Supplementary Materials

Genetic analysis of the human microglia transcriptome across brain regions,
aging and disease pathologies

Authors

1,234 1,2,3,4

Katia de Paiva Lopes'?**’ Gijsje J. L. Snijders®®’, Jack Humphrey , Amanda Allan
Sneeboer’, Elisa Navarro'2#, Brian M. Schilder'?**, Ricardo A. Vialle'?** Madison Parks'?3# Roy Missall®,
Welmoed van Zuiden®, Frederieke Gigase®®, Raphael Kiibler’, Amber Berdenis van Berlekom’, Emily M.

Hicks"#3#, Chotima Bottcher®, Josef Priller®, René S. Kahn®®, Lot D. de Witte®®"# Towfique Raj'?34"#

, Marjolein

Affiliations

1. Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai,
New York, NY, United States of America

2. Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United
States of America

3. Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn
School of Medicine at Mount Sinai, New York, NY, United States of America

4. Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY,
United States of America

5. Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States of America

6. Mental lliness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, New York
City, NY, United States of America

7. Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University,
3584 CG Utrecht, The Netherlands

8. Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitatsmedizin Berlin, 10117
Berlin, Germany.

* These authors contributed equally
# these authors share correspondence:
Lot D. de Witte: lotje.dewitte@mssm.edu

Towfique Raj: towfigue.raj@mssm.edu




Supplementary Note

Supplementary Methods

Microglia isolation protocol

Brain tissue was stored in Hibernate media (Gibco) at 4 °C upon processing within 24 hours after autopsy. Brain
tissue was first mechanically dissociated through a metal sieve in a glucose- potassium-sodium buffer (GKN-
BSA; 8.0 g/L NaCl, 0.4 g/L KCl, 1.77 g/L Na2HPO4.2H20, 0.69 g/L NaH2P0O4.H20, 2.0 g/L D-(1)-glucose, 0.3%
bovine serum albumin (BSA, Merck, Darmstadt, Germany); pH 7.4) and supplemented with collagenase Type |
(3700 units/mL; Worthington, USA) and DNase | (200 ug/mL; Roche, Switzerland) or 2% of Trypsin (Invitrogen)
at 37 °C for 30 min or 60 min while shaking. The suspension was put over a 100 uM cell strainer and washed
with GKN-BSA buffer in the centrifuge (1800 rpm, slow brake, 4 °C, 10 min) before the pellet was resuspended
in 20 mL GKN-BSA buffer. 10 mL of Percoll (Merck, Darmstadt, Germany) was added dropwise and the tissue
homogenate was centrifuged at 4000 rpm (fast acceleration, slow brake at 4 °C, 30 min). The middle layer was
collected and washed with GKN-BSA buffer, followed by resuspension and centrifuging in a magnetic-activated
cell sorting (MACS) buffer (PBS, 1% heat-inactivated fetal cow serum (FCS), 2mM EDTA; 1500 rpm, 10 °C,
10 min). Microglia were positively selected with CD11b-conjugated magnetic microbeads (Miltenyi Biotec,
Germany) according to the manufacturer’s protocol. Microglia were stored in RLT buffer + 1% 2-Mercaptoethanol
or lysed in TRIzol reagent (Invitrogen, USA). RNA was isolated using RNeasy Mini kit (Qiagen) adding the DNase
| optional step or as described in detail before’. Library preparation was performed at Genewiz using the Ultra-
low input system which uses Poly-A selection. CD11b is also present on perivascular macrophages in the CNS.
However, we have previously shown by mass cytometry that the percentage of macrophages (CD206"%") was
low?. In a subsample of our cohort we checked the percentage of (infiltrating) monocytes by measuring migration
inhibitory factor related protein 14 (MRP14+) cells (n = 56 samples derived from 19 donors). The percentage of
(infiltrating) monocytes was 0.04 % on average. Moreover, we showed in a subsample (n = 91 samples derived
from 30 donors) of our cohort that the mean percentage of microglia (P2Y12*CD64") cells is 95%, ranging from
56.6% to 99.9%. The percentage of P2Y12-CD64+ is 3.2%, suggesting low levels of infiltration of
macrophages/monocytes (see Figure S2).

