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Figure S1 Quality control and cell type identification in scRNA-seq data of PBMCs.

(a) Scatter plot showing the mitochondrial fractions in each cell (dot) after removing cells with a
high mitochondrial fraction (cutoff, 5%). (b) Distribution of the number of genes detected in each
cell in scRNA-seq data of PBMCs. (c) Distribution of the number of cells expressing the genes
that were identified in the scRNA-seq data of PBMCs. (d) Measured cell number (Y-axis) in
individual samples (X-axis). () UMAP plot showing myeloid populations colored by the average
expression of four gene signatures (see S/ Materials and Methods). (f) Dot plot showing the
expression of known and canonical DC/monocyte subset markers (Villani, et al, Science, 2017)
across myeloid cells. The size of each circle corresponds to the percentage of cells in the subtype
expressing the gene, and the color represents the average expression. (g) Average expression
(color and square size) of the ten published T cell-subtype gene signatures (see S/ Materials and
Methods).(h) Stacked violin plots showing the expression of canonical markers defining T cell
subtypes. (i) Dot plot showing the expression of canonical markers among identified NK/innate-
like T-cell subsets. The size of each circle corresponds to the percentage of cells in the subtype
expressing the gene, and the color represents the average expression. (j) Violin plot showing the
local inverse Simpson’s index (LISI) scores across all cells in the PBMC scRNA-seq data for
condition and patient batches, respectively.
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Figure S2 Transcriptional changes in immune cells in PBMCs from BD patients.

(a) Principal component analysis (PCA) of 19 samples using all genes quantified by bulk RNA-
seq. Patients (dots) are colored by condition (HC: blue; BD: red). (b) Heatmap visualizing the
row-scaled fold change in common DEGs (same as the genes in Figure 2b-2c) in cell types
identified in scRNA-seq data. The fold change is the ratio of the mean expression of the gene in
BD versus HC. (c) The relative fraction of BD patients (red) and HCs (blue) for each cell subtype
in scRNA-seq data. (d) KEGG analysis of DEGs (BD vs. HC) across the four main cell lineages.
The top KEGG terms are colored by the Benjamini-Hochberg-corrected p values. The size
represents the ratio of enriched genes in the pathway. (e) Venn diagrams of the overlap between
DEGs identified by bulk RNA-seq (Figure 2a) and DEGs in monocyte scRNA-seq data (Figure
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2f), with the upregulated genes in the upper panel and the downregulated genes in the lower
panel (59,863 total genes detected in either dataset). The p values are from Fisher’s test. PC:
principal component.
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Figure S3 Identification of monocyte

subtypes.
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(a) The proportions of monocyte subtypes in individual patients. (b) Violin plot showing the local
inverse Simpson’s index (LISI) scores across all cells in the sorted monocyte scRNA-seq data for
condition and patient batches, respectively. (¢) Heatmap showing the Spearman correlations
(colors) across all monocyte subtypes based on log-normalized average expression. (d) UMAP
plot of all monocytes colored by the average expression of three published gene signatures (see

SI Materials and Methods).
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Figure S4 Pseudotime comparisons among all monocyte subtypes.

(a) UMAP plot showing the pseudotime (color) from the Monocle 3 algorithm. (b) The average
expression of the phagocytosis pathway (see S/ Materials and Methods) in each cell (dot) along
the pseudotime of fate 1, colored by monocyte subtype. (c) The average expression of the
antigen presentation pathway (see S/ Materials and Methods) in each cell (dots) along the
pseudotime of fate 2, colored by monocyte subtype. (d) The expression of known TFs that drive
macrophage development along fate 2, colored by monocyte subtype.
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Figure S5 The proinflammatory features of C1q" monocytes.
(a-b) Heatmap showing the row-scaled average expression (color) of genes in the phagocytosis
(a) and antigen presentation pathways (KEGG database) (b) across monocyte subtypes. Genes
with an average expression of more than 0.1 across all detected cells are shown. (c) Dot plot
showing the expression of BD-related cytokines across monocyte subtypes. The dot size
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corresponds to the percentage of cells in the subtype expressing the gene, and the color
represents the average expression level. (d) Representative flow cytometry plot of C1q"
monocytes, non-C1q"CD16* monocytes and non-C1q"CD16™ monocytes.
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Figure S6 Activated IFN-y pathway in C1g" monocytes from BD patients.

