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Extended methods  

 

Lopé National Park in Gabon (Lopé) (11.6°, -0.2°):  

The northern part of Lopé where this study took place is a forest-savanna mosaic, with closed-

canopy rainforest extending through the south of the park (1, 2). Mean annual rainfall is 1442mm 

(1984–2016), mean annual temperature is 24◦C (2003–2016), and mean annual humidity is 81% 

(2003–2016) (3). All fires in this study were lit between mid-July and mid-September 2019, the 

long dry season when fires normally occur. The fires were part of the normal fire management 

plan of the park, which tries to maximize fire intensity during burning as a way to maintain the 

savanna component of the mosaic, which would otherwise be lost to encroaching forest (4).  

 

Prior to each fire, a 100x100m plot was walked along its length in 10 equally-spaced parallel 

transects. Grass biomass was recorded every 2m using a calibrated disc pasture meter (see 

Cardoso et al. (2018)). Biomass measurements exceeding 2 tons.ha-1 were classified as 

“flammable” (6), and the ρ for the plot determined as the proportion of “flammable” 

measurements. After the fire, plots were revisited, and the proportion burned determined by 

noting whether each biomass measurement location was within the fire scar or not.  

 

Ten to fifteen minutes before each fire, ten fuel moisture measurements were taken by clipping 

and weighing ten grass samples, which were then oven dried to constant weight and reweighed. 

Fuel moisture content was determined as the amount of water in the sample as a percentage of 

the dried weight. During burning, rate of spread of the fire front was measured using type-K 

thermocouples connected to data loggers (HOBO UX120 4-Channel Thermocouple Logger) that 

logged temperature every second. Thermocouples were positioned at 30cm, above ground level 

at each corner of a 1x1m square, with at least three such squares used in each fire. From this 

set-up, at least three triangles could be used in each fire to calculate rate of spread according to 

the method described by Simard et al. (1984). The point at which the fire front passed a 
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thermocouple was assumed to be when the temperature recorded by the thermocouple peaked. 

During burning, a portable weather station (Kestrel 5500L) was used to log ambient temperature, 

relative humidity, and wind speed and direction every 30s.  

 

Hluhluwe-iMfolozi in South Africa (HiP) (-28.2°, 31.9°): 

HiP covers a wide range of vegetation types, from semi-arid thorn savanna in the lowlands to a 

forest-savanna mosaic in the more mesic uplands (8). Mean annual across the park varies from 

600 to 1000mm, mean annual temperature is around 25 ◦C and mean annual humidity is around 

75% (8, 9). Fires in this data set were lit in the dry season (July to October 2002) to approximate 

the “natural” wildfire regime.  

 

We sampled thirty plots at ten sites. Each plot was between 640 and 880 m2 and was divided into 

2x2m grid cells. Grass biomass was measured at the center of the grid cell using a calibrated disc 

pasture meter and these values were used to infer the fuel connectivity (ρ) for each plot. After 

burning, each grid cell was recorded as unburnt (proportion burned=0), partially burned 

(proportion burned=0.1 to 0.5), or fully burned (proportion burned=0.5 to 1), and the average 

proportion burned for the entire plot was calculated (see (10) for a description of the plots).   

 

Kruger National Park in South Africa (Kruger) (-24.0°, 31.6°):  

Kruger is mostly savanna, with more mesic savanna in the south, more open grasslands in the 

middle, and woodier Colophospermum mopane dominated savanna in the north. Mean annual 

rainfall ranges from 737mm in Pretoriuskop (PKP) and 550mm in Skukuza (SKZ) in the south to 

544mm MAP in Satara (SAT) and 496mm in Mopani (MOP) further northwards. Mean annual 

temperature is approximately around 27◦C and mean annual humidity is around 63% (9). The 

majority of fires in Kruger were lit as part of the long-term ongoing Experimental Burn Plot project 

that aims to capture the effects of different burning regimes on vegetation (11). Since 1954, plots 

across a precipitation gradient approximately 7ha in size have been burned in one of twelve burn 
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treatments. These treatments spanned different burn seasons (late summer, autumn, late winter, 

after spring rains, and mid-summer) and fire frequencies (every 1, 2, 3, 4, 6, and 45 years). Each 

treatment is replicated four times at PKP, SKZ, SAT, and MOP. Generally, fires were lit during the 

hottest, driest times of the day (10am to 3pm).  

