the majority of our cells are microglial cells. Also, an assessment 

of cell viability is critical. We used a microglia protocol that has been validated and extensively 

described by (J. Melief et al. 2016), which includes an assessment of the cell viability using the 

DNA-intercalator 7-amino-actinomycin D (7AAD) to detect non-viable cells with flow cytometry. 

After each isolation, we performed a trypan blue staining of the microglial cells to check the 

amount of dead cells with microscopy. The cell viability was between 70 and 98%. We now state 

this more clearly in the Methods section: 

 

We performed this study using a validated protocol for post-mortem microglia isolation30–32,89, 

which includes the assessment of DNA-intercalator 7-amino-actinomycin D (7-AAD) staining to 

detect non-viable cells with flow cytometry. After each isolation, we performed trypan blue staining 
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of the microglial cells to check the amount of death cells with microscopy. The resulting cell 

viability was between 70% and 98%. 

 

Additionally, for the microglia isolation enzymes were used at 37C. It is well known that 

this causes microglia activation, affected gene expression, and as such likely interferes 

with the results. 

Recent mouse studies (Marsh et al. 2020; Mattei et al. 2020) compared transcriptional and 

proteome profiles of isolated microglial cells using different cell isolation techniques. Overall, 

these studies have shown that several technical factors, such as processing the brain tissue on 

37 degrees (compared to 4 degrees) and enzymatic digestion/dissociation cause microglial 

activation. These comparative studies are based on animal studies, where conditions such as 

antemortem factors can be controlled and there is no or very limited postmortem delay. It is not 

yet clear how the isolation procedures influence postmortem-derived human derived microglia, 

but we agree that this may have interfered with the results.  

 

We added the following sentence as a limitation in the Discussion section: 

 

Besides neuroinflammation, hypoxia, and long postmortem intervals, technical artifacts 

(enzymatic digestion, temperature changes, sorting) may cause microglial activation. We could 

not control for all these potential confounders, even though these factors could contribute to gene 

expression changes83,84. 

3. In fig 2E the overlap between grey and white matter microglia is compared with the 

findings in Van der Poel et al. This overlap is statistically significant, however the numbers 

indicated in the venn diagrams this overlap seems low. For example, in the “upregulated 

grey matter” venn only 13 out of 385 genes from MiGA overlap with Van der Poel. I have 

the same comment on figure 3E.  

 

We agree with the reviewer that the overlap of the number of genes between the two datasets in 

Fig. 2E and 3E are low. However, we used a null background of 20,000 genes in our enrichment 

analyses so the chance of any overlap between two random datasets is low, hence the low p-

value. The overlap between our dataset and van der Poel et al. or Galatro et al. is small, but still 

much higher than expected by random chance. We stated this more clearly in the Results section: 

 

We compared our findings in a published dataset of white and grey matter microglia5 and found 

small, but significant overlaps with our MFG vs SVZ comparison (upregulated OR = 18.4; P < 1 x 

10-16, downregulated OR = 4.83; P = 9 x 10-6; Fisher’s exact test; Figure 2C). 
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and 

 

We replicated our findings using an external microglia aging dataset from the parietal cortex15, 

and from peripheral blood43 (Figure S10). The number of genes that overlap between the datasets 

was small, but significant (upregulated genes OR = 23.4; P < 1 x 10-16, downregulated genes OR 

= 5.97; P < 1 x 10-16; Fisher’s Exact test; Figure 3E). 

 

4. The transcriptome data is used to compare different brain region’s and aging, but why 

not to identify disease-signatures? It would be interesting to see whether there are DEGs 

between the different diagnosis groups.  

 

Thank you for this suggestion. We included the disease subgroup analyses (controls, dementia, 

Parkinson’s disease, major depressive disorder, or bipolar disorder/schizophrenia) in the revised 

manuscript, with the caveat that these analyses are underpowered to detect differences between 

disease groups. We only found 24 differentially expressed genes (FDR < 5%) in the dementia 

group compared to controls. No significant gene expression changes were found for the other 

disease groups. The findings in Parkinson's disease are discussed in more detail in the preprint 

by (Navarro et al. 2020). 

