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Supplementary Note 
 
Supplementary Methods 
 
Microglia isolation protocol 

Brain tissue was stored in Hibernate media (Gibco) at 4 °C upon processing within 24 hours after autopsy. Brain 
tissue was first mechanically dissociated through a metal sieve in a glucose- potassium-sodium buffer (GKN-
BSA; 8.0 g/L NaCl, 0.4 g/L KCl, 1.77 g/L Na2HPO4.2H2O, 0.69 g/L NaH2PO4.H2O, 2.0 g/L D-(1)-glucose, 0.3% 
bovine serum albumin (BSA, Merck, Darmstadt, Germany); pH 7.4) and supplemented with collagenase Type I 
(3700 units/mL; Worthington, USA) and DNase I (200 µg/mL; Roche, Switzerland) or 2% of Trypsin (Invitrogen) 
at 37 °C for 30 min or 60 min while shaking. The suspension was put over a 100 µM cell strainer and washed 
with GKN-BSA buffer in the centrifuge (1800 rpm, slow brake, 4 °C, 10 min) before the pellet was resuspended 
in 20 mL GKN-BSA buffer. 10 mL of Percoll (Merck, Darmstadt, Germany) was added dropwise and the tissue 
homogenate was centrifuged at 4000 rpm (fast acceleration, slow brake at 4 °C, 30 min). The middle layer was 
collected and washed with GKN-BSA buffer, followed by resuspension and centrifuging in a magnetic-activated 
cell sorting (MACS) buffer (PBS, 1% heat-inactivated fetal cow serum (FCS), 2 mM EDTA; 1500 rpm, 10 °C, 
10 min). Microglia were positively selected with CD11b-conjugated magnetic microbeads (Miltenyi Biotec, 
Germany) according to the manufacturer’s protocol. Microglia were stored in RLT buffer + 1% 2-Mercaptoethanol 
or lysed in TRIzol reagent (Invitrogen, USA). RNA was isolated using RNeasy Mini kit (Qiagen) adding the DNase 
I optional step or as described in detail before1. Library preparation was performed at Genewiz using the Ultra-
low input system which uses Poly-A selection. CD11b is also present on perivascular macrophages in the CNS. 
However, we have previously shown by mass cytometry that the percentage of macrophages (CD206high) was 
low2. In a subsample of our cohort we checked the percentage of (infiltrating) monocytes by measuring migration 
inhibitory factor related protein 14 (MRP14+) cells (n = 56 samples derived from 19 donors). The percentage of 
(infiltrating) monocytes was 0.04 % on average. Moreover, we showed in a subsample (n = 91 samples derived 
from 30 donors) of our cohort that the mean percentage of microglia (P2Y12+CD64+) cells is 95%, ranging from 
56.6% to 99.9%. The percentage of P2Y12-CD64+ is 3.2%, suggesting low levels of infiltration of 
macrophages/monocytes (see Figure S2).  

We performed this study using a validated protocol for post-mortem microglia isolation1–4, which includes the 
assessment of DNA-intercalator 7-amino-actinomycin D (7-AAD) staining to detect non-viable cells with flow 
cytometry. After each isolation, we performed trypan blue staining of the microglial cells to check the amount of 
death cells with microscopy. The resulting cell viability was between 70% and 98%. 

DNA isolation  

In short, a small piece of brain tissue was cut and placed in a 96-deepwell plate (Thermo Fisher) on dry ice. A 
mastermix containing binding enhancer, PBS and proteinase K (Qiagen) was added to each well. The solution 
was incubated overnight at 65 degrees Celsius. The KingFisher™ (KF) Duo system was applied with a 12 pin 
magnet head which enabled processing of 12 samples per run using microtiter 96 deepwell plates (Thermo 
Fisher). Prior to the extraction process, the deepwell plates were filled with the following reagents: wash buffer 
(Qiagen), 80% Ethanol, elution buffer (Qiagen) and tip combs (Qiagen). For extraction, 440 μl of DNA binding 
buffer beads (Qiagen) were added to the sample and mixed by pipetting. After that, automated extraction was 
executed and completed within 30 minutes using the protocol provided by the manufacturer. The extracted DNA 
was eluted in 200 μl elution buffer and subsequently transferred to 1.5 ml tubes for storage.  
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Differential expression analysis 

Differential age-by-region gene expression was measured by fitting linear mixed models using DREAM 
(considering repeated donor measures). Analogously as in the standard region differential analysis, expression 
data were first normalized and transformed using voomWithDreamWeights. Four models were fitted, setting 
each brain region as a reference. The model included sex, donor ID, cause of death, the first 4 ancestry MDS 
values (C1-4), % mRNA bases, median insert size, and % ribosomal bases, plus an interaction term with age 
and region. Next, we extracted the interaction coefficients for all pairwise region comparisons and selected genes 
with FDR < 0.05.  
 
