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Figure S1 Quality control and cell type identification in scRNA-seq data of PBMCs. 3 
(a) Scatter plot showing the mitochondrial fractions in each cell (dot) after removing cells with a 4 
high mitochondrial fraction (cutoff, 5%). (b) Distribution of the number of genes detected in each 5 
cell in scRNA-seq data of PBMCs. (c) Distribution of the number of cells expressing the genes 6 
that were identified in the scRNA-seq data of PBMCs. (d) Measured cell number (Y-axis) in 7 
individual samples (X-axis). (e) UMAP plot showing myeloid populations colored by the average 8 
expression of four gene signatures (see SI Materials and Methods). (f) Dot plot showing the 9 
expression of known and canonical DC/monocyte subset markers (Villani, et al, Science, 2017) 10 
across myeloid cells. The size of each circle corresponds to the percentage of cells in the subtype 11 
expressing the gene, and the color represents the average expression. (g) Average expression 12 
(color and square size) of the ten published T cell-subtype gene signatures (see SI Materials and 13 
Methods).(h) Stacked violin plots showing the expression of canonical markers defining T cell 14 
subtypes. (i) Dot plot showing the expression of canonical markers among identified NK/innate-15 
like T-cell subsets. The size of each circle corresponds to the percentage of cells in the subtype 16 
expressing the gene, and the color represents the average expression. (j) Violin plot showing the 17 
local inverse Simpson’s index (LISI) scores across all cells in the PBMC scRNA-seq data for 18 
condition and patient batches, respectively. 19 
  20 
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 21 
Figure S2 Transcriptional changes in immune cells in PBMCs from BD patients. 22 
(a) Principal component analysis (PCA) of 19 samples using all genes quantified by bulk RNA-23 
seq. Patients (dots) are colored by condition (HC: blue; BD: red). (b) Heatmap visualizing the 24 
row-scaled fold change in common DEGs (same as the genes in Figure 2b-2c) in cell types 25 
identified in scRNA-seq data. The fold change is the ratio of the mean expression of the gene in 26 
BD versus HC. (c) The relative fraction of BD patients (red) and HCs (blue) for each cell subtype 27 
in scRNA-seq data. (d) KEGG analysis of DEGs (BD vs. HC) across the four main cell lineages. 28 
The top KEGG terms are colored by the Benjamini–Hochberg-corrected p values. The size 29 
represents the ratio of enriched genes in the pathway. (e) Venn diagrams of the overlap between 30 
DEGs identified by bulk RNA-seq (Figure 2a) and DEGs in monocyte scRNA-seq data (Figure 31 
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2f), with the upregulated genes in the upper panel and the downregulated genes in the lower 32 
panel (59,863 total genes detected in either dataset). The p values are from Fisher’s test. PC: 33 
principal component. 34 
  35 
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 36 
Figure S3 Identification of monocyte subtypes. 37 
(a) The proportions of monocyte subtypes in individual patients. (b) Violin plot showing the local 38 
inverse Simpson’s index (LISI) scores across all cells in the sorted monocyte scRNA-seq data for 39 
condition and patient batches, respectively. (c) Heatmap showing the Spearman correlations 40 
(colors) across all monocyte subtypes based on log-normalized average expression. (d) UMAP 41 
plot of all monocytes colored by the average expression of three published gene signatures (see 42 
SI Materials and Methods).  43 
  44 
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 45 
Figure S4 Pseudotime comparisons among all monocyte subtypes. 46 
(a) UMAP plot showing the pseudotime (color) from the Monocle 3 algorithm. (b) The average 47 
expression of the phagocytosis pathway (see SI Materials and Methods) in each cell (dot) along 48 
the pseudotime of fate 1, colored by monocyte subtype. (c) The average expression of the 49 
antigen presentation pathway (see SI Materials and Methods) in each cell (dots) along the 50 