 

We added the following sentences to the Method section: 

 

The effect of diagnosis was analyzed with DREAM in microglial samples from subjects with 

dementia (n = 15 samples derived from 9 donors), Parkinson's disease (PD; n = 18 samples 

derived from 12 donors, Table S10), major depressive disorder (MDD; n = 74 samples derived 

from 21 donors, Table S11; bipolar disorder or schizophrenia (BD/SCZ; n = 37 samples derived 

from 14 donors, and controls (n = 96 samples derived from 38 donors, Table S12). Disease 

groups were compared to controls seperatly while accounting for the effect of age, sex, brain 

region, technical covariates, donor variation, ancestry, and cause of death.  

 

We changed the Results section as follows: 

 

We explored the effect of diagnosis on the microglia transcriptome and detected 24 genes, such 

as MCF2 and AIDH3B1, differentially expressed in the dementia group compared to controls 

(FDR < 0.05; Table S10). No significant gene expression changes were found for PD, MDD and 

BD/SCZ (Table S11-S13).  

 

List of differentially expressed genes are displayed in Table S10-S13. 

 

5.  Line 574: why no logFC threshold? 

https://paperpile.com/c/OXcAC4/hZ1Jb
https://paperpile.com/c/OXcAC4/tqV3o
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Line 574 refers to the threshold used in the Differential Expressed Analysis using an interaction 

model between age and region. For the quantitative covariate of age, only an FDR adjusted p-

value was used as a threshold because the log(FC) corresponds to the estimated increase of age 

as a unit per year. It is different from a case-control analysis, for example, since age is a 

continuous variable, not categorical. 

 

Minor comments 

6. In line 69 the paper from Young et al is cited where 93 donors were studied. In the present 

manuscript 100 donors are studied. Why do the authors claim that they have a larger 

sample size? The difference is a not so dramatic 7 donors. 

 

We included in total 216 samples (from 90 individuals) compared to 93 samples (from 93 

individuals) in the study of Young et al. By combining more samples (from shared individuals) we 

increased power for statistical testing, even though the number of included donors did not differ. 

We changed the following sentence in the Introduction section for clarification: 

 

Recently, Young et al. constructed expression QTLs (eQTLs) in primary human microglia (n = 93 

individuals/samples), and detected 401 eQTLs, some of which colocalized with AD loci, including 

BIN1 (Young et al. 2019).  

 

7. The figures are not mentioned in the right order in the text. E.g Fig 2E is described before 

fig 2C.  

 

As suggested, we changed the figures in chronological order following the main text.   

 

8. The effect of ageing on the microglia transcriptome is investigated and shares some 

features with AD genes. What was the amyloid-b load in these ageing brains? It is known 

that amyloid can induce a specific gene signature in microglia. The authors need to show 

neuropathological data of the analysed tissues. 

 

We have added the available neuropathological data for part of the samples. This was not 

available for some of the most recent autopsies. The NBB determines AD pathology according to 

Braak’s staging for neurofibrillary tangles (NFT) (H. Braak and Braak 1991) and CERAD criteria 

(Mirra et al. 1991) adjusted for age, respectively, and were assessed in sections stained with 

Gallyas and Bodian silver staining. An ‘ABC’ score was attributed to each subject for amyloid 

pathology, which includes an assessment of braak staging for Aβ plaques depending on the 

affected brain regions (none (O), low (A), intermediate (B), high (C)) (Hyman et al. 2012). For 
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some samples the presence and topographical distribution of α-synuclein was rated according to 

Braak’s staging scheme (Heiko Braak et al. 2003). We included all available information about 

braak NFT and a-synuclein staging, amyloid deposition (ABC scores) in the sample overview file 

(metadata). The sample sizes per group were too small to perform meaningful additional 

analyses.  

 

We added the following sentences to the Method section: 

Neuropathological assessments have been performed by the NBB (see URLs). Detailed 

information per donor, including tissue type, age, sex, postmortem interval, pH of cerebrospinal 

fluid, cause of death, diagnosis, use of medication and neuropathological information is 

provided in Table S1.  

 

Reviewer #3: 

Remarks to the Author: 

 

A:Summary of the key results 

 

Microglia form a myeloid derived immune cell subset of the central nervous system which 

has been implicated to play a sentinel role in neuronal health and disease. In particular, 

there is a large overlap between GWAS risk variants for neurodegenerative conditions, 

namely Alzheimer's and regulatory variants in non CNS myeloid subsets (namely 

monocytes). These data highlight the importance of further dissecting determinants of 

microglia activity - both genetic and otherwise. 