Differential sex-related analysis was performed with the following model: sex, donor ID, age, region, cause of 
death, the first 4 ancestry MDS values (C1-4), % mRNA bases, median insert size, and % ribosomal bases, with 
the difference that we have excluded the genes from the chromosomes X and Y. The effect of diagnosis was 
analyzed with DREAM in microglial samples from subjects with dementia (n = 15 samples derived from 9 donors; 
Supplementary Table 10), Parkinson's disease (PD; n = 18 samples derived from 12 donors, Supplementary 
Table 11), major depressive disorder (MDD; n = 74 samples derived from 21 donors, Supplementary Table 12; 
bipolar disorder or schizophrenia (BD/SCZ; n = 37 samples derived from 14 donors, and controls (n = 96 samples 
derived from 38 donors, Supplementary Table 13). The final model included sex, donor ID, age, region, cause 
of death, the first 4 ancestry MDS values (C1-4), % mRNA bases, median insert size and % ribosomal bases.  
 
Differential Transcript Usage 
 
Transcript expression was estimated in each sample using RSEM with the GENCODE v30 transcript reference. 
Lowly expressed transcripts were removed with the threshold transcript counts per million > 1 in at least 30% of 
all samples. This retained 49,694 transcripts from 10,818 genes. Differential transcript usage was tested 
simultaneously between each region and with donor age using satuRn5, a fast method for computing differential 
transcript usage. No current differential transcript usage tool can model random effects so we were unable to 
account for shared donors, but otherwise the same technical covariates were used as in the differential 
expression modelling. Pairwise comparisons between each pair of regions were extracted using the 
limma::makeContrasts() function. To correct for test statistic inflation due to correlation across transcripts and 
donors, we employed a more stringent empirical FDR correction6, but used a more liberal FDR threshold of 0.1 
to increase our discovery set of transcripts. Transcripts were considered differentially used between regions at 
a |log odds ratio| > 1 and an empirical FDR < 0.1.  For aging, transcripts were filtered at an FDR < 0.1 but no 
effect size cutoffs were used.  

Single-cell sequencing  
 
To generate single-cell data we isolated CD11b+ microglial cells from the medial frontal gyrus and hippocampus 
of one additional donor (MG-22). We used the instructions of the Single-Cell 3’ Reagent Kits v2 (10 x Genomics) 
to construct scRNAseq barcoded libraries. In short, we loaded ~10,000 microglial cells from both regions 
separately into a slot of Chromium Chip. GEMs were incubated in a thermal cycler for the generation of barcoded 
cDNA. The cDNA was fragmented after amplification and processed for sequencing by ligating adapters and 
sample indices. The libraries were sequenced on an Illumina Hi-Seq system. The average sequencing depth 
was 2197.959 raw reads per cell, and the average was 1108.241 UMIs per cell. We analyzed 8589 cells for the 
two brain regions combined. Low-quality cells with > 10% mitochondrial gene content were removed. 
Duplicate cells were filtered by removing cells with greater than 10000 transcripts. Genes not detected in at 
least 3 cells were removed. After quality control, we analyzed 5990 single cells in total. We used the 
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standard Seurat workflow (Seurat v. 3.2.3) to normalize (NormalizeData; default parameters), scale 
(ScaleData; on all genes regressing out total UMI count and mitochondrial percentage per cell) and 
performed dimensionality reduction using principal component analysis with the top 2000 highly variable 
genes (RunPCA). The first 13 principal components were used for PCA-Louvain clustering (FindNeighbors 
and FindClusters). To gain sufficient detail to detect small subpopulations within one donor, the cluster 
resolution was set to 0.1. We used UMAP, a non-linear dimensionality reduction, to visualize the data 
(RunUMAP with the first 13 PCs) and produce feature plots in low dimensional space (DimPlot and 
FeaturePlot). Cluster-enriched genes were identified using logistic regression (FindAllMarkers function with 
default thresholds and only.pos = TRUE) and were used to manually annotate clusters by cell type. 
 