pseudotime of fate 2, colored by monocyte subtype. (d) The expression of known TFs that drive 51 
macrophage development along fate 2, colored by monocyte subtype. 52 
  53 
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 54 
Figure S5 The proinflammatory features of C1qhi monocytes.  55 
(a-b) Heatmap showing the row-scaled average expression (color) of genes in the phagocytosis 56 
(a) and antigen presentation pathways (KEGG database) (b) across monocyte subtypes. Genes 57 
with an average expression of more than 0.1 across all detected cells are shown. (c) Dot plot 58 
showing the expression of BD-related cytokines across monocyte subtypes. The dot size 59 
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corresponds to the percentage of cells in the subtype expressing the gene, and the color 60 
represents the average expression level. (d) Representative flow cytometry plot of C1qhi 61 
monocytes, non-C1qhiCD16+ monocytes and non-C1qhiCD16- monocytes. 62 
 63 
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Figure S6 Activated IFN-γ pathway in C1qhi monocytes from BD patients. 65 
(a) Volcano plot showing DEGs in C1qhi monocytes between the BD and HC groups (adjusted 66 
p<0.05, fold change ≥ 0.25). Significant genes are colored red, and genes within IFN-γ pathways 67 
are labeled. (b) Violin plot comparing the difference in the area under the curve (AUC, from the 68 
SCENIC algorithm) for the top two TFs (Figure 6b) between BD patients (blue) and HCs (red). (c) 69 
Violin plot showing the expression of predicted TFs (IRF1 and STAT1) in C1qhi monocytes of BD 70 
patients and HCs. (d) Monocytes were stimulated with IFN-α, IFN-β, IFN-γ or blank control in the 71 
concentration of 200 U/ml for 6 h, and the relative mRNA expression (left, C1QA; middle, C1QB; 72 
right, C1QC) to β-actin was measured using RT-qPCR. (e, f) Representative flow cytometry plot 73 
(e) and graph (f) displaying the proportions of C1qhi monocytes after 12 h treatment with IFN-α, 74 
IFN-β or IFN-γ (200U/ml) (n=8). (g) Enzyme-linked immunosorbent assay (ELISA) showing IFN-γ 75 
concentration in serum from BD patients and HCs (n=21 in BD, n=20 in HC). (h-i) Representative 76 
histograms (i) and statisitical graph (h) of flow cytometry data showing the proportion of IFN-γ-77 
positive cells in CD4+ T cells, CD8+ T cells, NK cells (CD3-CD56+), and innate-like T cells 78 
(CD3+CD56+) from BD patients (n=8) and HC (n=7) after 5 h of PMA (phorbol 12-myristate 13-79 
acetate)/ionomycin stimulation. The Wilcoxon test (Figure S6a-c) and independent-samples t-test 80 
(Figure S6d, f-h) were applied. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001. 81 
  82 
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 83 
Figure S7 C1qhi monocytes in BD and other diseases. 84 
(a) Circos plot depicting changes in putative receptor-ligand interactions between C1qhi 85 
monocytes and T/NK cells. The number of significant interactions was inferred by CellPhoneDB, 86 
and the color indicates an increase in the BD (red) or HC (blue) group. Arrows represent outgoing 87 
or incoming interactions (Outgoing interactions: the sum of ligands from C1qhi monocytes that 88 
interact with receptors on certain cell types; incoming interactions are the opposite). (b) Numbers 89 
of significant interactions between C1qhi monocytes and T cells (pink, only significant in BD; 90 
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purple, only significant in HC; grey, significant in both conditions). (c) Dot plot displaying 91 
significant ligand-receptor interactions (Y-axis) between C1qhi monocytes and other immune cells. 92 
C1qhi monocytes expressing receptors are defined as incoming interactions, and those 93 
expressing ligands are defined as outgoing interactions. Circle size and color denote the 94 
difference in interaction scores (inferred by CellPhoneDB) in interacting populations. (d) UMAP 95 
plots revealed C1qhi monocytes in inflammatory diseases, including SLE, RA and KD with 96 
