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S4 Text. Size dependent growth of multiple structures

The results shown for two structures in our study can be generalized to multiple structures. Let

us consider M > 2 structures growing from a shared pool of N subunits in total. The growth rates

for ith structure are given by-
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where i = 1, . . . ,M . The probability of finding the system in a particular state {ni} at time

t is given by P (n1, n2, . . . , nM , t). The master equation can be written considering the rate of

change of probability P (n1, n2, . . . , nM , t) to be equal to the influx of probabilities in this state

P (n1, n2, . . . , nM , t) from 2M different adjacent states, subtracted by the outflux of probabilities

to those 2M states (S7 Fig).

The steady state joint probability can be obtained using the M detailed balance relations given

by
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Using the above equation (Eq. 2) recursively, the steady state joint distribution can be calculated

to be
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where P (0, 0, . . . , 0) is the normalization constant and κi =
k+i
k−i

. The marginal distribution for any

ith structure P (ni) can be calculated by summing over the other structures, for example
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where Sn =
∑M

i=1 ni. This sum becomes computationally very expensive as the number of summa-

tions to be computed goes as NM . It is important to note that the growth model of more than 2

structures does not change the mathematical form of the size distribution, but only adds additional

terms in the product. Thus we do not expect the results to change qualitatively for M > 2. We

computed the size distribution for up to four (M = 4) identical structures (κi = κ for any ith

structure) and checked the characteristics of the size distributions in the three feedback regimes
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using the marginal size distribution (Eq. 4). For α + β = 0, there is no size-dependent feedback

of growth, and the size distribution exhibits fluctuations (standard deviation) of the same order

as the mean size (S8A-C Fig). With increasing number of structures the size distribution becomes

exponential in nature. In the regime of robust size regulation, α + β > 0, the size distribution

has well defined mean for any number of structures (S8D-F Fig). In the regime of autocatalytic

growth, α + β < 0, we observe bistability in size for any number of structures (S8G-I Fig). The

mean size decreases when we increase number of structures growing from a shared pool keeping

the pool size (N) fixed.