 

Pavia Lopes, Snijders, Humphrey and colleagues present a study exploring age, 

anatomical and genetic determinants of microglia gene expression, with particular 

reference to neurodegenerative disease genetics. They do this by examining gene 

expression using bulk RNAseq of microglia across a cohort of 115 individuals, which after 

QC is reduced to 255 samples from 200 donors. Whilst the cohort is relatively small from 

a genetic perspective, it is to be appreciated that these samples are not easy to obtain - in 

terms of both the source and also the methods of extraction. 

 

The authors proceed to describe anatomical determinants of microglial expression 

(examining four brain regions thalamus/ subventricular zone/, medial frontal and superior 

temporal gyri), and then explore how these interact with age and also genetics. 

 

They define four major clusters of genes with divergent properties in terms of expression 

based on anatomy – the SVZ looks most dissimilar. They demonstrate that in general age 



 
 

 

25 
 

 

 

regulates expression in a similar manner across regions, although they show a number of 

genes that are regulated by age divergently according to anatomical location.  

 

From a genetic perspective they describe both eQTL and splicing QTL, demonstrating 

enrichment of risk loci for neurodegenerative diseases specially in microglia for eQTL, 

whereas control datasets for bipolar and schizophrenia do not show such association. The 

observation of splicing effects was interesting, although perhaps the authors could move 

to demonstrate the proposed transcripts affected – in fact little was remarked on here. 

 

In general though, I thought the paper was well written and a valuable contribution to the 

literature. The authors make clear distinctions between the genetic effect on gene 

expression in monocytes and microglia – showing that whilst there is commonality across 

most loci, a number show microglia distinct effects and, crucially these are enriched in 

neurodegenerative disease risk loci. 

 

Thank you for the kind remarks. In response to your suggestion on increasing the analysis of the 

genetic effects of splicing, we have now included a new figure (Fig 7) where we go into detail for 

two sQTL loci colocalizing with AD risk variants and demonstrate their complexity. 

 

Minor points of concern/ areas to be expanded: 

1. The authors discuss 25 genes that are differentially regulated inMFG/STG but not 

THA/SVZ – is there commonality in these genes. Are they under shared control of a 

transcription factor that is in itself differentially regulated according to region? 

 

We performed a k-means clustering analysis on a subset of genes that were differentially 

expressed between each brain region (see Fig 2B) and we identified four distinct groups of genes 

that may be differentially regulated. More in detail, cluster 1 contained genes that were 

upregulated in MFG/STG compared to THA/SVZ. Cluster 2 contained genes that are 

downregulated in MFG/STG compared to THA/SVZ (see Fig 2E).  

As the reviewer suggested, we used the upstream regulator analysis tool in IPA to predict 

upstream molecules which may be causing the specific observed gene expression changes in 

cluster 1 or 2. A few interesting upstream molecules were identified in cluster 1, most of them are 

related to homeostatic processes. These include FKBP5, SOST, and CNOT3. The upstream 

molecules in cluster 2 appeared to be related to cytokine signaling (TNF, IL4, IFNG, CD40lg, 

CSF2). But overall, results lack the specificity to draw meaningful conclusions. We therefore felt 

it would be inappropriate to highlight them in the manuscript, so we decided to only add a table in 

supplements with the upstream molecules and add the following sentence to the Results section: 

 

Analysis of upstream regulators of the four clusters using IPA was inconclusive (Table S9). 
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and added the following sentences to the Methods section: 

 

Additionally, to identify upstream transcriptional regulators that may explain the observed gene 

expression changes across the different regional clusters we used the IPA upstream regulator 

analysis. We show the top 20 upstream molecules in Table S9.  

2. The directional effect of genetics on CASS4 expression in monocytes versus microglia 

is particularly interesting. Are the authors able to further elucidate the mechanism here at 

the genomic level? 

 

We agree with the reviewer that the divergent genetic impact on CASS4 in monocytes and 

microglia is very interesting from both an Alzheimer’s disease as well as a more fundamental 

genomics perspective. The opposite result in monocytes suggests that the functional variant is 

located in a complex regulatory region, as suggested before (Schwartzentruber et al. 2021; 

Young et al. 2019; Alasoo et al. 2018; Peters et al. 2016; Raj et al. 2014), where both 

enhancing and repressing mechanisms are at play. As the baseline expression of CASS4 is 

different between microglia and monocytes, we hypothesize that the expression of co-regulating 

factors may be different and determine the effect of the variant on gene expression. Functional 

studies to characterize the transcription and co-factors and to better understand this intergenic 

region and its effect on CASS4 expression are needed to understand the complex genetic impact 

on CASS4 expression. Further functional fine-mapping of cis-eQTLs in a larger monocytes and 

microglia datasets are also necessary to identify the functional variants in each cell types. We 

added the following sentence in the Result Section in the manuscript: 

 

Generally, directions of effect between monocytes and microglia were concordant (Figure S14), 

with the exception of CASS4. eQTLs for CASS4 are significant in both MiGA and monocytes 

(MyND) but with opposite directions of effect (Figure 4G), suggesting that the causal variant is 

located in a complex regulatory element with where both enhancing and repressing mechanisms 

are at play.  