We performed this study using a validated protocol for post-mortem microglia isolation'™, which includes the
assessment of DNA-intercalator 7-amino-actinomycin D (7-AAD) staining to detect non-viable cells with flow
cytometry. After each isolation, we performed trypan blue staining of the microglial cells to check the amount of
death cells with microscopy. The resulting cell viability was between 70% and 98%.

DNA isolation

In short, a small piece of brain tissue was cut and placed in a 96-deepwell plate (Thermo Fisher) on dry ice. A
mastermix containing binding enhancer, PBS and proteinase K (Qiagen) was added to each well. The solution
was incubated overnight at 65 degrees Celsius. The KingFisher™ (KF) Duo system was applied with a 12 pin
magnet head which enabled processing of 12 samples per run using microtiter 96 deepwell plates (Thermo
Fisher). Prior to the extraction process, the deepwell plates were filled with the following reagents: wash buffer
(Qiagen), 80% Ethanol, elution buffer (Qiagen) and tip combs (Qiagen). For extraction, 440 ul of DNA binding
buffer beads (Qiagen) were added to the sample and mixed by pipetting. After that, automated extraction was
executed and completed within 30 minutes using the protocol provided by the manufacturer. The extracted DNA
was eluted in 200 pl elution buffer and subsequently transferred to 1.5 ml tubes for storage.



Differential expression analysis

Differential age-by-region gene expression was measured by fitting linear mixed models using DREAM
(considering repeated donor measures). Analogously as in the standard region differential analysis, expression
data were first normalized and transformed using voomWithDreamWeights. Four models were fitted, setting
each brain region as a reference. The model included sex, donor ID, cause of death, the first 4 ancestry MDS
values (C1-4), % mRNA bases, median insert size, and % ribosomal bases, plus an interaction term with age
and region. Next, we extracted the interaction coefficients for all pairwise region comparisons and selected genes
with FDR < 0.05.

Differential sex-related analysis was performed with the following model: sex, donor ID, age, region, cause of
death, the first 4 ancestry MDS values (C1-4), % mRNA bases, median insert size, and % ribosomal bases, with
the difference that we have excluded the genes from the chromosomes X and Y. The effect of diagnosis was
analyzed with DREAM in microglial samples from subjects with dementia (n = 15 samples derived from 9 donors;
Supplementary Table 10), Parkinson's disease (PD; n = 18 samples derived from 12 donors, Supplementary
Table 11), major depressive disorder (MDD; n = 74 samples derived from 21 donors, Supplementary Table 12;
bipolar disorder or schizophrenia (BD/SCZ; n = 37 samples derived from 14 donors, and controls (n = 96 samples
derived from 38 donors, Supplementary Table 13). The final model included sex, donor ID, age, region, cause
of death, the first 4 ancestry MDS values (C1-4), % mRNA bases, median insert size and % ribosomal bases.

Differential Transcript Usage

Transcript expression was estimated in each sample using RSEM with the GENCODE v30 transcript reference.
Lowly expressed transcripts were removed with the threshold transcript counts per million > 1 in at least 30% of
all samples. This retained 49,694 transcripts from 10,818 genes. Differential transcript usage was tested
simultaneously between each region and with donor age using satuRn®, a fast method for computing differential
transcript usage. No current differential transcript usage tool can model random effects so we were unable to
account for shared donors, but otherwise the same technical covariates were used as in the differential
expression modelling. Pairwise comparisons between each pair of regions were extracted using the
limma::makeContrasts() function. To correct for test statistic inflation due to correlation across transcripts and
donors, we employed a more stringent empirical FDR correction®, but used a more liberal FDR threshold of 0.1
to increase our discovery set of transcripts. Transcripts were considered differentially used between regions at
a |log odds ratio| > 1 and an empirical FDR < 0.1. For aging, transcripts were filtered at an FDR < 0.1 but no
effect size cutoffs were used.

