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Response to reviewers 

Integrated view and comparative analysis of baseline protein expression in mouse and rat tissues 

We thank all reviewers for the time reviewing the manuscript. Please see our responses below. 

Reviewer #1:  

This manuscript integrated mouse and rat proteome datasets from published works and performed 
some correlation-based analysis across organs and species. I have the following questions regarding 
this manuscript and hopes the authors could address. 
 
1. The paper seems to be a following up work from the group’s previous paper (Jarnuczak, A.F., 
Najgebauer, H., Barzine, M. et al. An integrated landscape of protein expression in human cancer. Sci 
Data 8, 115 (2021). https://doi.org/10.1038/s41597-021-00890-2) but applies to mouse/rat 
proteomics data. The original work focused on human cell lines. The concepts and methodologies of 
the two papers are extremely similar. It would be nice if the authors could highlight the 
computational innovations introduced in the current paper not in the previous one. 

Response: The overall proteomics data analysis methodology in both manuscripts is the same: label-
free datasets are re-analysed and iBAQ expression values are provided as the resulting protein 
expression values. The main difference here when compared with the Jarnuczak et al. manuscript is 
that in that case the datasets were reanalysed in two large groups: those samples coming from cell 
lines and those samples coming from tumour tissues. We then realised that this strategy was not 
sustainable for re-analysing datasets at scale and integrating the results into a resource (Expression 
Atlas). Therefore, in this manuscript, each dataset was re-analysed separately. To make results more 
comparable and to try to remove batch effects, we performed the binning strategy for each dataset 
(which was not performed in the Jarnuczak et al. manuscript). This strategy also enabled the 
comparison of protein expression of orthologs across species (mouse, rat and human), which is 
performed in this manuscript for the first time (using the additional human expression data 
generated at: https://www.biorxiv.org/content/10.1101/2021.09.10.459811v2). 
 
2. To my knowledge, PaxDB (https://pax-db.org/) is a very popular database for checking protein 
abundance. PaxDB contains many widely studied species including mouse and rat. It also has tissue 
information, protein interaction information and is regularly updated for years. To me, PaxDB seems 
to cover all values this paper could provide to me. It would nice that the authors could highlight the 
advantages of this paper that PaxDB doesn’t have. 

Response: PaxDB is a resource that relies on spectral counting data (plus downstream post-
processing and normalisation) for reporting the quantitative protein expression values. This 
approach was quite popular in proteomics for a few years but nowadays, its use is limited and is no 
longer the state-of-the-art. One of the main reasons for this is that modern mass spectrometers 
have a setting called “dynamic exclusion”. When operating instruments in this mode, the first scan 
measures the ions with the highest intensity (the most abundant ones). These masses are added to a 
temporary ‘exclusion’ list for a given period of time. Once the high intensity peaks have been 
sequenced and excluded the mass spectrometers can measure peaks under the threshold, thereby 
detecting less abundant peptides [1]. Dynamic exclusion gives the MS the ability to ‘see’ the less 
abundant ions, rather than repeatedly sequencing the same, abundant peptides. Since spectral 
counting relies on identified MS2 spectra (normally normalised considering the length of the 
protein), spectral counting can no longer be considered as a reliable proxy for peptide (and protein) 
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abundance.  In any case, label-free intensity-based proteomics approaches are considered to be 
much more accurate than spectral counting and represent the current state-of-the-art.  

However, to acknowledge the availability of protein expression values in PaxDB, we have now added 
a sentence in the introduction about this resource in the revised version of the manuscript. 
Additionally, in response to a query made by Reviewer 3, we have added a correlation analysis 
between the iBAQ data generated in this manuscript and the available data in PaxDB for different 
mouse organs. See all details in the response to Reviewer 3. The results of the analysis have been 
included in the revised version of the manuscript and as Supplementary material (Supplementary 
Figure S2).  
 
3. One issue related to DDA based bottom-up proteomics is the reproducibility. One comparison that 
is missing in this paper is how well the proteins correlate with each other from different datasets for 
the same organ. This is critical. If the common proteins sampled from the same organ from two 
individual studies do not well correlate with each other, then to establish a global baseline for 
proteome across organs and species would be not very useful.  

