1 SUPPLEMENTARY DATA

Name	Target	Sequence ^a		
HSV-1 US4_Fw	Human herpesvirus 1 US4	TCCTSGTTCCTMACKGCCTCCC		
HSV-1 US4_Rv	Human herpesvirus 1 US4	CGTCTGGACCAACCGCCACACAGGT		
HSV-1 US4_probe	Human herpesvirus 1 US4	FAM-GCAGICAYACGTAACGCACGCT-BHQ1		
HSV-1 LAT_Fw	Human herpesvirus 1 <i>LAT</i>	CCCACGTACTCCAAGAAGGC		
HSV-1 LAT_Rv	Human herpesvirus 1 <i>LAT</i>	AGACCCAAGCATAGAGAGCCAG		
HSV-1 LAT_probe	Human herpesvirus 1 <i>LAT</i>	FAM-CCCACCCCGCCTGTGTTTTTGTG-BHQ1		
VZV ORF38_Fw	Human herpesvirus 3 ORF38	AAGTTCCCCCGTTCGC		
VZV ORF38_Rv	Human herpesvirus 3 ORF38	CCGCAACAACTGCAGTATATATCGTCTCA		
VZV ORF38_probe	Human herpesvirus 3 ORF38	FAM-TGGACTTGAAGATGAACTTAATGAAGC-BHQ1		
HMBS_Fw	Homo sapiens HMBS	GCCTGCAGTTTGAAATCAGTG		
HMBS_Rv	Homo sapiens HMBS	CGGGACGGGCTTTAGCTA		
HMBS_probe	Homo sapiens HMBS	FAM-CGCAGGCACTCGTACTGCTCGCT-BHQ1		
ApoE2_Fw	Homo sapiens APOE2	GCGGACATGGAGGACGTGT		
ApoE2_Rv	Homo sapiens APOE2	CCTGGTACACTGCCAGGCA		
ApoE3_Fw	Homo sapiens APOE3	CGGACATGGAGGACGTGT		
ApoE3_Rv	Homo sapiens APOE3	CTGGTACACTGCCAGGCG		
ApoE4_Fw	Homo sapiens APOE4	CGGACATGGAGGACGTGC		
ApoE4_Rv	Homo sapiens APOE4	CTGGTACACTGCCAGGCG		
ApoE_Probe	Homo sapiens APOE	FAM-CAGCTCCTCGGTGCTCTGGC-BHQ1		
ApoE_seq1	Homo sapiens APOE	AGCCCTTCTCCCCGCCTCCCACTGT		
ApoE_seq2	Homo sapiens APOE	CTCCGCCACCTGCTCCTTCACCTCG		

Supplementary Table 1 Primers and probes used in this study

^a5' and 3'-modifications of TaqMan probes are indicated. FAM 6-Carboxyfluorescein, BHQ1 black hole quencher 1

Subject	Age ^a	Gender ^b	PMI℃	Cause of death	Neurological disease	HSV-1 status ^d
1	81	F	3:35	Cachexia and dehydration	Alzheimer's disease	negative
2	82	F	5:55	Cardiac arrest	Alzheimer's disease	negative
3	89	F	4:30	Peritonitis	Alzheimer's disease	positive
4	87	F	8:10	Uremia by dehydration	Alzheimer's disease	positive
5	86	F	5:15	Cachexia and dehydration	Alzheimer's disease	positive
6	81	М	8:21	Euthanasia	Parkinson's disease	positive
7	62	F	12:35	Cachexia with pulmonary insufficiency	Multiple sclerosis	positive
8	80	F	9:30	Cardiac arrest	Bipolar disorder	positive
9	103	F	6:35	Dehydration and pneumonia	Tauopathy	positive
10	89	Μ	6:50	Urosepsis	non-demented control	positive

Supplementary Table 2 FFPE TG samples used in this study

^aAge in years; ^bF, female; M, male; ^cPMI, post-mortem interval; ^dHSV-1 infection status based on serology and HSV-1 LAT ISH

4

Subject	Age ^a	Gender⁵	Interval TBI – death
1	84	М	0 days (acute)
2	48	М	7 days
3	13	F	11

Supplementary Table 3 TBI patients used in this study

^aAge in years; ^bF, female; M, male

Subject	Age ^a	Gender ^b	PMIc	Cause of death	Neurological disease	HSV status ^d
1	88	М	4:40	Cachexia and dehydration	Alzheimer's disease	positive
2	74	Μ	8:00	Dehydration by possible cystitis	Alzheimer's disease	positive
3	86	М	05:10	Cachexia and dehydration	Alzheimer's disease	positive

Supplementary Table 4 FFPE AD samples used in this study

^aAge in years; ^bF, female; M, male; ^cPMI, post-mortem interval; ^dHSV infection status based on HSV-specific IgG serology data

12

13

Supplementary Fig. 1 Quantification of latent HSV-1 and VZV DNA load in human TG stratified on APOE genotype. HSV-1- and VZV-specific qPCR and APOE genotyping was performed on DNA extracted from the trigeminal ganglia (TG) of AD patients and controls.

19

Supplementary Fig. 2 Intraneuronal accumulation of A β protein is not restricted to areas of HSV-1 infection in brains of HSE patients. Consecutive slides were stained for HSV-1 RNA by ISH and A β by IHC. A β can be seen in areas with HSV-1 RNA (**a**) and in areas without HSV-1 RNA (**b**). Data shown for HSE donor 5. Scale bar: 500 µm (**a**) and 250 µm (**b**).

Supplementary Fig. 3 Lytic VZV infection is not associated with Aβ plaques or NFT in brain of a VZV encephalitis patient. **a** Brain section stained for VZV RNA by ISH. Box indicates area shown at higher magnification. Open arrowhead indicates examples of VZV RNA-expressing cells. Scale bars indicate 250 µm (top) and 50 µm (bottom). **b** Brain

sections IHC stained for A β and pTau (Ser²⁰²/Thr²⁰⁵). Scale bars indicate 50 µm. **c** Consecutive brain sections were IHC stained for A β and pTau (Ser²⁰²/Thr²⁰⁵) or stained for HSV-1 RNA by ISH. Boxes indicate areas shown at higher magnification. Filled arrow indicates intracellular A β protein, open arrow indicates NFT and open arrowhead indicates VZV RNA-expressing cells. Scale bars indicate 50 µm (A β , high magnification), 100 µm (A β , low magnification; pTau high magnification) and 500 µm (pTau, low magnification).

42

- 43 Supplementary Fig. 4 Prominent GFAP staining of astrocytes interacting with Aβ
 44 plaques brain of an AD patient with concurrent HSE. IF staining for Aβ (red), GFAP (white)
- 45 and nuclei (Hoechst-33342; blue). Scale bar: 50 μm.

48

Supplementary Fig. 5 Microglia morphology and density in the brain of HSE patients
and AD patient with HSE. Brain tissue sections were IF stained for Aβ (red), Iba1 (green)
and nuclei (Hoechst-33342; blue). Boxes indicate areas shown at higher magnification.
Scale bar: 50 µm.