intravenous immunoglobulin therapy. Boxplots showed the ratios of C1qhi monocytes to total 97 
monocytes for individual patients. Dots represent patients. The Wilcoxon test were applied. (e) 98 
UMAP plots revealed that C1qhi monocytes were not identified in blood cancers, including  99 
chronic lymphocytic leukemia (CLL), acute lymphocytic leukemia (ALL), acute myeloid leukemia 100 
(AML). SLE, systemic lupus erythematosus; RA, rheumatoid arthritis; KD, Kawasaki disease; *, 101 
p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001. 102 
  103 
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 104 
Figure S8 Clinical relevance of C1qhi monocyte.  105 
(a) Density plot showing the distribution of top five highly expressed genes in C1Q Monos and 106 
100 randomly selected genes in the GSE70403 cohort (n=42). The p values were calculated by 107 
the Kolmogorov–Smirnov test. (b) Comparison of the z-score-scaled expression (X-axis) of C1q 108 
genes between BD and HC samples in bulk RNA-seq of our in-house cohort. The Wilcoxon test 109 
was applied. (c) The concentration of C1q in serum from the BD (n=9) and HC (n=7) groups, as 110 
measured by ELISA. (d) Heatmap showing the z-score-scaled expression of BD-associated risk 111 
genes in GWAS across monocyte subtypes (see SI Materials and Methods). The means of the 112 
displayed genes for individual subtypes are shown in dot plots. (e) Pearson correlation of C1qhi 113 
monocyte proportion among all monocytes with erythrocyte sedimentation rate (ESR) in BD 114 
patients (n=38). (f) Representative graph of the flow cytometry results showing the proportion of 115 
C1qhi monocytes among HC, IFN-γ-treated, IFN-γ- and tofacitinib-treated monocytes. The 116 
independent-sample t-test (Figure S7c) were applied to calculate the p value. *, p<0.05; **, 117 
p<0.01; ***, p<0.001. 118 
  119 
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SI Materials and Methods 120 
 121 
Single-cell RNA library preparation and sequencing 122 
PBMCs were isolated from blood by density gradient centrifugation and then resuspended in 123 
complete Dulbecco's Modified Eagle Medium (DMEM) (Sigma) or phosphate buffered saline 124 
(PBS). Monocytes were isolated from PBMCs with anti-CD14 microbeads (Miltenyi) according to 125 
the manufacturer’s instructions. Sorted PBMCs or monocytes were washed and resuspended in 126 
PBS with 0.04% Bovine Serum Albumin (BSA), loaded into Chromium microfluidic chips with 3’ 127 
chemistry, and barcoded with a 10× Chromium Controller (10X Genomics). RNA from the 128 
barcoded cells was subsequently reverse transcribed, and sequencing libraries were constructed 129 
with reagents from a Chromium Single Cell 3’ v2 Reagent Kit (10X Genomics) according to the 130 
manufacturer’s instructions. Sequencing was performed with an Illumina Novaseq 6000 according 131 
to the manufacturer’s instructions (Illumina). 132 
 133 
Bulk RNA library preparation and sequencing 134 
Total RNA was extracted from PBMCs with TRIzol reagent. RNA purity was checked with a 135 
NanoPhotometer spectrophotometer (Implen), and RNA integrity was assessed using the RNA 136 
Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies). A total of 1 µg RNA 137 
per sample was used as input for RNA sample preparation. Sequencing libraries were generated 138 
with a NEBNext® UltraTM RNA Library Prep Kit for Illumina® (NEB, USA) following the 139 
manufacturer’s recommendations, and index codes were added to attribute sequences to each 140 
sample. PCR products were purified (AMPure XP system), and library quality was assessed on 141 
the Agilent Bioanalyzer 2100 system. Index-coded samples were clustered using TruSeq PE 142 
Cluster Kitv3-cBot-HS (Illumina) according to the manufacturer’s instructions. After cluster 143 
generation, the library preparations were sequenced on an Illumina HiSeq platform, and 125 bp 144 
paired-end reads were generated. 145 
 146 
Preprocessing of scRNA-seq data 147 
Raw data were processed to generate a count matrix using standard pipelines in the Cell Ranger 148 