Single-cell sequencing

To generate single-cell data we isolated CD11b+ microglial cells from the medial frontal gyrus and hippocampus
of one additional donor (MG-22). We used the instructions of the Single-Cell 3' Reagent Kits v2 (10 x Genomics)
to construct scRNAseq barcoded libraries. In short, we loaded ~10,000 microglial cells from both regions
separately into a slot of Chromium Chip. GEMs were incubated in a thermal cycler for the generation of barcoded
cDNA. The cDNA was fragmented after amplification and processed for sequencing by ligating adapters and
sample indices. The libraries were sequenced on an lllumina Hi-Seq system. The average sequencing depth
was 2197.959 raw reads per cell, and the average was 1108.241 UMIs per cell. We analyzed 8589 cells for the
two brain regions combined. Low-quality cells with > 10% mitochondrial gene content were removed.
Duplicate cells were filtered by removing cells with greater than 10000 transcripts. Genes not detected in at
least 3 cells were removed. After quality control, we analyzed 5990 single cells in total. We used the
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standard Seurat workflow (Seurat v. 3.2.3) to normalize (NormalizeData; default parameters), scale
(ScaleData; on all genes regressing out total UMI count and mitochondrial percentage per cell) and
performed dimensionality reduction using principal component analysis with the top 2000 highly variable
genes (RunPCA). The first 13 principal components were used for PCA-Louvain clustering (FindNeighbors
and FindClusters). To gain sufficient detail to detect small subpopulations within one donor, the cluster
resolution was set to 0.1. We used UMAP, a non-linear dimensionality reduction, to visualize the data
(RunUMAP with the first 13 PCs) and produce feature plots in low dimensional space (DimPlot and
FeaturePlot). Cluster-enriched genes were identified using logistic regression (FindAllIMarkers function with
default thresholds and only.pos = TRUE) and were used to manually annotate clusters by cell type.

IFN-y and LPS stimulated microglia

Microglia were isolated from the MFG of 6 unaffected controls, cultured and stimulated as described before2.
After overnight incubation, microglia medium was supplemented with 100 ng/mL LPS from Escherichia coli
0111:B4 (Merck, Germany) or with 50 ng/ml interferon gamma INF-y for 6 hours. Microglial RNA was isolated
using the TRIzol method and cDNA libraries were generated using the SMART-Seq v4 Ultra Low Input RNA Kit
for Sequencing Components (Takara) according to the manufacturer’s protocol. The libraries were sequenced
as 150 bp paired-end reads with an average read depth of 42 million (range 16-98M) read pairs on an lllumina
HiSeq 2500. FASTQ files were processed through RAPID (v19.09.1). Two outliers (one unstimulated sample
and one LPS-exposed sample) were detected with the hclust function in R and excluded from further analysis.
Differential expression was tested using DESeq2’, testing all genes with greater than 1 read count per million in
at least 30% of samples. The effect of condition was calculated separately for LPS and IFNy, controlling for
donor variation. Since donor highly correlated with all other covariates measured, no other variables were
included in the design. Genes with an adjusted P-value of < 0.05 were considered significant.

Colocalization and fine-mapping

For the MiGA eQTLs and sQTLs we used the METASOFT random effects meta-analysis across the four regions
for colocalization analyses. We used the coloc package® to test whether SNPs from different disease GWAS
colocalized with expression and splicing QTLs from microglia, monocytes and brain (dorsolateral prefrontal
cortex). For each genome-wide significant locus in a GWAS we extracted the nominal summary statistics of
association for all SNPs within 1 megabase either upstream/downstream of the top lead SNP (2Mb-wide region
total). In each QTL dataset we then extracted all nominal associations for all SNP-gene pairs within that range
and tested for colocalization between the GWAS locus and each gene. We used thresholds of posterior
probability H4 (PP4) = 0.5 for suggestive, = 0.7 for moderate and = 0.9 for strong colocalization, respectively.
We restricted our colocalizations to GWAS SNP - eQTL SNP pairs where the distance between their respective
top SNPs was < 500kb or the two lead SNPs were in moderate linkage disequilibrium (r2 > 0.1), taken from the
1000 Genomes (Phase 3) European populations using the LDLInkR package®).