Response: Following the suggestions of the reviewer, we compared the FOT (Fraction Of Total) 
normalised iBAQ protein abundances (ppb) across datasets for the same organs to study their 
correlation in protein expression values. For mouse datasets we compared liver, heart and brain 
samples across multiple datasets. Supplementary Figure S1 (A to C) shows significant correlations of 
protein abundances of organs across datasets (liver: R2 values from 0.59 to 0.74; heart: R2 values 
ranging from 0.54 to 0.83; brain: R2 values from 0.28 to 0.72).  

For rat we could only perform the analysis on heart samples as this was the only organ that was 
shared between more than one dataset (PXD001839 and PXD013543). As shown in Supplementary 
Figure S1D a strong correlation (R2=0.9) of protein expression was found between these two 
datasets. We have provided these comparison results as Supplementary file 4 in the revised version 
of the manuscript. 

 

 

R2 = 0.74

0

10

20

10 15 20 25

log2(PXD000867_Mouse_liver_ppb)

lo
g2

(P
XD

00
31

55
_M

ou
se

_l
ive

r_
pp

b)

Mouse liver PXD000867 vs PXD003155

R2 = 0.64

5

10

15

20

25

10 15 20 25

log2(PXD000867_Mouse_liver_ppb)

lo
g2

(P
XD

01
93

94
_M

ou
se

_l
ive

r_
pp

b)

Mouse liver PXD000867 vs PXD019394

R2 = 0.59

5

10

15

20

25

5 10 15 20 25

log2(PXD003155_Mouse_liver_ppb)

lo
g2

(P
XD

01
93

94
_M

ou
se

_l
ive

r_
pp

b)

Mouse liver PXD003155 vs PXD019394A



 3 

 

R2 = 0.66

5

10

15

20

25

5 10 15 20 25
log2(PXD019394_Mouse_Heart_ppb)

lo
g2

(P
XD

01
26

36
_M

ou
se

_H
ea

rt_
pp

b)
Mouse heart PXD019394 vs PXD012636

R2 = 0.54

5

10

15

20

25

5 10 15 20 25

log2(PXD019394_Mouse_Heart_ppb)
lo

g2
(P

XD
00

87
36

_M
ou

se
_H

ea
rt_

pp
b)

Mouse heart PXD019394 vs PXD008736

R2 = 0.83

5

10

15

20

25

5 10 15 20 25

log2(PXD012636_Mouse_Heart_ppb)

lo
g2

(P
XD

00
87

36
_M

ou
se

_H
ea

rt_
pp

b)

Mouse heart PXD012636 vs PXD008736B

R2 = 0.4

10

15

20

25

5 10 15 20 25

log2(PXD003155_Mouse_Brain_ppb)

lo
g2

(P
XD

00
52

30
_M

ou
se

_B
ra

in
_p

pb
)

Mouse brain PXD003155 vs PXD005230

R2 = 0.43

5

10

15

20

25
5 10 15 20 25

log2(PXD003155_Mouse_Brain_ppb)

lo
g2

(P
XD

01
93

94
_M

ou
se

_B
ra

in
_p

pb
)

Mouse brain PXD003155 vs PXD019394

R2 = 0.57
10

15

20

25

5 10 15 20 25

log2(PXD003155_Mouse_Brain_ppb)

lo
g2

(P
XD

02
26

14
_M

ou
se

_B
ra

in
_p

pb
)

Mouse brain PXD003155 vs PXD022614

R2 = 0.63

5

10

15

20

25

5 10 15 20 25

log2(PXD003155_Mouse_Brain_ppb)

lo
g2

(P
XD

00
44

96
_M

ou
se

_B
ra

in
_p

pb
)

Mouse brain PXD003155 vs PXD004496

R2 = 0.28

5

10

15

20

25

10 15 20 25

log2(PXD005230_Mouse_Brain_ppb)

lo
g2

(P
XD

01
93

94
_M

ou
se

_B
ra

in
_p

pb
)

Mouse brain PXD005230 vs PXD019394

R2 = 0.39
10

15

20

25

10 15 20 25
log2(PXD005230_Mouse_Brain_ppb)

lo
g2

(P
XD

02
26

14
_M

ou
se

_B
ra

in
_p

pb
)

