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S3 Text. Size-dependent growth with finite diffusion of subunits

To study the effect of subunit diffusion on size-dependent growth and size control of intracellular

structures, we consider two identical structures, nA and nB, with bare growth rate ratio κA =

κB = κ. The total system is composed of two well-mixed subsystems (A and B) that can exchange

subunits via diffusion. Each subsystem has one structure growing from an available pool of subunits

mA or mB respectively. The subunits from the subsystem subunit pools can diffuse at a rate

(D/δ2)mA,B where δ is the separation length between the two growing structures and D is the

diffusion constant of the subunits. In the following, we show that slow subunit diffusion increases

the timescale of reaching a steady-state size but there is no qualitative change in the nature of size

regulation or size dynamics. The structures being identical in bare growth rates, the resulting size

distributions are identical as well. So we discuss the results for a single structure in each of the

subsystems.

In the case α + β = 0, a slower diffusion constant delays the timescale for size relaxation but

the steady-state shows the characteristic uniform size distribution with a failure of size regulation

(S10A-B Fig). Regardless of the value of the diffusion constant the steady state size is same as

predicted by the solution to the chemical master equation (CME) (S10A-B Fig). In the regime

of robust size regulation (α + β > 0) each structure quickly attains a steady-state size. The

timescale for size relaxation does not depend on the diffusion of subunits as we start with the

initial condition mA = mB. The resulting size distribution matches with the CME solution for

a single structure (S10C-D Fig) growing in a pool of half the size (N/2) of the total pool size of

the system N = nA + nB + mA + mB. In the regime α + β < 0, the nature of bistability in size

distribution does not change in presence of subunit diffusion. The resulting size distributions do

not depend on diffusion (S10E Fig) but other statistical properties such as residence time may

depend (smaller residence time for faster subunit diffusion) on diffusion of subunits (S10F-G Fig).

The effect of diffusion on a larger scale can be understood using a coarse-grained description in

the form of reaction-diffusion equations for the density fields of subunit pool and the structures.

In this case, continuum variables such as the structure density S(x, t) and the subunit pool density

P (x, t) can be calculated by coarse graining over the structure mass and subunit mass over a small

volume [1]. The resultant equations can be written as

∂tS = DS∂
2
xS + k+PS−α − k−Sβ , (1)

∂tP = DP∂
2
xP − k+PS−α + k−Sβ . (2)
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where DS and DP are the diffusion constants of the structure and the pool, with DS � DP . This

continuum treatment shows that we find homogeneous growth of structures when (α+ β ≥ 0) and

spatially localized structure growth (symmetry breaking and pattern formation) when (α+ β < 0)

[1]. A more detailed analysis of spatial regulation of growth control is beyond the scope of this

present study.
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