Single-Cell Software Suite (v3.0.0). The reads were aligned against the GRCh38 human 149 
reference genome, filtered and subjected to unique molecular identifier (UMI) counting with the 150 
default parameters. The filtered feature matrixes were imported into Seurat (v3.1.5)(1) with the 151 
function Read10× to perform quality control and further exploration. For each sample, data 152 
normalization and variable feature identification were conducted separately with the default 153 
parameters. Cross-dataset anchors were then identified and used to correct for batch effects 154 
across samples. Mitochondrial percentages were calculated by the function 155 
PercentageFeatureSet. We retained cells with between 500 and 4,000 expressed genes and a 156 
mitochondrial percentages of less than 5%. After removing inferred doublets with DoubletFinder 157 
(v2.0) (2), a total of 36,190 qualified PBMCs and 39,385 monocytes remained for subsequent 158 
analyses. PCA was then performed based on 2,000 highly variable genes recognized by the 159 
function FindVariableGenes. 160 
 161 
Cell clustering and annotation 162 
Cell clustering was conducted based on the top 25 principal components using the graph-based 163 
clustering algorithm in the function FindClusters with a resolution of 0.4. UMAP was applied to 164 
visualize the identified clusters. We next used complementary approaches to annotate the cell 165 
clusters. In the first approach, highly differentially expressed genes in a certain cluster were 166 
identified by comparison with all other clusters using the Wilcoxon test in the function 167 
FindAllMarkers (min.pct=0.25, only.pos=T, and logfc.threshold=0.2). The cell clusters were 168 
assigned according to well-known cellular markers from the literature. In the second approach, 169 
we analyzed each cluster using the function AddModuleScore to estimate the average expression 170 
of published and well-established gene signatures, which were downloaded from the literature. In 171 
the third approach, we applied an unbiased cell type recognition method named SingleR (v10)(3), 172 
which leverages default reference transcriptomic datasets of known cell types for annotation, and 173 
assigned clusters based on the predicted cell type annotation. For PBMC scRNA-seq data, we 174 
utilized all the methods. For the sorted monocyte scRNA-seq data, we named cell clusters based 175 
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on the top DEGs from the first method only due to the limited signatures in the literature and 176 
databases in SingleR. 177 
To test whether there were confounding factors in the scRNA-seq analyses, we calculated local 178 
inverse Simpson’s index (LISI) scores across all cells for two potential batches (patients and 179 
HC/BD condition) according to previous studies (4, 5). 180 
 181 
Bulk RNA-seq data analysis 182 
Raw data in FASTQ format were first processed through in-house Perl scripts. In addition, the 183 
Q20, Q30, and GC contents of the clean data were calculated. All downstream analyses were 184 
based on clean, high-quality data. A reference genome index was built, and paired-end clean 185 
reads were aligned to the reference genome using HISAT2 (v2.0.5) (6). For quantification of gene 186 
expression levels, featureCounts  (v1.5.0) (7)  was applied to count the number of reads mapped 187 
to each gene.  188 
The count matrix was input into DESeq2 (v1.30.0)(8) and fitted for a general linear model with a 189 
negative binomial distribution. Only genes with a detected count of more than 20 were retained. 190 
DEGs between the disease and control groups were identified by the functions DESeq and 191 
lfcShrink with the criteria log2 (fold change)>1 and an adjusted p <0.05 (Wald test and Bonferroni 192 
correction). PCA was performed for all qualified genes, and the results were visualized with the 193 
functions vst and plotPCA. 194 
To identify the expression and fold change in these DEGs in the scRNA-seq data of PBMCs, we 195 
