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Supplementary Information Text 
 
1. SI Materials and Methods 
 
A. Animal models. All animal experiments were conducted in accordance with Stanford University IACUC 
guidelines. Neurog3eGFP/+ knock-in reporter mice were a kind gift from Dr. Klaus Kaestner (University of 
Pennsylvania, USA) (1) and were maintained on a CD1 background. Neurog3-Cre mice were obtained from 
Guoqiang Gu (Vanderbilt University, USA) and maintained on a mixed background of C57BL/6 and CD1 (2). 
Rosa-mTmG (3) mice were obtained from the Jackson Laboratories and maintained on a mixed background of 
C57BL/6 and CD1. Tg-eGFP; Neurog3+/+ transgenic mice were a kind gift from Drs. Guoqiang Gu and Douglas 
Melton (4). Timed matings were used to obtain mice at embryonic day (E) E15.5 and E17.5 for experiments; 
observation of a vaginal plug was considered E0.5 for embryonic staging purposes. Both male and female mice 
were used in all experiments.  
 
B. Single-cell RNA-Seq Data Processing. Raw reads passing FastQC (5) quality control were aligned to a 
custom reference genome for mouse genome (mm10), ERCC spike in controls, and three transgenes: eGFP, 
tdTomato, and Cre. STAR was used to create the custom genome and read alignment (6). The resulting 
BAM/SAM files were used to create a ‘master counts table’ using HT-seq (Dataset S1) (7). Cells had an average 
of 3,044 genes expressed per cell, ranging from 1,237 to 6,047 genes.  
 
C. Unsupervised Single-cell Clustering and Trajectory Analyses. Clustering and trajectory analysis were 
performed using the single-cell analysis package Monocle 2 (v. 2.4.0) (8). A flowchart summarizing each analysis 
step is provided in Fig. S2. Before starting the analysis, the transgenes GFP, Cre and Td-tomato were removed 
from the master counts table (Dataset S1). Unsupervised clustering aims to cluster the cells based on global gene 
expression profiles. First step is to choose which genes to use to cluster the cells. Based on the dispersion 
calculations, we set the mean_expression parameter to 1. Before performing dimension reduction, the data 
was examined using the plot_pc_variance_explained function, which plots the percentage of variance 
explained by each principal component on the normalized expression data. Based on the ‘elbow’ method, we 
determined that the first 5 dimensions showed the majority of data variability. Therefore, t-distributed stochastic 
neighbor embedding (t-SNE) dimension reduction was performed on the first 5 principal components. We set 
num_clusters to 7 to visualize cell clusters (Fig. S1). The identity of the cell clusters was revealed by mapping 
marker gene expression levels onto single-cells (Figure 1A-B). Clusters 4 and 6 were combined and labeled 
“Endocrine 1”. At this point, the 14 mesenchymal cells that formed Cluster 5, and genes that were expressed in 
less than 5 cells were filtered out. To establish pseudotime trajectories, Monocle’s differentialGeneTest 
function was used to find genes that vary among the clusters, specified as fullModelFormulaStr = 
“~Cluster”. Top 100 genes with the lowest q-value were used to order cells, and a pseudotime trajectory was 
constructed using the DDRTree method. To identify gene expression changes between cells aligned along the 
established pseudotime trajectories, we used Monocle’s differentialGeneTest function by specifying 
fullModelFormulaStr = “~Pseudotime”. We considered genes significant if the rounded q-value was less than 
or equal to 0.05. Gene ontology terms were found for each of the 7 clusters using DAVID v6.8 (Dataset S3) (9).  
 
