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1 Introduction

In this supplementary section, we include experiments that separately address
potential confounders to our analysis, model optimization, and performance of
our MT-GNN method on healthy HCP data. Our first experiment is to assess
model performance while accounting for certain potential confounders such as
language laterality, tumor size, age, and gender. We include this experiment to
observe any correlation between the confounders and model performance. Re-
garding model optimization, we explore with different architectures to maximize
overfitting to our training data. We then explore the effect of adding dropout
to this overfit model and observe validation accuracy. We include this experi-
ment to show the robustness and generalization capabilities of the main model
presented in the manuscript. Regarding the healthy HCP data, we observe the
performance of our MT-GNN method on healthy HCP data without synthetic
tumors. Our motivation for including this experiment is to observe how well
our model does on the uncontaminated HCP data, to act as a realistic “ground
truth” for model performance before adding the simulated tumor.

2 Confounder analysis

We assess model performance (both AUC and TPR for all four tasks) against
four separate confounders, language laterality, tumor size, age, and gender to
observe if there is a strong correlation between performance and the confounding
variables. Here, laterality refers to a quantitative measure between -1 and 1 that
describes handedness of the subject, and the same 10 fold-CV evaluation was
used. The performance metrics are based on the same repeated 10-fold CV
splits used in the paper. Likewise, we separated the testing performance based
on gender and used a t-test to determine significance of model performance on
men vs. women. We include the gender analysis table in and correlation plots
with associated lines of best fit and p-values for the quantitative confounders
in Section 2. STable 1 shows the gender analysis performance, where each task
has a p-value greater than 0.05, indicating no significant change in performance.
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STable 1: Gender confounder analysis.

Task Male TPR Male AUC Female TPR Female AUC P-value

Language .74 ± .013 .75 ± .031 .76 ± .016 .76 ± .026 .52
Finger .85 ± .017 .84 ± .029 .84 ± .017 .83 ± .019 .42
Foot .82 ± .031 .79 ± .032 .81 ± .039 .83 ± .019 .37

Tongue .80 ± .019 .81 ± .027 .81 ± .018 .79 ± .021 .33

SFigs. 1-2 shows 8 separate plots of model AUC and TPR performance across
all four tasks using tumor size and age as the respective confounding variables.
SFig. 3 shows the AUC and TPR for just the language task against language
laterality. The p-values were calculated from the correlation coefficient between
the confounder and model performance, where the line of best fit is shown in
red. As shown by p > 0.05, there is no significant correlation between any of
the confounders and model performance for any of the four tasks.

3 Model optimization experiment

3.1 Model augmentation

One common strategy in deep learning is to construct an architecture that
overfits to the training data and then use regularization tricks, such as dropout,
to close the generalization gap on a separate validation set. SFigs. 4-6 show
training (blue) and validation (orange) curves for the task-specific TPR with
the original model across three different scales of the Craddocks atlas (N =
318, N = 384, N = 432). The dotted black line represents the main JHH results
from the manuscript using the N = 384 atlas. We can observe that the original
model does not fully overfit to the training data, as all four blue curves do
not saturate at 1. To arrive at a model that will overfit the training data, we
increased capacity of the original model by increasing the number of feature
maps in the convolutional layer and adding two fully-connected (FC) layers.
Specifically, we increased M from 8 to 16, increased H1 from 27 to 50 and
added two FC layers of sizes H3 = 25 and H4 = 20. The overfit model is shown
in SFig. 7. As shown in SFigs. 8-10, the model presented in SFig. 7 overfits to
the training data, as each training curve saturates at around 1.

3.2 Adding dropout to overfit model

Though the model in SFig. 7 fits the training data well, it performs poorly when
applied to unseen test data. Now that we have identified a model with enough
capacity to fit the training data, our next goal is to decrease the generalization
gap. To do this, we employ dropout with p = 0.5 in between each hidden layer
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SFigure 1: Tumor size vs. AUC and TPR for each task
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SFigure 2: Age vs. AUC and TPR for each task
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SFigure 3: Language laterality index vs. language AUC and TPR.

SFigure 4: Task-specific TPR for N = 318 atlas with original model. We observe
that the training TPR (blue) does not saturate at 1.
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SFigure 5: Task-specific TPR for N = 384 atlas with original model. We observe
that the training TPR (blue) does not saturate at 1.

SFigure 6: Task-specific TPR for N = 432 atlas with original model. We observe
that the training TPR (blue) does not saturate at 1.
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SFigure 7: Higher capacity model used for model optimization experiment.

SFigure 8: Task-specific TPR for N = 318 atlas with higher capacity model,
where training (blue) saturates at 1 but validation (orange) decreases.