Mouse brain PXD005230 vs PXD022614

R2 = 0.41

5

10

15

20

25

10 15 20 25

log2(PXD005230_Mouse_Brain_ppb)

lo
g2

(P
XD

00
44

96
_M

ou
se

_B
ra

in
_p

pb
)

Mouse brain PXD005230 vs PXD004496

R2 = 0.72
10

15

20

25

5 10 15 20 25

log2(PXD019394_Mouse_Brain_ppb)

lo
g2

(P
XD

02
26

14
_M

ou
se

_B
ra

in
_p

pb
)

Mouse brain PXD019394 vs PXD022614

R2 = 0.58

5

10

15

20

25

5 10 15 20 25

log2(PXD019394_Mouse_Brain_ppb)

lo
g2

(P
XD

00
44

96
_M

ou
se

_B
ra

in
_p

pb
)

Mouse brain PXD019394 vs PXD004496

R2 = 0.71

5

10

15

20

25

10 15 20 25

log2(PXD022614_Mouse_Brain_ppb)

lo
g2

(P
XD

00
44

96
_M

ou
se

_B
ra

in
_p

pb
)

Mouse brain PXD022614 vs PXD004496

C



 4 

 

 

Figure S1. Correlation of protein expression values between datasets coming from (A) mouse liver, 
(B) mouse heart, (C) mouse brain and (D) rat heart. 

 

Is deep fractionation proteome different from non-fractionation proteome? How do the authors 
adjust the difference using any kind of statistical modelling? For example, is TMT labelling different 
from iTRAQ labelling?  

Response: In a proteomics experiment where fractionation is performed, the number of proteins 
identified (and quantified) increases significantly when compared to non-fractionated proteomes, 
because of the better separation of the peptides performed in the Liquid Chromatography step. 
Therefore, both types of studies (fractionated and non-fractionated) provide a different depth of the 
proteome. Direct comparability between both types of studies is therefore limited. In both cases, we 
performed the binning mechanism to increase comparability. In fractionated proteomes, the 
number of proteins included in the different bins were therefore much larger.  But we think that the 
binning mechanism is equally suitable for both types of studies. 

Out of the 23 datasets, samples in 12 of those datasets were fractionated (10 mouse datasets and 2 
in rat). It is important to highlight that most studies in mouse were fractionated (10 out of 14 
datasets) and most in rat were not (only 2 out of 9 datasets). This information has now been added 
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to Table 1. Finally, it should be mentioned that no TMT/iTRAQ datasets were used in this study, since 
they provide differential expression data (not baseline).  

 
4. The title of this paper is about baseline expression of proteins. How did the baseline is set? By just 
the mean of expression or with any statistical justification? 

Response: As explained in the manuscript, the baseline is set by including data only coming from 
tissues in “normal” conditions including control samples, in healthy state, generated without any 
perturbations.  

 
5. How was the pathway analysis performed? If it was performed like gene set enrichment analysis, 
of course you will identify so many pathways with significant p-values. This will not provide many 
values. The interesting thing to see would be if particular pathways are detected in specific 
organs/tissue, but not in the others. 

Response: For the pathway analysis, we first mapped all the canonical proteins from mouse and rat 
to the corresponding ortholog human proteins (this is needed for performing the analysis in 
Reactome). Then depending on the organ, we used the list of corresponding genes to perform the 
pathway analysis by directly searching against the Reactome Pathway Database. We performed an 
over-representation analysis, which could determine whether certain Reactome pathways were 
over-represented considering the input gene list for a given organ. Therefore, the pathways with 
significant p-values presented in Figure 8 were those where more proteins were expressed from 
those pathways than what would be expected by chance. From the pathway results, we did not 
specify pathways if they were particularly detected in specific organs/tissues. We provided here only 
a general view of the significant pathways from the organs of mouse and rat. 

 
6. I am not super on top of the current mouse/rat proteomics literature. I am not sure if any 
targeted/DIA proteomics work has been done in mouse or rat. It would be nice to benchmark the 
DDA proteome to targeted/DIA proteome, since it was argued that targeted/DIA proteome measure 
is more accurate than DDA proteome. 