 

3. The references seem out of kilter – they refence Young et al - a preprint describing 

microglia eQTL across 93 samples – this is ref. 27 – but ref 27 is to Stevens et al (!?). I have 

not assiduously checked references, but suggest this is done. 

 

Thank you for this point, we checked the references throughout the manuscript and changed 

accordingly.   
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4. The figures seem somewhat out of order especially for figure 2 where [anels exist not in 

the order that they are cited in the text – this is confusing and should be corrected (2a, 2b, 

2d, 2e, 2c, 2f, 2g). 

 

Please see response to #Reviewer 2 point 7.  

 

5. Line 66 page 1, a full stop is missing between (eQTL) and Investigations. 

  

Please see response to #Reviewer 1 point 12. 

 

6. Page 2 – the authors say they observed no differentially expressed genes between males 

and females – yet they use differentially expressed genes in sex checking as far as I can 

see – this should be modified/ expanded on. 

 

First, we have noticed that sex explained little variance in our dataset (accounting for only 0.26%), 

as indicated by the Variance Partition analysis in Figure 2A. Then, to perform Differential 

Expressed analysis by sex, we removed the genes from the X and Y chromosomes but, we did 

not identify any gene at FDR adjusted p-value of 5%. For clarification, we have added the following 

sentence in the Methods section:  

 

Differential sex-related analysis was performed with DREAM (Hoffman and Schadt 2016) as 

described above, with the difference that we have excluded the genes from the chromosomes X 

and Y. 

 

B: Originality and significance: if not novel, please include reference 

There is a preprint of a smaller cohort which the authors reference – this dataset to my 

mind is less thorough than that presented and it does not detract significantly from this 

work. 

 

C:Data & methodology: validity of approach, quality of data, quality of presentation 

 

The figures were exceptionally clear (albeit slightly out of order). The text was easy to read. 

 

D:Appropriate use of statistics and treatment of uncertainties 

The authors have been robust throughout using the latest statistical approaches and 

pipelines. I have no major concerns here. 

 

E: Conclusions: robustness, validity, reliability 

The findings appear robust and the authors do not make any far-fetched statements. 
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F:Suggested improvements: experiments, data for possible revision 

Limited – see minor comments. In general, this appears ready to publish. 

 

G:References: appropriate credit to previous work? 

I have not gone through every reference, but it would appear so. 

 

H: Clarity and context: lucidity of abstract/summary, appropriateness of abstract, 

introduction and conclusions 

No issue. 
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de Paiva Lopes and colleagues use a large set of CNS samples to map cis-eQTLs and cis-sQTLs in 

microglia that drive region-specific ene expresion and some CNS-pathology-associated gene 

expression. 

 

The authors addressed allthe points I raised and included pertinentst additional data 

(CyTOF/scRNAseq) to address my concerns. I.e. sample purity, gene induction by isolation protocols, 

etc. 

 

This is an impressive study, #samples/potential impact wise and will be a highly cited manuscript, 

deserving of publication in Nature Genetics. I have no further reservations, and support acceptance. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors have responded to each of my concerns and made appropriate changes where possible - I 

think the review process has improved the manuscript, but I now think it is ready to publish without 

further amendments. From my perspective I have no other comments - it is a great piece of work. 
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Before your paper is published online, we shall be distributing a press release to news organizations 
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principles</a>) then you should select the gold OA route, and we will direct you to the compliant 

route where possible. For authors selecting the subscription publication route our standard licensing 

terms will need to be accepted, including our <a href="https://www.springernature.com/gp/open-

research/policies/journal-policies">self-archiving policies</a>. Those standard licensing terms will 

supersede any other terms that the author or any third party may assert apply to any version of the 

manuscript. 

 

Please note that Nature Research offers an immediate open access option only for papers that were 

first submitted after 1 January, 2021. 

 

You will not receive your proofs until the publishing agreement has been received through our system. 

 

If you have any questions about our publishing options, costs, Open Access requirements, or our legal 
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