extracted the expression profile of each cluster from the integrated slot of a Seurat object by the 196 
function AverageExpression, and the fold change was defined as the ratio of the mean 197 
expression of the gene in BD versus HC. All genes identified in the scRNA-seq data overlapped 198 
with the DEGs in the bulk RNA-seq data analysis. Heatmaps were used to display the expression 199 
and fold change in these significantly upregulated and downregulated genes via pheatmap 200 
(v1.0.12). 201 
To evaluate the immune cell proportions in each sample, we used CIBERSORT(9) to infer the 202 
relative abundance of 22 immune cells among PBMCs by the LM22 signature, with the TPM 203 
(transcript per million) gene matrix as input. LM22 signature matrix was the default reference in 204 
CIBERSORT, and was generated from human peripheral blood (9). Cell types with a total relative 205 
abundance of more than 0.01 across all samples were kept for downstream analyses. The 206 
Wilcoxon test was used to compare the differences between BD and HC samples as indicated in 207 
the figure legends. 208 
 209 
Pathway enrichment analysis 210 
The enriched pathways were assessed by hypergeometric testing in the Gene Ontology (GO) and 211 
Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The enrichments were 212 
performed by the function compareCluster in the clusterProfiler package (v3.0.4)(10). Significantly 213 
enriched pathways were determined with a cutoff of a Benjamini–Hochberg corrected p < 0.05. 214 
 215 
Gene signature analysis 216 
Gene signatures used in the monocyte scRNA-seq analysis were downloaded from the H 217 
(hallmark) gene sets and C2 (curated) gene sets of the MSigDB Collections(11), including the 218 
REACTOME_CELL_CYCLE, KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS, 219 
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION, and 220 
HALLMARK_INTERFERON_GAMMA_RESPONSE signatures. Other signatures were collected 221 
from the previous studies(12). Monocytic cytokines were defined as follows: TNF, IL8, IL6, IL1B, 222 
IL1A, and IL12A. The function AddModuleScore in Seurat was employed to estimate the average 223 
expression of these established gene signatures. 224 
 225 
Trajectory inference and identification of pseudotime-correlated genes 226 
Three different algorithms, including diffusion map(13), TSCAN(14) and Slingshot(15), were used 227 
to infer the pseudotime ordering and trajectories of monocytes. The pseudotime was calculated 228 
by the function quickPseudotime with use.dimred = "pca" in the R package TSCAN (v1.28.0). The 229 
trajectories were built by the function slingshot in the R package Slingshot (v1.8.0), with the 230 
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setting reducedDim = 'PCA'. To visualize the results, we applied diffusion map to calculate 231 
diffusion components in the R package “destiny” v3.4.0(16) using the count matrix as input. 232 
Significantly correlated genes along fate 1 and fate 2 were recognized by the function 233 
testPseudotime with FDR<0.05 and logFC>0.1, and the log-normalized counts of the top 20 234 
correlated genes were visualized with the function plotHeatmap. Nonoverlapping correlated 235 
genes along fate 1 or fate 2 were analyzed for the enrichment of KEGG pathways by the function 236 
compareCluster in clusterProfiler. Selected TFs were visualized along the two fates with the 237 
function plotExpression in scater (v1.18.6). 238 
To verify the pseudotime ordering, we applied Monocle 3(17), which learned the cell trajectory by 239 
reverse graph embedding. The normalized expression matrix of highly variable genes identified 240 
by Seurat was used to create the Monocle object. We also loaded the results of the UMAP 241 
dimension reduction and cell clustering from Seurat into a new object. The trajectory was built by 242 
the functions learn_graph and order_cells with the default settings. 243 
The starting point of the monocyte trajectory was set as SOD2 Monos, which were inferred as the 244 
starting cell type by Monocle3, CytoTRACE, and TSCAN algorithm. SOD2 Monos also exhibited 245 