Response: We agree with the reviewer in that this would be indeed be a good exercise to do, but we 
think this is out of the scope of this work. To the best of our knowledge, such comparison between 
DDA and DIA baseline results for the same mouse and rat tissue samples has not been performed so 
far (most of these studies have been performed so far in cell lines, e.g. [2]). If such study is not 
performed in the same samples, its value is very limited because in order to make a proper 
comparison across different methodologies (DDA and DIA), the participation of other variables 
should be avoided. Additionally, there are still very few suitable (re-usable) DIA datasets (if any at 
all) for baseline mouse tissue, and specially rat in the public domain. This means that this 
benchmarking at present cannot really be very comprehensive. Finally, the higher complexity of the 
analysis of DIA datasets (normally dependent on the availability of suitable spectral libraries) should 
not be underestimated. This would be a complete separate project on its own.  
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Reviewer #2:  

Wang et al. described the results from a comparative analysis of publicly available rat and mouse 
proteomics data sets generated for fourteen tissues in the baseline (healthy) state. They verified that 
nearly half the detected proteins were significantly over-expressed in one or two types of 
tissue/organ system, and certain tissues such as tendon and testis have different sets of proteins 
dominating the abundance distribution given the uniqueness of their physiological and biological 
functions. They also noted that the protein expression levels are highly correlated between orthologs 
across species in line with general expectation. They are aware of the potential batch effects as 
individual data sets profile specific target organs only, and not all tissues and organs were analyzed 
in one single experiment. All in all, re-analyzing >20 proteomics datasets and standardizing the 
identification and quantification results (e.g. binning abundance levels) is a giant undertaking, and 
technical aspects of the work look solid in my opinion. Having said that, I believe the manuscript 
could have added more informative and exciting data analysis, rather than ending with the casual 
analysis of ortholog correlations (Figure 7) and generic functional enrichment-based clustering of 
organs (Figure 8). 

Response: We thank the reviewer for their positive feedback. 

 
Major recommendations 
 
• Expression Atlas has a large number of human proteomics data sets as well. One way to utilize the 
resource in the context of this paper would be to map unambiguous orthologs across the three 
species (as much as one can) in similar organs and tissues, and perform a projection analysis of 
proteins (e.g. t-SNE or UMAP) all at once. In such a visualization, for instance, serum amyloid A1 
proteins should be almost uniquely synthesized in hepatocytes of the liver, and this protein from the 
three species should co-localize to the same proximal neighborhood in the projection plot (they can 
be labeled as SAA1_rat, SAA1_mouse, SAA1_human). It will be an interesting exercise to catalogue 
what proteins are quantitatively enriched in particular organ systems across the three species, and 
what proteins are not – the latter of which is no doubt the more intriguing part of the results. 
Describing the consistent and inconsistent findings across the species for endocrine (liver, pancreas, 
kidney, adrenal glands) and immune systems (spleen, if you have it) will be very useful for many 
investigators working on the molecular pathophysiology of a disease in specific organ system. 

Response: We agree this is a good exercise to undertake and have included a small section in the 
revised version of the manuscript outlying our use of UMAP and the methodology that we 
employed. We had available a large number of datasets generated from the previous human 
baseline proteome paper [3], where we also used the binning technique as shown in this manuscript 
(as also shown in the original section of the manuscript devoted to the analysis of orthologs across 
human, mouse and rat). This allowed us to compare gene orthologues across all 3 species, as 
recommended. 

The UMAP plot showed strong localisation with regard to certain tissues such as heart, regardless of 
the species. Furthermore, when overlaying genes (corresponding to canonical proteins) on to the 
UMAP plot, we could see the specific genes localised to tissues (where they were known to be highly 
abundant within) and also that those genes were present across multiple species. We have included 
the results from this UMAP analysis in the revised version of the manuscript together with an extra 
figure (Figure 8). In addition, we have included the UMAP plot co-ordinates for each sample and 
additionally, the source data that can be overlaid on the plot, in the Supplementary File 9. 
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• I wonder if it is possible to acquire or assemble similar baseline mRNA expression data sets for 
matching sample types (MGI for mouse, RGD for rat, GTEx for human). This will allow you to evaluate 
tissue specific mRNA-protein ratio comparisons between species. While the lack of absolute 
quantification precludes the calculation of protein translation rates, comparison of pseudo-ratios of 
protein/mRNA across organ systems may turn out to be divergent across the species (or not). 