IFN-y and LPS stimulated microglia 
 
Microglia were isolated from the MFG of 6 unaffected controls, cultured and stimulated as described before1,2. 
After overnight incubation, microglia medium was supplemented with 100 ng/mL LPS from Escherichia coli 
0111:B4 (Merck, Germany) or with 50 ng/ml interferon gamma INF-γ for 6 hours. Microglial RNA was isolated 
using the TRIzol method and cDNA libraries were generated using the SMART-Seq v4 Ultra Low Input RNA Kit 
for Sequencing Components (Takara) according to the manufacturer’s protocol. The libraries were sequenced 
as 150 bp paired-end reads with an average read depth of 42 million (range 16-98M) read pairs on an Illumina 
HiSeq 2500. FASTQ files were processed through RAPiD (v19.09.1). Two outliers (one unstimulated sample 
and one LPS-exposed sample) were detected with the hclust function in R and excluded from further analysis. 
Differential expression was tested using DESeq27, testing all genes with greater than 1 read count per million in 
at least 30% of samples. The effect of condition was calculated separately for LPS and IFNy, controlling for 
donor variation. Since donor highly correlated with all other covariates measured, no other variables were 
included in the design. Genes with an adjusted P-value of < 0.05 were considered significant. 

Colocalization and fine-mapping 
 
For the MiGA eQTLs and sQTLs we used the METASOFT random effects meta-analysis across the four regions 
for colocalization analyses. We used the coloc package8 to test whether SNPs from different disease GWAS 
colocalized with expression and splicing QTLs from microglia, monocytes and brain (dorsolateral prefrontal 
cortex). For each genome-wide significant locus in a GWAS we extracted the nominal summary statistics of 
association for all SNPs within 1 megabase either upstream/downstream of the top lead SNP (2Mb-wide region 
total). In each QTL dataset we then extracted all nominal associations for all SNP-gene pairs within that range 
and tested for colocalization between the GWAS locus and each gene. We used thresholds of posterior 
probability H4 (PP4) ≥ 0.5 for suggestive, ≥ 0.7 for moderate and ≥ 0.9 for strong colocalization, respectively. 
We restricted our colocalizations to GWAS SNP - eQTL SNP pairs where the distance between their respective 
top SNPs was ≤ 500kb or the two lead SNPs were in moderate linkage disequilibrium (r2 > 0.1), taken from the 
1000 Genomes (Phase 3) European populations using the LDLinkR package9). 

For splicing QTLs we followed the same approach but collapsed junctions to return only the highest PP4 value 
for each gene in each locus. For presenting results across diseases, we merged overlapping loci from the four 
Alzheimer’s disease studies together, presenting results with the highest PP4 value for each gene. Due to the 
smaller window of association (100kb from the center of the intron excision cluster) we restricted reported 
colocalizations to cases where the GWAS SNP and the top sQTL SNP were either within 100kb of each other 
or in moderate linkage disequilibrium (r2 > 0.1). 
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We used echolocator10 to perform statistical and functional fine-mapping of each GWAS locus with a suggestive 
colocalization PP4 > 0.5. echolocatoR combines the output of multiple fine-mapping tools to identify high-
confidence putative causal SNPs. The full 2Mb window was fine-mapped in each locus to better take into account 
more widespread LD architectures. SNPs with minor allele frequency (MAF) < 5% were removed as we were 
primarily focused in identifying common risk factors. We fine-mapped using ABF11, FINEMAP12, SUSIE13, and 
POLYFUN + SUSIE14, with 1000 Genomes (Phase 3) European samples as our LD reference. For tools that 
permitted, we set the maximum number of causal SNPs per locus to 5. Each tool produces a 95% credible set 
of SNPs, which can be understood as SNPs with a posterior probability > 95% of being causal for the given 
phenotype. echolocatoR then defines SNPs that are present in multiple tools’ credible sets as “consensus SNPs” 
with a higher level of confidence in their causality. Importantly, we define the lead GWAS SNP as the lead variant 
listed in the original summary statistics, which may or may be not prioritized by fine-mapping as a credible or 
consensus SNP. 