For splicing QTLs we followed the same approach but collapsed junctions to return only the highest PP4 value
for each gene in each locus. For presenting results across diseases, we merged overlapping loci from the four
Alzheimer’s disease studies together, presenting results with the highest PP4 value for each gene. Due to the
smaller window of association (100kb from the center of the intron excision cluster) we restricted reported
colocalizations to cases where the GWAS SNP and the top sQTL SNP were either within 100kb of each other
or in moderate linkage disequilibrium (r? > 0.1).



We used echolocator' to perform statistical and functional fine-mapping of each GWAS locus with a suggestive
colocalization PP4 > 0.5. echolocatoR combines the output of multiple fine-mapping tools to identify high-
confidence putative causal SNPs. The full 2Mb window was fine-mapped in each locus to better take into account
more widespread LD architectures. SNPs with minor allele frequency (MAF) < 5% were removed as we were
primarily focused in identifying common risk factors. We fine-mapped using ABF'', FINEMAP'2, SUSIE", and
POLYFUN + SUSIE™, with 1000 Genomes (Phase 3) European samples as our LD reference. For tools that
permitted, we set the maximum number of causal SNPs per locus to 5. Each tool produces a 95% credible set
of SNPs, which can be understood as SNPs with a posterior probability > 95% of being causal for the given
phenotype. echolocatoR then defines SNPs that are present in multiple tools’ credible sets as “consensus SNPs”
with a higher level of confidence in their causality. Importantly, we define the lead GWAS SNP as the lead variant
listed in the original summary statistics, which may or may be not prioritized by fine-mapping as a credible or
consensus SNP.

Cell-type specific promoter-enhancer data

We downloaded processed cell-type specific promoter and enhancer data using the echolocatoR package'®.
Briefly, fluorescent activated nuclear sorting (FANS) was performed on post-mortem human brains to isolate
PU.1+ microglia, NEUN+ neurons, OLIG2+ oligodendrocytes, and NEUN- LHX2+ astrocyte nuclei. Chromatin
immunoprecipitation sequencing (ChlP-seq) was performed for the histone modifications H3K27ac and
H3K4me3, which identify activated chromatin regions and promoters, respectively. Regions were defined by Nott
and colleagues as active promoters when a H3K4me3 peak overlapped H3K27ac within 2000bp of the nearest
transcription start site, whereas active enhancers were defined as H3K27ac peaks that did not overlap any
H3K4me3 peaks. In addition, they performed proximity ligation-assisted ChIP-seq (PLAC-seq'®), which identifies
long-range connections between H3K4me3-positive promoter regions and other genomic regions. We
downloaded coordinates for ChlP-seq and PLAC-seq in each cell type and overlapped our SNP sets in each
colocalized locus using GenomicRanges in R"’.

Predicting transcription factor binding motif disruption

We used motifbreakR'®, a package that computes the similarity of a genomic sequence to a range of transcription
factor motifs and calculates the potential disruption to each motif caused by a SNP with a score and P-value.
We used as input 426 human transcription factor motifs from the HOCOMOCO database'® as provided by
motiforeakR. We ran the package on all lead QTL, lead GWAS and fine-mapped SNPs found at the USPENL
locus (using the AD GWAS from Jansen et al.) and the P2RY12 locus from the Nalls et al PD GWAS. Motifbreakr
returns metrics for each tested motif on how much each allele of a SNP disrupts or enhances predicted binding.
Each comparison then undergoes a background correction to compute p-values. Full results for both loci are in
Table S23.

Visualization

|21

All plots were created using ggplot2? in R (version 3.6.0), with ggrepel®', ggfortify??, patchwork?, and ggbio®

for additional layers of visualization.