(a) Volcano plot showing DEGs in C1g" monocytes between the BD and HC groups (adjusted
p<0.05, fold change = 0.25). Significant genes are colored red, and genes within IFN-y pathways
are labeled. (b) Violin plot comparing the difference in the area under the curve (AUC, from the
SCENIC algorithm) for the top two TFs (Figure 6b) between BD patients (blue) and HCs (red). (c)
Violin plot showing the expression of predicted TFs (IRF1 and STAT1) in C1g" monocytes of BD
patients and HCs. (d) Monocytes were stimulated with IFN-a, IFN-B, IFN-y or blank control in the
concentration of 200 U/ml for 6 h, and the relative mRNA expression (left, C1QA; middle, C1QB;
right, C1QC) to B-actin was measured using RT-gPCR. (e, f) Representative flow cytometry plot
(e) and graph (f) displaying the proportions of C1g"™ monocytes after 12 h treatment with IFN-a,
IFN-B or IFN-y (200U/ml) (n=8). (g) Enzyme-linked immunosorbent assay (ELISA) showing IFN-y
concentration in serum from BD patients and HCs (n=21 in BD, n=20 in HC). (h-i) Representative
histograms (i) and statisitical graph (h) of flow cytometry data showing the proportion of IFN-y-
positive cells in CD4* T cells, CD8"* T cells, NK cells (CD3CD56"), and innate-like T cells
(CD3*CD56") from BD patients (n=8) and HC (n=7) after 5 h of PMA (phorbol 12-myristate 13-
acetate)/ionomycin stimulation. The Wilcoxon test (Figure S6a-c) and independent-samples t-test
(Figure S6d, f-h) were applied. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001.
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Figure S7 C1g" monocytes in BD and other diseases.
(a) Circos plot depicting changes in putative receptor-ligand interactions between C1g"
monocytes and T/NK cells. The number of significant interactions was inferred by CellPhoneDB,
and the color indicates an increase in the BD (red) or HC (blue) group. Arrows represent outgoing
or incoming interactions (Outgoing interactions: the sum of ligands from C1g™ monocytes that
interact with receptors on certain cell types; incoming interactions are the opposite). (b) Numbers
of significant interactions between C1g™ monocytes and T cells (pink, only significant in BD;
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purple, only significant in HC; grey, significant in both conditions). (c) Dot plot displaying
significant ligand-receptor interactions (Y-axis) between C1q"™ monocytes and other immune cells.
C1g" monocytes expressing receptors are defined as incoming interactions, and those
expressing ligands are defined as outgoing interactions. Circle size and color denote the
difference in interaction scores (inferred by CellPhoneDB) in interacting populations. (d) UMAP
plots revealed C1g™ monocytes in inflammatory diseases, including SLE, RA and KD with
intravenous immunoglobulin therapy. Boxplots showed the ratios of C1g™ monocytes to total
monocytes for individual patients. Dots represent patients. The Wilcoxon test were applied. (e)
UMAP plots revealed that C19™ monocytes were not identified in blood cancers, including
chronic lymphocytic leukemia (CLL), acute lymphocytic leukemia (ALL), acute myeloid leukemia
(AML). SLE, systemic lupus erythematosus; RA, rheumatoid arthritis; KD, Kawasaki disease; *,
p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001.
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Figure S8 Clinical relevance of C1g" monocyte.

(a) Density plot showing the distribution of top five highly expressed genes in C1Q Monos and
100 randomly selected genes in the GSE70403 cohort (n=42). The p values were calculated by
the Kolmogorov—Smirnov test. (b) Comparison of the z-score-scaled expression (X-axis) of C1q
genes between BD and HC samples in bulk RNA-seq of our in-house cohort. The Wilcoxon test
was applied. (¢) The concentration of C1q in serum from the BD (n=9) and HC (n=7) groups, as
measured by ELISA. (d) Heatmap showing the z-score-scaled expression of BD-associated risk
genes in GWAS across monocyte subtypes (see SI Materials and Methods). The means of the
displayed genes for individual subtypes are shown in dot plots. (e) Pearson correlation of C1g"
monocyte proportion among all monocytes with erythrocyte sedimentation rate (ESR) in BD
patients (n=38). (f) Representative graph of the flow cytometry results showing the proportion of
C1g" monocytes among HC, IFN-y-treated, IFN-y- and tofacitinib-treated monocytes. The
independent-sample t-test (Figure S7c¢) were applied to calculate the p value. *, p<0.05; **,
p<0.01; ***, p<0.001.
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S| Materials and Methods