Cell-type specific promoter-enhancer data 

We downloaded processed cell-type specific promoter and enhancer data15 using the echolocatoR package10. 
Briefly, fluorescent activated nuclear sorting (FANS) was performed on post-mortem human brains to isolate 
PU.1+ microglia, NEUN+ neurons, OLIG2+ oligodendrocytes, and NEUN- LHX2+ astrocyte nuclei. Chromatin 
immunoprecipitation sequencing (ChIP-seq) was performed for the histone modifications H3K27ac and 
H3K4me3, which identify activated chromatin regions and promoters, respectively. Regions were defined by Nott 
and colleagues as active promoters when a H3K4me3 peak overlapped H3K27ac within 2000bp of the nearest 
transcription start site, whereas active enhancers were defined as H3K27ac peaks that did not overlap any 
H3K4me3 peaks. In addition, they performed proximity ligation-assisted ChIP-seq (PLAC-seq16), which identifies 
long-range connections between H3K4me3-positive promoter regions and other genomic regions. We 
downloaded coordinates for ChIP-seq and PLAC-seq in each cell type and overlapped our SNP sets in each 
colocalized locus using GenomicRanges in R17.  

Predicting transcription factor binding motif disruption 

We used motifbreakR18, a package that computes the similarity of a genomic sequence to a range of transcription 
factor motifs and calculates the potential disruption to each motif caused by a SNP with a score and P-value. 
We used as input 426 human transcription factor motifs from the HOCOMOCO database19 as provided by 
motifbreakR. We ran the package on all lead QTL, lead GWAS and fine-mapped SNPs found at the USP6NL 
locus (using the AD GWAS from Jansen et al.) and the P2RY12 locus from the Nalls et al PD GWAS. Motifbreakr 
returns metrics for each tested motif on how much each allele of a SNP disrupts or enhances predicted binding. 
Each comparison then undergoes a background correction to compute p-values. Full results for both loci are in 
Table S23. 

Visualization 

All plots were created using ggplot220 in R (version 3.6.0), with ggrepel21, ggfortify22, patchwork23, and ggbio24 
for additional layers of visualization.   
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Supplementary Results 
 
Pure microglial samples from post-mortem brain tissue 
 
We collected 314 human microglial samples from 115 donors, of which 46 donors were non-neurological disease 
controls (Supplementary Figure 1). Microglia were isolated from fresh post-mortem tissue using CD11b-
beads1–3. Mass cytometry (CyTOF) proteomic and scRNA-seq analyses found an average of 95% of cells were 
positive for the microglia-specific markers P2Y12 and TMEM119 (Supplementary Figure 2A and 3). The other 
cells are mainly myeloid in origin, expressing monocyte marker genes (CD64+/P2Y12- and MRP+ in CyTOF; 
MRC1/LYV1 in scRNA-seq). All microglial samples expressed known microglia-specific genes at high levels 
(Supplementary Fig. 2C). After rigorous quality control, 255 microglial samples from 100 different donors and 
four different regions were included (Supplementary Fig. 1 and 4; Supplementary Table 1). The four regions 
comprise two cortical regions: the medial frontal gyrus (MFG) and superior temporal gyrus (STG); and two 
subcortical regions: the thalamus (THA) and subventricular zone (SVZ).   