Supplementary Results
Pure microglial samples from post-mortem brain tissue

We collected 314 human microglial samples from 115 donors, of which 46 donors were non-neurological disease
controls (Supplementary Figure 1). Microglia were isolated from fresh post-mortem tissue using CD11b-
beads'. Mass cytometry (CyTOF) proteomic and scRNA-seq analyses found an average of 95% of cells were
positive for the microglia-specific markers P2Y12 and TMEM119 (Supplementary Figure 2A and 3). The other
cells are mainly myeloid in origin, expressing monocyte marker genes (CD64+/P2Y12- and MRP+ in CyTOF;
MRC1/LYV1 in scRNA-seq). All microglial samples expressed known microglia-specific genes at high levels
(Supplementary Fig. 2C). After rigorous quality control, 255 microglial samples from 100 different donors and
four different regions were included (Supplementary Fig. 1 and 4; Supplementary Table 1). The four regions
comprise two cortical regions: the medial frontal gyrus (MFG) and superior temporal gyrus (STG); and two
subcortical regions: the thalamus (THA) and subventricular zone (SVZ).

Neurological disease loci regulate microglia gene expression

We combined the results of four different statistical and functional fine-mapping approaches to create a set of
fine-mapped variants at each disease locus (see Methods, Supplementary Table 22). We defined variants
prioritized by at least one fine-mapping tool at a posterior probability 2 95% of being causal for the phenotype
as “credible set SNPs”, and variants prioritized by at least two tools as “consensus SNPs”. In addition, because
coloc does not take linkage disequilibrium (LD) structure into account, which can confound results due to non-
independence between SNPs, we calculated the LD between each lead QTL variant and the set of fine-mapped
SNPs at each locus using 1000 Genomes (phase 3) European reference samples (Supplementary Fig. 26). In
GWAS loci with multiple colocalized genes this can be used to prioritize the most likely candidate. In the CD19
locus in PD, this approach gave additional weight to suggesting an eQTL in SPNS1 as the likely causal gene,
due to high LD between the SPNS7 lead QTL SNP and the GWAS SNP (r’=0.78), compared to TUFM and
SULT1A2 (Figure S27). With the expanded set of SNPs at each locus, we then overlapped each SNP with sets
of defined promoter and enhancer regions in microglia, neurons, oligodendrocytes, and astrocytes'.
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Supplementary Figure 2: Purity of microglia samples.

A) CyTOF analysis of CD11b-isolated cells on a subsample of n = 30 donors. Cells are gated for P2Y12+CD64+
(microglia); P2Y12-/CD64+ (macrophages) and P2Y12-/CD64- (non-myeloid cells) B) CD11b isolated cells are
gated for MPR14+ (monocytes) in subsample of n = 19 donors with CyTOF analysis C) Expression levels
(TPM+1 log: scale) of cell markers for 255 samples. Blue colors indicate low expression and red colors indicate
high gene expression.
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Supplementary Figure 3: Single-cell expression profiling of CD11b isolated microglia from
individual donor using 10x genomics.

A) UMAP visualization and unsupervised clustering of CD11b isolated microglia from Parkinson's disease donor
from medial frontal gyrus (MFG) and hippocampus. B) UMAP visualization and unsupervised clustering identified
five subsets of microglia clusters. C)Average expression of microglia specific genes.

12



A 100+ B
121
& 7
S 75\ Wl o 10- 1001
o 60
o 55 n 81
Y— |-
O 507 o
[ c 6]
o (@]
e 0 4]
£ 25
= 27
01 ] ] . . . . - . . — . r 20' .. ',
MFG STG SVZ THA 20 30 40 50 60 70 80 90 100 f m
D Region £ Age E Sex
120 115 40 *]
9 g
2 30 g
8 801 8 & 204
© [ 5
N 404 -g £ 104
15 18 ER I
4
o] 321 A0 O_-l - 1
N o o N o e O e I svZ
© £ @ Qé & oe\% G)OQQ%Q 06\6 & & Q,%‘{b \\OQ @ &L Q' I THA I
FELRELE S & A F SO >
O F KR LS R ISia PSRN I GTS I
2 o2 8¢ R o € O GFM
& R 5§ S I R .
& 6{\\0 IS4 80 sos :os_ 20 0
Q@ Cause of death o
Diagnosis

Supplementary Figure 4: Overview of the data.