 

Of the 1004 fires in Kruger, 965 occurred in the Experimental Burn Plots. Of these fires, 26 (5 in 

PKP, 5 in SKZ, 6 in SAT, and 10 in MOP) had detailed measurements collected using the same 

protocol as in Lopé. The remaining 939 Experimental Burn Plot fires (207 in PKP, 235 in SKZ, 

302 in SAT, and 195 in MOP) had fuel moisture recorded as the mean of four samples, while 

temperature, humidity, and wind speed were recorded as one mean value during the burn. Rate 

of spread was estimated in two ways, either by measuring the time taken for the fire front to pass 

between two points of known distance apart, or as a function of the area burnt by the head fire, 

the mean length of the fire front, and the mean duration of the burn (details can be found in 

Govender et al., 2006).  

 

In addition to the Experimental Burn Plot fires, a further 39 fires were applied as part of a 

landscape-level experiment in the Satara region of the park (see Donaldson et al., 2018, for more 

details). These fires were applied across two seasons (early in the burning season: April/May, 

late in the burning season: September/October). These fires were repeated in the same locations 

for four years, resulting in fires with a range of fuel moisture, weather conditions, and fuel 

connectivities (each year the connectivity of the landscape decreased as grazing kept the grass 

short). Prior to each fire, point-location data on grass height (fuel connectivity) were collected 

from transects placed systematically across the burn block. The same points were afterwards 

assessed for whether they burned or not (proportion burned). Fuel moisture was estimated as the 

mean of 4 grab-samples for each fire, using the same drying and weighing protocol as in Lopé. 

Fire behavior data were collected using a hand-held weather meter and quantifying rate of spread 
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as the time taken for the flame front to move a set distance (at least 3 measures per fire on the 

head fire). 

 

In addition to the fires described above, an additional set of ongoing long-term monitoring plots 

from Kruger were included in this study to evaluate patterns in fuel connectivity and proportion 

burned over space and time. These 533 “Veld Condition Assessment” plots (50 x 60m) were 

established in 1989 to monitor grass biomass and inform fire management across the park. Of 

the original sites, 363 have been continuously monitored since then (1989-2012, 2016-2018), with 

grass biomass being measured every 2m in four transect lines equally spaced along the plot (14). 

Over the same time period, Kruger has also kept detailed fire records from across the park. 

Historically, fire scars were drawn by hand and have subsequently been digitized, and more 

recently MODIS satellite-derived fire-scar mapping has been used (14). The proportion of sites 

that burned in any given year was strongly correlated with the proportion of Kruger that burned in 

that year (slope=1.1, intercept=0.0, adjusted R2=0.88, p<0.0001), indicating that the sites are a 

good representation of the ecosystem.   

 

Cedar Creek Ecosystem Science Reserve, USA (Cedar Creek) (45.4°, -93.2°): 

Cedar Creek is a tallgrass prairie oak savanna (15). Mean annual precipitation is ~775mm, mean 

annual temperature is around 8◦C, and mean annual humidity is around 75%, with strong 

temperature seasonality. For this work, we used a set of 158 out of 168 plots (9 x 9m squares) 

established in 1994 as part of the long-term Big Biodiversity (“BigBio”) experiment (16); this 

experiment intensively manipulates herbaceous community species richness with outcomes for 

herbaceous biomass that are the basis for the canonical relationship between biodiversity and 

ecosystem function. Ten plots were excluded because they have permanent equipment 

established to warm plots as part of another experiment which obstructed estimates of burned 

area. As a matter of routine, all 168 of these plots are burned annually, after snowmelt but before 

the growing season begins in earnest, to clear biomass accumulated during the previous year 
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and to control possible woody encroachment into experimental plots. For this work, we observed 

fire behavior across plots in April 2014 to evaluate how biomass and therefore fuel cover variation 

(i.e., fuel continuity) translated into differences in fire behavior and burned area (i.e., proportion 

burned).  