Single-cell RNA library preparation and sequencing

PBMCs were isolated from blood by density gradient centrifugation and then resuspended in
complete Dulbecco's Modified Eagle Medium (DMEM) (Sigma) or phosphate buffered saline
(PBS). Monocytes were isolated from PBMCs with anti-CD14 microbeads (Miltenyi) according to
the manufacturer’s instructions. Sorted PBMCs or monocytes were washed and resuspended in
PBS with 0.04% Bovine Serum Albumin (BSA), loaded into Chromium microfluidic chips with 3’
chemistry, and barcoded with a 10x Chromium Controller (10X Genomics). RNA from the
barcoded cells was subsequently reverse transcribed, and sequencing libraries were constructed
with reagents from a Chromium Single Cell 3’ v2 Reagent Kit (10X Genomics) according to the
manufacturer’s instructions. Sequencing was performed with an lllumina Novaseq 6000 according
to the manufacturer’s instructions (lllumina).

Bulk RNA library preparation and sequencing

Total RNA was extracted from PBMCs with TRIzol reagent. RNA purity was checked with a
NanoPhotometer spectrophotometer (Implen), and RNA integrity was assessed using the RNA
Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies). A total of 1 uyg RNA
per sample was used as input for RNA sample preparation. Sequencing libraries were generated
with a NEBNext® Ultra™ RNA Library Prep Kit for lllumina® (NEB, USA) following the
manufacturer’'s recommendations, and index codes were added to attribute sequences to each
sample. PCR products were purified (AMPure XP system), and library quality was assessed on
the Agilent Bioanalyzer 2100 system. Index-coded samples were clustered using TruSeq PE
Cluster Kitv3-cBot-HS (lllumina) according to the manufacturer’s instructions. After cluster
generation, the library preparations were sequenced on an lllumina HiSeq platform, and 125 bp
paired-end reads were generated.

Preprocessing of scRNA-seq data

Raw data were processed to generate a count matrix using standard pipelines in the Cell Ranger
Single-Cell Software Suite (v3.0.0). The reads were aligned against the GRCh38 human
reference genome, filtered and subjected to unique molecular identifier (UMI) counting with the
default parameters. The filtered feature matrixes were imported into Seurat (v3.1.5)(1) with the
function Read10x to perform quality control and further exploration. For each sample, data
normalization and variable feature identification were conducted separately with the default
parameters. Cross-dataset anchors were then identified and used to correct for batch effects
across samples. Mitochondrial percentages were calculated by the function
PercentageFeatureSet. We retained cells with between 500 and 4,000 expressed genes and a
mitochondrial percentages of less than 5%. After removing inferred doublets with DoubletFinder
(v2.0) (2), a total of 36,190 qualified PBMCs and 39,385 monocytes remained for subsequent
analyses. PCA was then performed based on 2,000 highly variable genes recognized by the
function FindVariableGenes.

Cell clustering and annotation

Cell clustering was conducted based on the top 25 principal components using the graph-based
clustering algorithm in the function FindClusters with a resolution of 0.4. UMAP was applied to
visualize the identified clusters. We next used complementary approaches to annotate the cell
clusters. In the first approach, highly differentially expressed genes in a certain cluster were
identified by comparison with all other clusters using the Wilcoxon test in the function
FindAlIMarkers (min.pct=0.25, only.pos=T, and logfc.threshold=0.2). The cell clusters were
assigned according to well-known cellular markers from the literature. In the second approach,
we analyzed each cluster using the function AddModuleScore to estimate the average expression
of published and well-established gene signatures, which were downloaded from the literature. In
the third approach, we applied an unbiased cell type recognition method named SingleR (v10)(3),
which leverages default reference transcriptomic datasets of known cell types for annotation, and
assigned clusters based on the predicted cell type annotation. For PBMC scRNA-seq data, we
utilized all the methods. For the sorted monocyte scRNA-seq data, we named cell clusters based
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on the top DEGs from the first method only due to the limited signatures in the literature and
databases in SingleR.