Neurological disease loci regulate microglia gene expression 
 
We combined the results of four different statistical and functional fine-mapping approaches to create a set of 
fine-mapped variants at each disease locus (see Methods, Supplementary Table 22). We defined variants 
prioritized by at least one fine-mapping tool at a posterior probability ≥ 95% of being causal for the phenotype 
as “credible set SNPs”, and variants prioritized by at least two tools as “consensus SNPs”. In addition, because 
coloc does not take linkage disequilibrium (LD) structure into account, which can confound results due to non-
independence between SNPs, we calculated the LD between each lead QTL variant and the set of fine-mapped 
SNPs at each locus using 1000 Genomes (phase 3) European reference samples (Supplementary Fig. 26). In 
GWAS loci with multiple colocalized genes this can be used to prioritize the most likely candidate. In the CD19 
locus in PD, this approach gave additional weight to suggesting an eQTL in SPNS1 as the likely causal gene, 
due to high LD between the SPNS1 lead QTL SNP and the GWAS SNP (r2=0.78), compared to TUFM and 
SULT1A2 (Figure S27). With the expanded set of SNPs at each locus, we then overlapped each SNP with sets 
of defined promoter and enhancer regions in microglia, neurons, oligodendrocytes, and astrocytes15.  
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Supplementary Figure 1: Flowchart of quality control. 
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Supplementary Figure 2: Purity of microglia samples.  
A) CyTOF analysis of CD11b-isolated cells on a subsample of n = 30 donors. Cells are gated for P2Y12+CD64+ 
(microglia); P2Y12-/CD64+ (macrophages) and P2Y12-/CD64- (non-myeloid cells) B) CD11b isolated cells are 
gated for MPR14+ (monocytes) in subsample of n = 19 donors with CyTOF analysis C) Expression levels 
(TPM+1 log2 scale) of cell markers for 255 samples. Blue colors indicate low expression and red colors indicate 
high gene expression.  
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Supplementary Figure 3: Single-cell expression profiling of CD11b isolated microglia from 
individual donor using 10x genomics. 
A) UMAP visualization and unsupervised clustering of CD11b isolated microglia from Parkinson's disease donor 
from medial frontal gyrus (MFG) and hippocampus. B) UMAP visualization and unsupervised clustering identified 
five subsets of microglia clusters. C)Average expression of microglia specific genes.  
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Supplementary Figure 4: Overview of the data.  
A) Number of donors by brain region. B-C) Age range of the 100 donors in this study. Blue indicates the 
distribution of male donors and red indicates the distribution of female donors. Dashed lines for mean age. D) 
Frequency of diagnosis. E) Frequency of cause of death. F) The number of brain regions in this study. Each 
donor donated one up to four brain regions.  
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Supplementary Figure 5: Sources of variation in the gene expression data.  
Linear regression between the first 15 Principal Components (PCs) and the covariates. Colors correspond to the 
adjusted R-squared. The P-values are from the Linear regression, two-sided and Bonferroni adjusted. “Tissue” 
refers to which brain region the microglia were isolated from.  
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Supplementary Figure 6: Main sources of expression variation and correlation of covariates.  
A) Percentage of variance explained by technical factors for 255 samples for each gene, variancePartition 
package25. Numbers between parentheses indicate mean values. Data are presented as percentage (%) of total 
variance explained. Box plots show median, box spans first to third quartiles, and whiskers extend 1.5 times the 
interquartile range (IQR) from the box. B) Pairwise canonical correlation between the covariates. Red indicates 
high correlation; white indicates low correlation. C-F) Percentage of variance explained by technical and 
biological covariates by each brain region. Data are presented as a percentage (%) of total variance explained. 
Box plots show median, box spans first to third quartiles, and whiskers extend 1.5 times the interquartile range 
(IQR) from the box.   
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Supplementary Figure 7: Principal component analysis (PCAs) and data adjustment.  
Pair of PCA before (left A,C,E,G) and after (right B,D,F,H) correction by regressing out technical confounders, 
colored by A-B) region; C-D) diagnosis; E-F) post-mortem interval (minutes); G-H) age; I-J) sex. The plots show 
voom-TMM normalized expression for all samples.   
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Supplementary Figure 8: Replication of MiGA age-related genes with peripheral human blood.   
Upregulated in age between MiGA and Peters et al26. (OR 7.14; 95% CI = 5.21-9.66, P<1e-16). Downregulated 
in age between MiGA and Peters (OR = 1.49; 95% CI = 1.17-1.88; P = 6e-4).  
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Supplementary Figure 9: Differential expression by age interaction with brain regions.  
A) Number of pairwise DE genes (FDR<0.05) using a linear model with interaction between age and region. B) 