D. Semi-supervised Single-cell Clustering and Trajectory Analyses. Semi-supervised clustering and 
trajectory analyses were performed to resolve individual endocrine lineage branching (Fig. S2). The process 
begins with defining marker genes that represent cell populations, then identifying the genes that co-vary with 
these markers, and finally ordering the cells based on these co-varying genes. Monocle provides the 
CellTypeHierarchy function for semi-supervised clustering analysis. Since our goal was to resolve the b-, a- 
and d-cell branches, we picked marker genes as Neurog3 for endocrine progenitors, Ins1 and Ins2 for b-cells, 
Gcg for a-cells, and Sst for d-cells. We set the expression threshold in each cell for these markers to 100 or more 
reads. Accordingly, cells that express more than one marker gene are labeled “ambiguous” and cells that do not 
fit into any marker gene category are labeled as “unknown”. The gene list was further filtered to remove genes if 
detected in less than 5 cells. Top 100 genes that co-varied with the marker genes (400 genes in total) were 
considered for the clustering and trajectory analysis. Note that the semi-supervised analysis was limited to the 
317 cells that were placed after the Neurog3 peak expression in the unsupervised trajectory, which corresponds 
to the pseudotime point 6.7. The first iteration separated b-cells in one branch and the majority of a- and d-cells in 
a second branch. To split the a- and d-branches, we again focused on cells of interest, and excluded the cells on 



 
 

the b-cell branch to create a new CellDataSet (cds) object in Monocle. In this new cds() object, cells were 
relabeled as a-, d-, and Neurog3pos cells based on marker gene expression. Trajectory analysis was performed as 
described earlier. The final iteration established trajectories with a- and d-cells separated on own branches. 
Similar to unsupervised clustering, Monocle’s differentialGeneTest (by specifying fullModelFormulaStr 
= “~Pseudotime”) function was used to identify genes whose expression changes significantly during each 
endocrine lineage specification. For differential gene expression analysis, cells with pseudotime point > 5.7 and ≤ 
6.7 were also included (peak Neurog3 expression) to visualize the cell fate transitions beginning from the 
Neurog3pos progenitors. Hence, three differential gene tests were performed to determine transcriptome changes 
from Neurog3pos progenitor cells to each of the three endocrine lineages. Results from differential expression 
analyses were filtered to include genes with a q-value less than 0.1 and those in the top 50% of normalized base 
mean expression among cells within each branch. All differentially expressed genes lists were further narrowed to 
only include transcription factors (TFs) for a total of 145 TFs. These TFs are visualized in a heatmap where all 
cells were aligned in pseudotime order (Fig. S4).  
 
E. Analysis and Classification of Neurog3pos Progenitors. The master read counts table (Dataset S1) was 
subset to select Neurog3pos cells. We defined Neurog3pos cells as any cell with at least 10 read counts for 
Neurog3, resulting in 214 cells. The semi-supervised clustering approach was used to label and cluster cells 
based on either Neurog3 or Chga expression (see SI Methods Section D). Top 100 genes that co-varied with the 
marker genes (200 genes in total) were considered for the clustering and trajectory analysis. t-SNE dimension 
reduction was performed on the first two principal components, and num_clusters was set to 3. Based on the 
Neurog3 levels, the clusters were named High, Medium, and Low. A trajectory was established by finding 
differentially expressed genes among the High, Medium, Low clusters, using Monocle’s 
differentialGeneTest function by specifying fullModelFormulaStr = “~Cluster”. Top 100 genes with the 
lowest q-value were used to order cells, and a pseudotime trajectory was constructed using the DDRTree method. 
The trajectory was colored based on embryonic day (Figure 2F) or cluster (Figure 2H). To count hormone 
expressing cells, we analyzed the read counts of Ins1, Ins2, Gcg and Sst in each Neurog3pos cell. Any detectable 
expression (i.e. size-factor normalized counts > 0) was counted. The cells were then categorized as expressing 
zero, one, two or three hormones (Ins1 and Ins2 reads were combined and presented as Ins). 
 