To test whether there were confounding factors in the scRNA-seq analyses, we calculated local
inverse Simpson’s index (LISI) scores across all cells for two potential batches (patients and
HC/BD condition) according to previous studies (4, 5).

Bulk RNA-seq data analysis

Raw data in FASTQ format were first processed through in-house Perl scripts. In addition, the
Q20, Q30, and GC contents of the clean data were calculated. All downstream analyses were
based on clean, high-quality data. A reference genome index was built, and paired-end clean
reads were aligned to the reference genome using HISAT2 (v2.0.5) (6). For quantification of gene
expression levels, featureCounts (v1.5.0) (7) was applied to count the number of reads mapped
to each gene.

The count matrix was input into DESeqg2 (v1.30.0)(8) and fitted for a general linear model with a
negative binomial distribution. Only genes with a detected count of more than 20 were retained.
DEGs between the disease and control groups were identified by the functions DESeq and
IfcShrink with the criteria log2 (fold change)>1 and an adjusted p <0.05 (Wald test and Bonferroni
correction). PCA was performed for all qualified genes, and the results were visualized with the
functions vst and plotPCA.

To identify the expression and fold change in these DEGs in the scRNA-seq data of PBMCs, we
extracted the expression profile of each cluster from the integrated slot of a Seurat object by the
function AverageExpression, and the fold change was defined as the ratio of the mean
expression of the gene in BD versus HC. All genes identified in the scRNA-seq data overlapped
with the DEGs in the bulk RNA-seq data analysis. Heatmaps were used to display the expression
and fold change in these significantly upregulated and downregulated genes via pheatmap
(v1.0.12).

To evaluate the immune cell proportions in each sample, we used CIBERSORT(9) to infer the
relative abundance of 22 immune cells among PBMCs by the LM22 signature, with the TPM
(transcript per million) gene matrix as input. LM22 signature matrix was the default reference in
CIBERSORT, and was generated from human peripheral blood (9). Cell types with a total relative
abundance of more than 0.01 across all samples were kept for downstream analyses. The
Wilcoxon test was used to compare the differences between BD and HC samples as indicated in
the figure legends.

Pathway enrichment analysis

The enriched pathways were assessed by hypergeometric testing in the Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The enrichments were
performed by the function compareCluster in the clusterProfiler package (v3.0.4)(10). Significantly
enriched pathways were determined with a cutoff of a Benjamini-Hochberg corrected p < 0.05.

Gene signature analysis

Gene signatures used in the monocyte scRNA-seq analysis were downloaded from the H
(hallmark) gene sets and C2 (curated) gene sets of the MSigDB Collections(11), including the
REACTOME_CELL_CYCLE, KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS,
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION, and
HALLMARK_INTERFERON_GAMMA_RESPONSE signatures. Other signatures were collected
from the previous studies(12). Monocytic cytokines were defined as follows: TNF, IL8, IL6, IL1B,
IL1A, and IL12A. The function AddModuleScore in Seurat was employed to estimate the average
expression of these established gene signatures.

Trajectory inference and identification of pseudotime-correlated genes

Three different algorithms, including diffusion map(13), TSCAN(14) and Slingshot(15), were used
to infer the pseudotime ordering and trajectories of monocytes. The pseudotime was calculated
by the function quickPseudotime with use.dimred = "pca” in the R package TSCAN (v1.28.0). The
trajectories were built by the function slingshot in the R package Slingshot (v1.8.0), with the
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setting reducedDim = 'PCA". To visualize the results, we applied diffusion map to calculate
diffusion components in the R package “destiny” v3.4.0(16) using the count matrix as input.
Significantly correlated genes along fate 1 and fate 2 were recognized by the function
testPseudotime with FDR<0.05 and logFC=>0.1, and the log-normalized counts of the top 20
correlated genes were visualized with the function plotHeatmap. Nonoverlapping correlated
genes along fate 1 or fate 2 were analyzed for the enrichment of KEGG pathways by the function
compareCluster in clusterProfiler. Selected TFs were visualized along the two fates with the
function plotExpression in scater (v1.18.6).