7



SFigure 9: Task-specific TPR for N = 384 atlas with higher capacity model,
where training (blue) saturates at 1 but validation (orange) decreases.

SFigure 10: Task-specific TPR for N = 432 atlas with higher capacity model,
where training (blue) saturates at 1 but validation (orange) decreases.
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SFigure 11: Task-specific TPR for N = 318 atlas with higher capacity model
and dropout. The validation accuracy is lower than that of the original model.

of the model except for after the E2E layer. Across three different scales of the
Craddocks atlas, SFigs. 9-11 show the training (blue) and validation (orange)
curves for the overfit model with dropout. The black dashed line indicates
the original model performance on the N = 384 atlas. We observe that the
validation is consistently lower than the black dashed line, indicating that the
original model in the manuscript has the best testing performance to unseen
data.

4 Healthy HCP experiment

4.1 Modelling changes

The work presented in the original manuscript treats eloquent cortex detection
for tumor patients as a three-class classification problem, where tumor nodes are
given their own class (i.e. not healthy and not belonging to the eloquent cortex).
Removing the tumor class makes this a two-class classification problem, as each
parcel is considered as either belonging to the eloquent cortex or not. Therefore,
the MT-FC layers are now of size N × 2 Other than the last MT-FC layers, we
keep the layer dimensions consistent. To prevent biasing our hyperparameter
selection, we once again use 10-fold CV on the separate healthy HCP2 dataset
for hyperparameter selection, resulting in δl = (1.94, 0.54) and δm = (1.33, 0.54).
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SFigure 12: Task-specific TPR for N = 384 atlas with higher capacity model
and dropout. The validation accuracy is lower than that of the original model.

SFigure 13: Task-specific TPR for N = 432 atlas with higher capacity model
and dropout. The validation accuracy is lower than that of the original model.

10



STable 2: Mean plus or minus standard deviation for eloquent class TPR and
AUC for the HCP cohort (100 subjects).

Task Method Eloquent TPR AUC p-value

Language MTGNN 0.70± 0.011 0.72± 0.009
FCNN 0.64 ± 0.02 0.66 ± 0.017 3.7e-51
RF 0.35 ± 0.034 0.55 ± 0.032 5.1e-100
SVM 0.40 ± 0.026 0.53 ± 0.019 ≈ 0

Finger MTGNN 0.84± 0.013 0.84± 0.007
FCNN 0.78 ± 0.013 0.75 ± 0.012 7.6e-106
RF 0.44 ± 0.03 0.59 ± 0.026 1.6e-243
SVM 0.42 ± 0.021 0.53 ± 0.014 ≈ 0

Foot MTGNN 0.86± 0.01 0.82± 0.012
FC-NN 0.75 ± 0.014 0.74 ± 0.013 2.7e-73
RF 0.44 ± 0.027 0.59 ± 0.028 4.2e-100
SVM 0.52 ± 0.022 0.52 ± 0.013 ≈ 0

Tongue MTGNN 0.82± 0.011 0.80± 0.008
FC-NN 0.77 ± 0.011 0.74 ± 0.011 3.7e-35
RF 0.45 ± 0.027 0.58 ± 0.031 3.1e-155
SVM 0.58 ± 0.021 0.55 ± 0.012 ≈ 0

4.2 Healthy HCP ROI classification

We use a 10 repeated 10-fold CV evaluation strategy, where fold membership
is different for each CV. Once again, we compare the MT-GNN with a multi-
class linear SVM, a RF classifier, and a fully-connected neural network (FC-NN).
The FC-NN hyperparameters were selected via 10-fold CV on the healthy HCP2
dataset as well and were set to be δl = (2.04, 0.44) and δm = (1.52, 0.44). Table
1 shows the eloquent class true positive rate (TPR), AUC, and FDR corrected
p-value for the associated t-score comparing AUC’s from the MT-GNN with
the baseline methods. We observe that our model outperforms each baseline
at each task. Compared to the results presented in Table 3, we observe that
each method performs better, likely due to the absence of the simulated tumor,
which disrupted healthy connections in these subjects. The performance gains
from the MT-GNN to the baselines are slightly higher than those in Table 3 in
the main manuscript, shown by even smaller p-values.

5 Discussion

In this supplementary document, we explored different potential confounders’
effect on model performance, various model optimization strategies, and per-
formance on the healthy HCP data. We observe no statistical significance in
the correlation coefficients for each of the confounders. Regarding model opti-
mization, we show confidence in the original model to generalize well to unseen
testing data, as the overfit model or overfit model with dropout does not gen-
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eralize as well. Finally, the healthy HCP result shows our method can identify
localized functional subsystems of the eloquent cortex in healthy rs-fMRI scans.
Therefore, the synthetic tumor experiment in the HCP Section 3.1 has a baseline
comparison with the original data.
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