F. Expression Specificity Scores, TF-Cell Type/State Network. We derived expression specificity scores for 
TFs that are differentially expressed during endocrine cell lineage specification. We have previously used this 
method to reveal cell type-specific gene expression in human pancreas cells (10). ESS was calculated as follows: 
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A cell state is defined here as population of cells that are quantitatively distinct based on their transcriptome. Two 
cell states (early progenitor, late progenitor) and four cell types (duct, b-, a- and d-cells) were used to determine 
the expression specificity score of each TF. The duct cells were categorized as cells with pseudotime values < 3 
(53 cells) based on the unsupervised trajectory analysis. Early progenitor state has cells with pseudotime values 
between 3 and 6.7 (111 cells). Late progenitor state cells have a pseudotime value greater than 6.7 and include 
those that were not assigned to an endocrine lineage (121 cells). The hormone producing cells consist of those 
assigned to their respective endocrine cell branch (90 cells in the b-lineage, 76 cells in the a-lineage, and 30 cells 
in the d-lineage). To obtain ;%, we used the size-factor normalized single-cell RNA-Seq counts as gene expression 
values. Thus, a TF with an ESS of zero would indicate no expression in that cell type/state, and an ESS of 1 
would indicate exclusive expression, i. e. the TF is only expressed in that cell state. We obtained the list of 
differentially expressed TFs by overlapping the gene the list with a curated TF list described in (11), yielding 145 
TFs. The TF list was further narrowed to 87 by only including those that were detected in at least 50% of the cells 
in that cell type/state (Dataset S5). The network was generated by Cytoscape (version: 3.8.2) (12). The color and 
thickness of the network edges (connections) directly corresponds with the expression specificity score (ESS) of 
the TF in the interacting cell type/state. 
 
 



 
 

G. TF motif enrichment analysis 
HOMER’s findMotifsGenome.pl function with ‘size 500 -len 6,8’ options was used to find enriched TF motifs 
in each DOR group (13). HOMER’s de novo motif discovery analysis outputs a position weight matrix (PWM) for 
each significant motif. These PWMs were queried in the CisBP database (11) to find transcription factors 
associated with the significant motifs. 
 
I. BaGFoot Analysis and Integration of Gene Expression 
BaGFoot footprint analysis was performed as described in (14). Narrow peaks were called for all ATAC-seq 
samples using MACS2 (15) and merged to generate a set of consensus peaks for BaGFoot. Peaks overlapping 
with blacklisted regions (downloaded from http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm10-
mouse/mm10.blacklist.bed.gz) (78) were removed from the analysis. 662 mouse TF motifs were curated from 
TRANSFAC (16) , JASPAR (17) and UniPROBE (18). In addition, we included 19 de novo motifs derived from our 
ATAC-seq data by HOMER motif analysis. ATAC-seq sample replicates were grouped as follows: the duct 
dataset consisted of duct-het, duct-null, and Neurog3-null samples, the Neurog3 dataset consisted of Neurog3-
het and Neurog3-Tg samples, and the endocrine dataset consisted of Endo-het and Endo-Tg samples. Each 
group were compared pairwise to detect TF footprint activity at motif locations. BaGFoot results are presented in 
“bag plots”, where each data point represents a TF motif. In a bag plot, the bag area contains 50% of the data 
(similar to the box in the box plot), the fence contains 97%-100% of the data points (similar to the whiskers in a 
box plot) (19). Any data point outside the fence is an outlier. Most TF motifs are not expected to be different 
between two conditions, and thus are localized around the origin. The significant motifs were statistically 
determined by Hotelling’s T-squared test and were labeled as outliers. Based on the BaGFoot results, we 
compiled a list of outlier TFs (and their paralogs) to analyze their expression levels in the scRNA-Seq data. 481 
cells were divided into duct, progenitor, and endocrine cell types to obtain average expression levels for outlier 
TFs. Cells were assigned to one of these three cell types based on their placement from the pseudotime 
trajectory analyses. Endocrine cells are a combination of cells aligned on the b-, a-, and d-branch (Dataset S8). 
The TFs whose expression was detected in at least 25 cells within each cell group were listed in Figure 6F. Those 
detected in fewer than 25% of the cells were shown in Fig. S5. 
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Figure S1. 
A) Illustration of the scRNA-Seq workflow performed in this study. See methods for details.
B) FACS plots showing the gating strategy and cell populations collected for single-cell sequencing. 
C) t-SNE plot showing single cell clusters after unsupervised clustering approach.
D) Same plot as (C), colored by cell populations indicated in (B).
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Unsupervised Trajectory with All Cells

Create a Cell Data Set Object (cds)

Visualize cells after dimension reduction 
(tSNE, dim=5) with 7 cell groups

Remove mesenchymal cells in cluster 5
and genes expressed in fewer than 5 cells

Create trajectory:
Perform differential gene expression on clusters
Use top 100 genes with lowest q-value to order genes
Reduce dimensions with DDRTree
Order Cells