Top five genes prioritized by the DE analysis to show flipped effects in direction of gene expression per age and 
region.  
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Supplementary Figure 10: Genotyping QC.  
A) Distribution of number of samples per estimated kinship measured using KING. Estimated kinship coefficient 
ranges of >0.354, [0.177, 0.354], [0.0884, 0.177] and [0.0442, 0.0884] corresponds to duplicate or monozygotic 
twins, 1st-degree, 2nd-degree, and 3rd-degree relationships respectively. B) DNA-RNA sample matching using 
QTLtools-mbv measured by the percentage of concordance at heterozygous and homozygous genotypes. 
Samples in red failed to match ids between each data. C) Log scaled expression (voom) of sex chromosome 
genes (UTY and XIST) for each donor colored by reported sex (blue = male, red = female). D) First two ancestry 
principal components of MiGA samples (red squares) on top of 1000 Genome individuals colored by major 
populations. African [AFR], Admixed American [AMR], East Asian [EAS], European [EUR], South Asian [SAS].  
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Supplementary Figure 11: Probabilistic Estimation of Expression Residuals (PEER) correction 
for non-genetic factors in eQTL and sQTL analyses.  
To account for hidden effects in gene expression data, such as technical artifacts, we used PEER. After adjusting 
for age and sex, a number of PEER factors (from 0 to 20) was tested to maximize eQTLs per gene (top) and 
splicing QTLs per intron cluster (bottom) discovery at q-val < 0.05. Based on this result, 5 (SVZ) and 10 (MFG, 
STG, and THA) PEER factors were selected for eQTLs and 0 (SVZ) and 5 (MFG, STG, and THA) PEER factors 
for sQTLs. Factors were regressed out of the respective gene expression or splicing matrix before running the 
association tests.  
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Supplementary Figure 12: eQTL effect sizes of the AD-associated genes.  
A) x axis shows the eQTL betas from microglia dataset from this study (MiGA), and y axis shows the eQTL betas 
of monocytes from MyND dataset27). B) x axis shows the eQTL betas from microglia (MiGA), and y axis shows 
the eQTL betas of monocytes from Fairfax et al. Vertical lines indicate standard error.   
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Supplementary Figure 13: Pairwise sharing of colocalized genes.  
Locus-Gene combinations across all 5 diseases that colocalized at PP4 >= 0.5 (A) or >= 0.7 (B) were compared 
between pairs of QTL datasets. For example, 53% of genes that colocalized PP4 > 0.5 in MiGA sQTLs also 
colocalized in MyND sQTLs, whereas only 23% of the MyND sQTLs were found in the MiGA sQTLs. 
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Supplementary Figure 14: Full colocalization results in schizophrenia.  
Colocalization PP4 displayed for each GWAS locus (right text) and gene (left text) for each QTL dataset. An 
empty value means no QTL was present for testing for that gene in that dataset.   
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Supplementary Figure 15: Colocalization results for each regional microglia dataset in 
schizophrenia.  
Colocalization PP4 displayed for each GWAS locus (right text) and gene (left text) for each QTL dataset. An 
empty value means no QTL was present for testing for that gene in that dataset.  
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Supplementary Figure 16: Full colocalization results in bipolar disorder.  
Colocalization PP4 displayed for each GWAS locus (right text) and gene (left text) for each QTL dataset. An 
empty value means no QTL was present for testing for that gene in that dataset.   
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Supplementary Figure 17: Colocalization results for each regional microglia dataset in bipolar 
disorder.  
Colocalization PP4 displayed for each GWAS locus (right text) and gene (left text) for each QTL dataset. An 
empty value means no QTL was present for testing for that gene in that dataset. 
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Supplementary Figure 18: Full colocalization results in multiple sclerosis.  
Colocalization PP4 displayed for each GWAS locus (right text) and gene (left text) for each QTL dataset. An 
empty value means no QTL was present for testing for that gene in that dataset.   
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Supplementary Figure 19: Colocalization results for each regional microglia dataset in multiple 
sclerosis.  
Colocalization PP4 displayed for each GWAS locus (right text) and gene (left text) for each QTL dataset. An 
empty value means no QTL was present for testing for that gene in that dataset. 
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Supplementary Figure 20: Overlap of colocalized microglia eQTLs with epigenomic features in 
SCZ and MS.  
Regions defined by Nott et al (2019) as cell-type specific promoters and enhancers were overlapped with SNP 
sets for each colocalizing microglia QTL - GWAS locus.  SNP sets consisted of the lead GWAS SNP, the lead 
QTL SNP and any fine-mapped consensus or credible SNPs. Results are summarized here by the number of 
SNPs in the set that overlap with a particular feature type.  
 
 
 