 

To control for probability of edge effects (since plots are small – 9 x 9 m – and each plot was lit 

along its edge via a propellant), subplots of 5 x 5m were established in the center of each BigBio 

plot. Fuel connectivity and proportion burned estimates were done by establishing a 0.5m grid 

(i.e., 11 x 11 sample points across the whole subplot) and evaluating the state of the vegetation 

that intersected the grid at each sample point. Before the fire, a sample point was scored as 

“flammable” if the intersection crossed grass and “not flammable” if it crossed bare ground. After 

the fire, the sample point was scored as “burnt” if the intersection crossed black/charred 

vegetation and “unburnt” if the intersection crossed green vegetation or bare ground. The grid 

was evaluated using photographs of each plot taken before and after each fire from a telescopic 

boom lift ~ 8m above the center of each plot, using a Canon Rebel T3i with Tamron 10-22mm 

lens set at 10mm, demarcating each plot corner with white paper plates for contrast. Because the 

BigBio experiment aims to eliminate previous season biomass before the next growing season, 

plots that do not burn completely are relit; however, for this work, post-burn plots were 

photographed after only the first burn and before reburning. Photographs were analyzed by two 

independent undergraduate research assistants (L. Ashbrook and M. Sagedahl) and when they 

differed by > 10%, reconciled by a third (A.C. Staver). We also collected ground-based estimates 

of flammable area at 21 subplots before burning and of burned area at 17 subplots after burning, 

to ground-truth the photographic scores. Overall, photo-based evaluations of burned area were 

closely predictive of field calibrations (R2 = 0.954, p < 0.001, n = 38), with nearly as good 

validation across pre- (R2 = 0.885, p < 0.001, N = 21) and post-burn plots (R2 = 0.928, p < 0.001, 

n = 17).  
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All subplots were included in flammable vs. burned analyses except those where the large 

majority of biomass (> 75%) was contributed by non-grass herbaceous species (i.e., forbs), 

based on 2012 biomass estimates published elsewhere for the BigBio experiment. This 

eliminated 92 plots for a total of 66 plots out of the original 158 sampled. 
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Supplementary Figures and Tables 

 

 

Figure S1: Map of grassy ecosystem sites in this study. These included: Cedar Creek Ecosystem 

Science Reserve in the United States of America (775mm mean annual precipitation (MAP) ), 

Lopé National Park in Gabon (1442mm MAP), Hluhluwe-iMfolozi National Park in South Africa 

(600-1000mm MAP), Kruger National Park in South Africa (A), and the sites inside Kruger (park 

outline shaded dark grey) (B) including Mopani (496mm MAP), Satara (544mm MAP), Skukuza 

(550mm MAP), and Pretoriouskop (737mm MAP).  
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Figure S2: Fuel connectivity (ρ) increases with mean grass biomass (in 100m2 plots). Line shows 

fitted Gompertz model, 𝜌 = 1.03 ∗ 𝑒−6.42∗𝑒−0.98∗𝑚𝑒𝑎𝑛 𝑔𝑟𝑎𝑠𝑠 𝑏𝑖𝑜𝑚𝑎𝑠𝑠
, adjusted R2=0.98, p<0.0001, n=57).  
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Figure S3: All fires with fuel moisture content >100% (n=86), showing the differences between 

fires that had a burned area less than 0.2, between 0.2 and 0.6, and more than 0.6 (A), in terms 

of fuel connectivity (ρ) (B), infection probability (λ) (C), fuel moisture content (D), rate of spread 