A) Number of donors by brain region. B-C) Age range of the 100 donors in this study. Blue indicates the
distribution of male donors and red indicates the distribution of female donors. Dashed lines for mean age. D)
Frequency of diagnosis. E) Frequency of cause of death. F) The number of brain regions in this study. Each
donor donated one up to four brain regions.
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Supplementary Figure 5: Sources of variation in the gene expression data.
Linear regression between the first 15 Principal Components (PCs) and the covariates. Colors correspond to the
adjusted R-squared. The P-values are from the Linear regression, two-sided and Bonferroni adjusted. “Tissue”
refers to which brain region the microglia were isolated from.
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Supplementary Figure 6: Main sources of expression variation and correlation of covariates.

A) Percentage of variance explained by technical factors for 255 samples for each gene, variancePartition

package?.

Numbers between parentheses indicate mean values. Data are presented as percentage (%) of total

box spans first to third quartiles, and whiskers extend 1.5 times the

from the box. B) Pairwise canonical correlation between the covariates. Red indicates

variance explained. Box plots show median,

interquartile range (IQR)

high correlation; white indicates low correlation. C-F) Percentage of variance explained by technical and
biological covariates by each brain region. Data are presented as a percentage (%) of total variance explained.
Box plots show median, box spans first to third quartiles, and whiskers extend 1.5 times the interquartile range

(IQR) from the box.
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Supplementary Figure 7: Principal component analysis (PCAs) and data adjustment.

Pair of PCA before (left A,C,E,G) and after (right B,D,F,H) correction by regressing out technical confounders,
colored by A-B) region; C-D) diagnosis; E-F) post-mortem interval (minutes); G-H) age; I-J) sex. The plots show
voom-TMM normalized expression for all samples.
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Supplementary Figure 8: Replication of MiGA age-related genes with peripheral human blood.
Upregulated in age between MiGA and Peters et al*®. (OR 7.14; 95% Cl = 5.21-9.66, P<1e-16). Downregulated

in age between MiGA and Peters (OR = 1.49; 95% CI = 1.17-1

.88; P = 6e-4).
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Supplementary Figure 10: Genotyping QC.

A) Distribution of number of samples per estimated kinship measured using KING. Estimated kinship coefficient
ranges of >0.354, [0.177, 0.354], [0.0884, 0.177] and [0.0442, 0.0884] corresponds to duplicate or monozygotic
twins, 1st-degree, 2nd-degree, and 3rd-degree relationships respectively. B) DNA-RNA sample matching using
QTLtools-mbv measured by the percentage of concordance at heterozygous and homozygous genotypes.
Samples in red failed to match ids between each data. C) Log scaled expression (voom) of sex chromosome
genes (UTY and XIST) for each donor colored by reported sex (blue = male, red = female). D) First two ancestry
principal components of MiGA samples (red squares) on top of 1000 Genome individuals colored by major
populations. African [AFR], Admixed American [AMR], East Asian [EAS], European [EUR], South Asian [SAS].

20



200
150

2 )

e tissue

> -~ MFG

o

B 100 —e- STG

g -o— THA

E —»- sVZ

z

50 /\
0 5 10 15 20
PEER factors

500 4

450

400 1
2 350
] tissue
(2}
=)
G} MFG
& 300
S —- STG
9] - THA
-g 250 1 svz
>
Z

200

150 1

100 1

0 5 10 15 20
PEER factors

Supplementary Figure 11: Probabilistic Estimation of Expression Residuals (PEER) correction
for non-genetic factors in eQTL and sQTL analyses.