To verify the pseudotime ordering, we applied Monocle 3(17), which learned the cell trajectory by
reverse graph embedding. The normalized expression matrix of highly variable genes identified
by Seurat was used to create the Monocle object. We also loaded the results of the UMAP
dimension reduction and cell clustering from Seurat into a new object. The trajectory was built by
the functions learn_graph and order_cells with the default settings.

The starting point of the monocyte trajectory was set as SOD2 Monos, which were inferred as the
starting cell type by Monocle3, CytoTRACE, and TSCAN algorithm. SOD2 Monos also exhibited
lower expression of key genes (CSF1R, RHOC, and MAFB) linked to monocyte differentiation
than other monocyte subtypes.

Transcription factor analysis

Differentially activated TFs in C1Q Monos between BD and HC were identified by SCENIC(18)
tool. The raw count matrix of C1Q Monos was input and filtered for genes expressed in less than
1% of cells. We used GENIE3 algorithm to calculate the coexpression network, and the candidate
TFs were identified by RcisTarget algorithm with the default parameters. The human v9 motif
collection was used as the reference, and the “hg19-500 bp-upstream-7species.mc9nr” and
“hg19-tss-centered-10 kb-7species.mc9nr” databases were downloaded from cisTarget. Then,
the TF activity in each cell was scored by AUCell. C1Q Monos were split into 2 groups based on
the disease state: BD or HC. The differentially activated TFs between the two groups were
identified by the Wilcoxon test with the Benjamini-Hochberg correction.

Cell-cell interaction analysis

We used CellPhoneDB(19) to infer interactions between C1g" monocytes and the main IFN-y-
producing cells (T/NK cells). The interaction strength between these two cell types was calculated
based on the mean expression of ligand and receptor. The permutation test was used to
determine the significance of the interaction pairs at p<0.05.

Public data collection and analysis

BD-associated GWAS risk loci were obtained from the GWAS catalog(20). The highly expressed
genes (~200 genes) in C1Q Monos were calculated by FindAllMarkers as mentioned above.
Public bulk RNA-seq data of blood samples in BD cohorts were downloaded from the GEO
database (GSE17114, GSE165254, and GSE70403). Binomial regression models were used to
build the links between genes within the top five highly expressed genes of C1Q Monos and
disease status. The R package “pROC” was applied to generate receiver operating characteristic
(ROC) curves and estimate the AUC. As the individual array of the GSE70403 cohort used HC
samples as a control, the intensity value of each gene indicates the relative expression (or fold
change) of BD samples compared to HC samples but not the absolute expression. Thus, we used
the Kolmogorov—Smirnov test to determine the significance of differences in fold change among
the top five genes and 500 randomly selected genes instead of the binomial regression models
above.

The scRNA-seq datasets were downloaded from the GEO and ImmPort databases (KD,
GSE168732; SLE, GSE135779; RA, SDY998; AML, GSE116256; CLL, GSE111014; and ALL,
GSE132509). The top 20 highly expressed genes were defined as markers of C1Q Monos. We
used SCENIC to identify the number of cells classified as C1Q Monos with the C1Q Mono
markers as the input gene set. The threshold was automatically determined using
getThresholdSelected with default parameters. Cells with scores higher than the selected
thresholds were classified as C1Q Mono.

16



Flow cytometry and phospho-flow cytometry

PBMCs or monocytes were stained with fluorochrome-labeled antibodies for the following surface
markers: CD14 (M5E2, BD Biosciences), CD16 (3G8, BD Biosciences), CD3 (HIT3a, BD
Biosciences), CD56 (MEM-188, BioLegend), and CD4 (RPA-T4, BioLegend). For intracellular
staining, cells were fixed and permeabilized according to the manufacturer’s instructions
(Cytofix/Cytoperm and Perm/Wash Buffer, BD Biosciences) and stained for 50 min on ice for C1q
(polyclonal, Abcam), TNF-a (MAB11, BD Biosciences), IL-6 (MQ2-13A5, BD Biosciences) and
IFN-y (4S.B3, BD Biosciences). Brefeldin A was added before the intracellular staining of C1q.
For intracellular phosphoprotein staining, cells were fixed and permeabilized according to the
manufacturer’s instructions (Cytofix Buffer and Phosflow Buffer |, BD Biosciences) and stained for
50 min on ice for phospho-STAT1 (polyclonal, Bioss Antibodies). The stained cells were
immediately analyzed with a BD FACSAria Il and FlowJo Software (Tree Star). Because the MFls
varied among different batches in phospho-flow cytometry, we normalized the MFI to an internal
control each time according to a published protocol(21).