Differential Gene Expression Analysis

Round q-value to nearest one-hundredth place

Filter genes for (1) rounded q-value <= to 0.05,
(2) expressed in at least 5 cells, and (3) top 75%
of base mean expression

Semi-supervised Trajectories of Individual 
Hormone Lineages

Assign cell type hierarchy based on marker expression

Create new cds() object with subset of cells
(after Neurog3 peak expression, pseudotime > 6.7)

Cluster cells based on genes that co-vary 
with marker gene (100/cell type = 400 total)
-Remove unknown
-Candidate genes qval < 0.01
-5 dimensions, 8 clusters

Differential Gene Expression AnalysisDefine beta lineage

Create new cds() object with subset of cells
(pseudotime > 6.7, remove cells on beta branch)

Cluster cells based on genes that co-vary 
with marker gene (100/cell type = 300 total)
-Remove unknown
-Candidate genes qval < 0.01
-3 dimensions, 8 clusters

Remove genes expressed in fewer than 5 cells

Define alpha lineage

Define delta lineage

Subset first cds() with Hormone Lineage and
cells between high and low Neurog3 expression
(pseudotime > 5.7 and <=6.7) 

CellType Gene Expr.

Delta
Alpha

Endo Prog
Beta

Neurog3
Ins1&2

Sst
Gcg

100
100
100
100

Perform differential gene expression on clusters
Use top 100 genes with lowest q-value to order genes
Reduce dimensions with DDRTree
Order Cells

Perform differential gene expression on clusters
Use top 100 genes with lowest q-value to order genes
Reduce dimensions with DDRTree
Order Cells

Differential gene test based on pseudotime

Filter genes for (1) q-value <= 0.01, (2) top 50% of 
base mean expression, and (3) TF

Assign cell type hierarchy based on marker expression
CellType Gene Expr.

Delta
Alpha
Endo Prog Neurog3

Sst
Gcg

100
100
100

Remove genes expressed in fewer than 5 cells

Differential gene test based on pseudotime
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Table S1. ATAC-seq samples generated in this study 

 

SampleID Genotype CellType FACS gating 

Tn5_EA20 Neurog3eGFP/eGFP Neurog3 null CD133+GFP+ 

Tn5_EA23 Neurog3eGFP/+ Duct CD133+GFP- 

Tn5_EA32 Neurog3eGFP/eGFP Neurog3 null CD133+GFP+ 

Tn5_EA33 Neurog3eGFP/eGFP Duct CD133+GFP- 

Tn5_EA34 Neurog3eGFP/+ Neurog3 CD133+GFP+ 

Tn5_EA35 Neurog3eGFP/+ Duct CD133+GFP- 

Tn5_EA36 Neurog3eGFP/+ Endocrine CD133-GFP+ 

Tn5_EA37 Neurog3eGFP/eGFP Neurog3 null CD133+GFP+ 

Tn5_EA38 Neurog3eGFP/eGFP Duct CD133+GFP- 

Tn5_EA39 Neurog3eGFP/+ Neurog3 CD133+GFP+ 

Tn5_EA40 Neurog3eGFP/+ Duct CD133+GFP- 

Tn5_EA41 Neurog3eGFP/+ Endocrine CD133-GFP+ 

Tn5_EA57 Tg-Neurog3 Neurog3 CD133+GFP+ 

Tn5_EA59 Tg-Neurog3 Endocrine CD133-GFP+ 

Tn5_EA60 Tg-Neurog3 Neurog3 CD133+GFP+ 

 
  



 
 

Dataset S1. Gene transcript counts obtained from single cells sequenced in this study.   

Dataset S2. Differentially expressed genes during endocrine cell differentiation, based on the pseudotime 
established in Figure 1.   

Dataset S3. GO Term results of the gene clusters identified in Figure 1D.   

Dataset S4. Differentially expressed genes during a-, b- and d-cell lineage specification, as identified by Monocle 
analysis.  

Dataset S5. ESS of genes in each cell state. Number of cells in which a given gene transcript is detected is also 
reported.  

Dataset S6. Genomic coordinates of differentially accessible open chromatin regions identified in this study.  

Dataset S7. FPD and FA scores for each TF based on BaGFoot analysis. 

Dataset S8. Average expression of TF transcripts detected in single cells. This data was used to integrate with 
BaGFoot results. 
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