lower expression of key genes (CSF1R, RHOC, and MAFB) linked to monocyte differentiation 246 
than other monocyte subtypes. 247 
 248 
Transcription factor analysis 249 
Differentially activated TFs in C1Q Monos between BD and HC were identified by SCENIC(18) 250 
tool. The raw count matrix of C1Q Monos was input and filtered for genes expressed in less than 251 
1% of cells. We used GENIE3 algorithm to calculate the coexpression network, and the candidate 252 
TFs were identified by RcisTarget algorithm with the default parameters. The human v9 motif 253 
collection was used as the reference, and the “hg19-500 bp-upstream-7species.mc9nr” and 254 
“hg19-tss-centered-10 kb-7species.mc9nr” databases were downloaded from cisTarget. Then, 255 
the TF activity in each cell was scored by AUCell. C1Q Monos were split into 2 groups based on 256 
the disease state: BD or HC. The differentially activated TFs between the two groups were 257 
identified by the Wilcoxon test with the Benjamini–Hochberg correction. 258 
 259 
Cell-cell interaction analysis 260 
We used CellPhoneDB(19) to infer interactions between C1qhi monocytes and the main IFN-γ-261 
producing cells (T/NK cells). The interaction strength between these two cell types was calculated 262 
based on the mean expression of ligand and receptor. The permutation test was used to 263 
determine the significance of the interaction pairs at p<0.05. 264 
 265 
Public data collection and analysis 266 
BD-associated GWAS risk loci were obtained from the GWAS catalog(20). The highly expressed 267 
genes (~200 genes) in C1Q Monos were calculated by FindAllMarkers as mentioned above.  268 
Public bulk RNA-seq data of blood samples in BD cohorts were downloaded from the GEO 269 
database (GSE17114, GSE165254, and GSE70403). Binomial regression models were used to 270 
build the links between genes within the top five highly expressed genes of C1Q Monos and 271 
disease status. The R package “pROC” was applied to generate receiver operating characteristic 272 
(ROC) curves and estimate the AUC. As the individual array of the GSE70403 cohort used HC 273 
samples as a control, the intensity value of each gene indicates the relative expression (or fold 274 
change) of BD samples compared to HC samples but not the absolute expression. Thus, we used 275 
the Kolmogorov–Smirnov test to determine the significance of differences in fold change among 276 
the top five genes and 500 randomly selected genes instead of the binomial regression models 277 
above. 278 
The scRNA-seq datasets were downloaded from the GEO and ImmPort databases (KD, 279 
GSE168732; SLE, GSE135779; RA, SDY998; AML, GSE116256; CLL, GSE111014; and ALL, 280 
GSE132509). The top 20 highly expressed genes were defined as markers of C1Q Monos. We 281 
used SCENIC to identify the number of cells classified as C1Q Monos with the C1Q Mono 282 
markers as the input gene set. The threshold was automatically determined using 283 
getThresholdSelected with default parameters. Cells with scores higher than the selected 284 
thresholds were classified as C1Q Mono. 285 
 286 
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Flow cytometry and phospho-flow cytometry 287 
PBMCs or monocytes were stained with fluorochrome-labeled antibodies for the following surface 288 
markers: CD14 (M5E2, BD Biosciences), CD16 (3G8, BD Biosciences), CD3 (HIT3a, BD 289 
Biosciences), CD56 (MEM-188, BioLegend), and CD4 (RPA-T4, BioLegend). For intracellular 290 
staining, cells were fixed and permeabilized according to the manufacturer’s instructions 291 
(Cytofix/Cytoperm and Perm/Wash Buffer, BD Biosciences) and stained for 50 min on ice for C1q 292 
(polyclonal, Abcam), TNF-α (MAB11, BD Biosciences), IL-6 (MQ2-13A5, BD Biosciences) and 293 
IFN-γ (4S.B3, BD Biosciences). Brefeldin A was added before the intracellular staining of C1q. 294 
For intracellular phosphoprotein staining, cells were fixed and permeabilized according to the 295 