To account for hidden effects in gene expression data, such as technical artifacts, we used PEER. After adjusting
for age and sex, a number of PEER factors (from 0 to 20) was tested to maximize eQTLs per gene (top) and
splicing QTLs per intron cluster (bottom) discovery at g-val < 0.05. Based on this result, 5 (SVZ) and 10 (MFG,
STG, and THA) PEER factors were selected for eQTLs and 0 (SVZ) and 5 (MFG, STG, and THA) PEER factors
for sQTLs. Factors were regressed out of the respective gene expression or splicing matrix before running the
association tests.
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Supplementary Figure 12: eQTL effect sizes of the AD-associated genes.
A) x axis shows the eQTL betas from microglia dataset from this study (MiGA), and y axis shows the eQTL betas
of monocytes from MyND dataset?’). B) x axis shows the eQTL betas from microglia (MiGA), and y axis shows
the eQTL betas of monocytes from Fairfax et al. Vertical lines indicate standard error.
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Supplementary Figure 13: Pairwise sharing of colocalized genes.

Locus-Gene combinations across all 5 diseases that colocalized at PP4 >= 0.5 (A) or >= 0.7 (B) were compared
between pairs of QTL datasets. For example, 53% of genes that colocalized PP4 > 0.5 in MiGA sQTLs also
colocalized in MyND sQTLs, whereas only 23% of the MyND sQTLs were found in the MiGA sQTLs.
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Supplementary Figure 14: Full colocalization results in schizophrenia.
Colocalization PP4 displayed for each GWAS locus (right text) and gene (left text) for each QTL dataset. An

empty value means no QTL was present for testing for that gene in that dataset.
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Schizophrenia
GWAS: Ripke et al, 2014; PP4 > 0.5
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Supplementary Figure 15: Colocalization results for each regional microglia dataset in
schizophrenia.

Colocalization PP4 displayed for each GWAS locus (right text) and gene (left text) for each QTL dataset. An
empty value means no QTL was present for testing for that gene in that dataset.
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Bipolar Disorder
GWAS: Stahl et al, 2019; PP4 2 0.5
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Supplementary Figure 16: Full colocalization results in bipolar disorder.
Colocalization PP4 displayed for each GWAS locus (right text) and gene (left text) for each QTL dataset. An
empty value means no QTL was present for testing for that gene in that dataset.
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Bipolar Disorder
GWAS: Stahl et al, 2019; PP4 = 0.5

dataset Microglia type e eQTL 4 sQTL
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Supplementary Figure 17: Colocalization results for each regional microglia dataset in bipolar
disorder.

Colocalization PP4 displayed for each GWAS locus (right text) and gene (left text) for each QTL dataset. An
empty value means no QTL was present for testing for that gene in that dataset.

31



Multiple Sclerosis
GWAS: IMSGC 2019; PP4 2 0.5
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Supplementary Figure 18: Full colocalization results in multiple sclerosis.
Colocalization PP4 displayed for each GWAS locus (right text) and gene (left text) for each QTL dataset. An
empty value means no QTL was present for testing for that gene in that dataset.
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Multiple Sclerosis
GWAS: IMSGC 2019; PP4 = 0.5

dataset © Microglia type e eQTL 4 sQTL
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Supplementary Figure 19: Colocalization results for each regional microglia dataset in multiple
sclerosis.

Colocalization PP4 displayed for each GWAS locus (right text) and gene (left text) for each QTL dataset. An
empty value means no QTL was present for testing for that gene in that dataset.
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Supplementary Figure 20: Overlap of colocalized microglia eQTLs with epigenomic features in
SCZ and MS.
Regions defined by Nott et al (2019) as cell-type specific promoters and enhancers were overlapped with SNP
sets for each colocalizing microglia QTL - GWAS locus. SNP sets consisted of the lead GWAS SNP, the lead
QTL SNP and any fine-mapped consensus or credible SNPs. Results are summarized here by the number of
SNPs in the set that overlap with a particular feature type.
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