Cytokine secretion assay

Freshly isolated monocytes were suspended in DMEM and stimulated with LPS (20 ng/ml) for 4 h
at 37°C and 5% CO:z. Then, surface and intracellular stainings were performed as mentioned
above. The proportions of IL-6* and TNF-a* cells among monocytes were analyzed by flow
cytometry.

Freshly isolated PBMCs were suspended in RPMI 1640 and stimulated with Cell Activation
Cocktail with Brefeldin A (Biolegend) for 5 h at 37°C and 5% COz2. Then, surface and intracellular
stainings were performed as mentioned above. The proportions of IFN-y* cells among CD4* T
cells, CD8* T cells, CD3"CD56" cells and CD3*CD56" cells were analyzed by flow cytometry.

Phagocytosis test

Freshly isolated monocytes were suspended in 1 ml PBS at 5x10° cells/ml and incubated with 1
mg/ml TRITC-labeled 70 MW dextran at 4°C (negative control) or 37°C (blank control) for 60 min.
Then, the cells were harvested and analyzed with a BD FACSAria Il. The AMFI between the two
conditions (37°C and 4°C) was employed to measure phagocytosis ability.

IFN-y and tofacitinib stimulation test

Freshly isolated monocytes (5%10° cells/ml) were cultured in DMEM in a 24-well plate at 37°C and
5% COz2, and IFN-a, IFN-B, IFN-y (200 U/ml, PeproTech) was added for stimulation. In the drug
treatment assay, IFN-y (200U/ml, PeproTech) with or without tofacitinib (10nM, Selleck) was added
for stimulation. Cells were harvested for PCR and flow cytometry analyses of C1q expression after
6 h and 12 h, respectively.

Enzyme-linked immunosorbent assay (ELISA)

Serum C1q (ab170246, Abcam) and IFN-y (ab46025, Abcam) levels were determined in duplicate
in 96-well half-area plates using a standard plate reader. The assays were performed according
to the manufacturer’s instructions (Abcam) with appropriate dilutions.

RNA extraction and reverse transcription-quantitative PCR (RT-qPCR)

Total RNA was extracted from monocytes stimulated with IFN-y for 6 h using the TRIzol (Sigma)
method, and 500 ng total RNA was reverse transcribed using a Fast All-in-One RT Kit (ES
Science, China). Real-time PCR was performed in triplicate with SYBR Green Master Mix and a
Roche LightCycler™ 480. The primer sequences were as follows: C1qgA, forward: 5'-
TCTGCACTGTACCCGGCTA-3 and reverse: 5-CCCTGGTAAATGTGACCCTTTT-3’; C1gB,
forward: 5-ATGGGGCAGCATCCCAGTA-3’ and reverse: 5-CTCCCTTCTCTCCGAACTCAC-3’;
C1qC, forward: 5-CCAACCCGCAGGGAGATTATG-3’ and reverse: 5'-
CCGAGTTGACCTGATTGGTTTT-3’; and GAPDH, forward: 5-GCGAGATCCCTCCAAAATCAA-
3’ and reverse: 5-GTTCACACCCATGACGAACAT-3'. The results were normalized to GAPDH
expression levels, and data were shown as the relative gene expression.

Statistical analysis
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The data are summarized as the mean + SD. To compare two groups, independent-sample t-
tests or paired t-tests were used for normally distributed variables, and Wilcoxon rank-sum tests
were used for non-normally distributed variables. To compare more than two groups, one-way
analysis of variance (ANOVA) with the Tukey—Kramer post hoc test was used to compare data
displaying a normal distribution and homogeneity of variance. A two-tailed p<0.05 was
considered to indicate statistical significance; *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001.
All statistical analyses were performed using SPSS v.17.0 and R v4.0.2.
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