(E), vapor pressure deficit (E), and wind speed (F).  
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Figure S4: The relationship between rate of spread of the fire front as measured using 

thermocouples placed in a triangular setup and minimum measured wind speed during the same 

period. Line shows fitted linear model, 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑠𝑝𝑟𝑒𝑎𝑑 =  0.04 +  0.15 ∗ 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑, adjusted 

R2=0.49, p<0.0001.  
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Figure S5: Using data from long-term monitoring sites in Kruger National Park, South Africa we 

show how the observed probability of a site burning in any one year changes with changes in the 

measured fuel connectivity (ρ) at that site  (points show individual sites in individual years, bars 

show binned mean probability of burning, and line shows the two linear model fitted to the bars 

when ρ is < 0.64, then probability of burning =  0.03 + 0.001*( ρ /100); and when ρ is > 0.64, then 

probability of burning = -0.23 + 0.005*( ρ /100); adjusted R2=0.97, p<0.0001 ) (A). B) Shows the 

data in FIG. 5A compared to model predictions for the proportion burned, with the solid line 

showing the fitted linear model (slope=0.54, intercept=-0.1, adjusted R2=0.58, p<0.0001). C) 

Shows the data in FIG. 5B compared to model predictions for the proportion burned, with the 

solid line showing the fitted linear model (slope=0.20, intercept=0.09, adjusted R2=0.24, 

p<0.0001). All dotted lines show the relationship y = x which represents the perfect correlation 

between observed and predicted data.    
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Figure S6: Estimated fire infection probability (λ) and rate of spread of the fire front decrease with 

increased fuel moisture (A, B), increase with vapor pressure deficit (C, D), and are not related to 

wind speed (E, F). Curves show the fitted generalized additive model (GAM), and curves are only 

plotted when significant, with standard errors of fits shaded in grey (Table S1). Curves shown 

were fitted when the other two variables were held at a constant median value (fuel moisture= 

43%, vapor pressure deficit=2004 Pa, wind speed=1.4 m/s). In A, C and E, dashed lines show the 

minimum infection probability (λ=0.58) in observed “threshold fires” (those with burned area 

between 0.2 and 0.6) below which fire cannot successfully spread. 
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Table S1: Summary of fitted generalized additive models (GAMs). Each n represents a binned 

group of fires, grouped according to their mean fuel moisture (0-32%, 32-64%, 64-96%, 96-128%, 

>128%), vapor pressure deficit (0-850Pa, 850-1700Pa, 1700-2550Pa, 2550-3400Pa, >3400Pa), 

and wind speed (0-0.88m/s, 0.88-1.76m/s, 1.76-2.64m/s, 2.64-3.52m/s, >3.52m/s). An infection 

probability (λ) was fitted to each group of fires. Groups with fewer than 3 fires were excluded.  All 

smooths were fitted using restricted maximum likelihood (REML), thin plate splines, a smoothing 

parameter of 0.6, and 3 knots (confirmed to be sufficient as k-index > 1 in all cases). Variables 

with a significant explanatory power (p<0.05) are marked with *.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

λ ~ s(mean fuel moisture) + s(mean vapor pressure deficit) + s(mean wind speed) 

                    n=68, adjusted R2=0.60 

 Estimated degrees of 

freedom 

F p value 

Mean fuel moisture 1.2 40 <0.0001 * 

Mean vapor pressure deficit 1.3 6 <0.001 * 

Mean wind speed 1.2 1 0.12 

 

mean rate of spread ~ s(mean fuel moisture) + s(mean vapor pressure deficit) + s(mean wind speed) 

                    n=68, adjusted R2=0.70 

 Estimated degrees of 

freedom 

F p value 

Mean fuel moisture 1.2 66 <0.0001* 

Mean vapor pressure deficit 1.3 2 0.11 

Mean wind speed 1.2 1 0.28 
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