manufacturer’s instructions (Cytofix Buffer and Phosflow Buffer I, BD Biosciences) and stained for 296 
50 min on ice for phospho-STAT1 (polyclonal, Bioss Antibodies). The stained cells were 297 
immediately analyzed with a BD FACSAria II and FlowJo Software (Tree Star). Because the MFIs 298 
varied among different batches in phospho-flow cytometry, we normalized the MFI to an internal 299 
control each time according to a published protocol(21). 300 
 301 
Cytokine secretion assay 302 
Freshly isolated monocytes were suspended in DMEM and stimulated with LPS (20 ng/ml) for 4 h 303 
at 37°C and 5% CO2. Then, surface and intracellular stainings were performed as mentioned 304 
above. The proportions of IL-6+ and TNF-α+ cells among monocytes were analyzed by flow 305 
cytometry. 306 
Freshly isolated PBMCs were suspended in RPMI 1640 and stimulated with Cell Activation 307 
Cocktail with Brefeldin A (Biolegend) for 5 h at 37°C and 5% CO2. Then, surface and intracellular 308 
stainings were performed as mentioned above. The proportions of IFN-γ+ cells among CD4+ T 309 
cells, CD8+ T cells, CD3-CD56+ cells and CD3+CD56+ cells were analyzed by flow cytometry.  310 
 311 
Phagocytosis test 312 
Freshly isolated monocytes were suspended in 1 ml PBS at 5×105 cells/ml and incubated with 1 313 
mg/ml TRITC-labeled 70 MW dextran at 4°C (negative control) or 37°C (blank control) for 60 min. 314 
Then, the cells were harvested and analyzed with a BD FACSAria II. The ΔMFI between the two 315 
conditions (37°C and 4°C) was employed to measure phagocytosis ability. 316 
 317 
IFN-γ and tofacitinib stimulation test 318 
Freshly isolated monocytes (5×105 cells/ml) were cultured in DMEM in a 24-well plate at 37°C and 319 
5% CO2, and IFN-α, IFN-β, IFN-γ (200 U/ml, PeproTech) was added for stimulation. In the drug 320 
treatment assay, IFN-γ (200U/ml, PeproTech) with or without tofacitinib (10nM, Selleck) was added 321 
for stimulation. Cells were harvested for PCR and flow cytometry analyses of C1q expression after 322 
6 h and 12 h, respectively. 323 
 324 
Enzyme-linked immunosorbent assay (ELISA) 325 
Serum C1q (ab170246, Abcam) and IFN-γ (ab46025, Abcam) levels were determined in duplicate 326 
in 96-well half-area plates using a standard plate reader. The assays were performed according 327 
to the manufacturer’s instructions (Abcam) with appropriate dilutions. 328 
 329 
RNA extraction and reverse transcription-quantitative PCR (RT-qPCR) 330 
Total RNA was extracted from monocytes stimulated with IFN-γ for 6 h using the TRIzol (Sigma) 331 
method, and 500 ng total RNA was reverse transcribed using a Fast All-in-One RT Kit (ES 332 
Science, China). Real-time PCR was performed in triplicate with SYBR Green Master Mix and a 333 
Roche LightCyclerTM 480. The primer sequences were as follows: C1qA, forward: 5’-334 
TCTGCACTGTACCCGGCTA-3’ and reverse: 5’-CCCTGGTAAATGTGACCCTTTT-3’; C1qB, 335 
forward: 5’-ATGGGGCAGCATCCCAGTA-3’ and reverse: 5’-CTCCCTTCTCTCCGAACTCAC-3’; 336 
C1qC, forward: 5’-CCAACCCGCAGGGAGATTATG-3’ and reverse: 5’-337 
CCGAGTTGACCTGATTGGTTTT-3’; and GAPDH, forward: 5’-GCGAGATCCCTCCAAAATCAA-338 
3’ and reverse: 5’-GTTCACACCCATGACGAACAT-3’. The results were normalized to GAPDH 339 
expression levels, and data were shown as the relative gene expression. 340 
 341 
Statistical analysis 342 
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The data are summarized as the mean ± SD. To compare two groups, independent-sample t-343 
tests or paired t-tests were used for normally distributed variables, and Wilcoxon rank-sum tests 344 
were used for non-normally distributed variables. To compare more than two groups, one-way 345 
analysis of variance (ANOVA) with the Tukey–Kramer post hoc test was used to compare data 346 
displaying a normal distribution and homogeneity of variance. A two-tailed p<0.05 was 347 
considered to indicate statistical significance; *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001. 348 
All statistical analyses were performed using SPSS v.17.0 and R v4.0.2. 349 
 350 
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