Response: We thank the reviewer for this suggestion. As the reviewer says, it is indeed possible to 
do correlations between mRNA and protein expression values. However, there is the limitation that 
the samples are not the same ones, which of course limits the conclusions that can be extracted 
from these studies (as explained below for Reviewer 1 in the context of different methodologies).  

There are multiple transcriptomics datasets available in the public domain. To address the reviewer’s 
comment, we decided to perform a correlation with the overall baseline mRNA expression data from 
the resource MGI. The RNA-seq data from MGI provides expression values in TPMs in three 
categories, as ‘Low’, ‘Medium’ and ‘High’. We converted these categorical values into the numeric 
values 1, 2 and 3, respectively.  

In order to perform the comparison with the protein expression results included in this study, we re-
binned the protein expression values obtained into 3 bins (originally, they were included in 5 
different bins): 1, 2 and 3 to represent low, medium and high protein abundances. We then 
computed Spearman’s correlation between paired organs of the two studies. We did not observe a 
strong correlation among organs. However, it is important to highlight that we performed a 
correlation with the aggregated expression values, as provided by MGI. Analogous correlation 
studies could be performed with each individual transcriptomic dataset separately, thus providing 
different results. 

Mouse 
Organ Spearman’s_rho 

Brain 0.222 
Eye 0.297 
Heart 0.346 
Liver 0.459 
Lung 0.229 
Spleen 0.231 
Testis 0.248 

Unfortunately, we could not perform an analogous comparison for rat mRNA expression. In this 
case, it was not possible to bulk query/download overall RNA-seq expression of all rat genes from 
the resource RGD (like it is possible to do for MGI). As mentioned before, there are a number of 
suitable transcriptomics public datasets available in Expression Atlas that could be potentially used. 
Shortlisting several rat datasets based on their suitability and summarisation of gene expression over 
multiple datasets is a time-consuming process and given the limited time that we had to address the 
comments of the reviewers before resubmitting the manuscript, we decided not to perform this 
analysis, also because of the limited reach of their conclusions (again, the analysis were not 
performed in the same samples). 

 
Minor comments 
 
• Unlike tissue specific mRNA expression data sets (e.g. RNA-seq), MS/MS-based proteomics analyses 
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report identifiable, mostly soluble fraction of the proteome, which may differ by tissue types. For this 
reason, the current proportion-based normalization (ppb-iBAQ) may underestimate the missing 
fraction of the proteome in the denominator, i.e. the sum of all quantified proteins in that analysis of 
the tissue sample. In my humble opinion, the denominator should add a tissue-specific fudge factor 
to the sum, if one can estimate it. For instance, if you can find matching RNA-seq data sets, you can 
look at the overlap between identified proteins and the number of genes whose mRNA is expressed 
>1 in TPM in each tissue/organ type. This will reveal the fraction of identified and unidentified 
proteins, and you can add the estimate of the missing proteome abundance to the denominator. Of 
course this will require huge assumptions such as mRNA and protein levels are generally linearly 
correlated. I wonder whether this is a worthy investigation, or of interest to the authors. If you 
believe that the current normalization approach is robust enough and my suggestion is beyond the 
scope of the work, I will accept that. 

Response: We thank the reviewer for this suggestion. We completely agree with the premise and 
the overall idea. One limitation would be the public availability of matching datasets, at least for 
mouse and rat. This is something that we could explore in a separate project, but we think it is 
outside the current scope of the work.  

 

Reviewer #3:  

The manuscript by Wang et al. describes a well-conducted and very relevant example of reuse of 
proteomics datasets available in public repositories. Twenty-three datasets from Pride corresponding 
to 211 samples originating from 34 tissues across 14 organs and including mouse and rat strains 
were used. First, they have elegantly extracted comparative protein expression maps between 
different tissues/organs of a given species to propose baseline protein expression profiles before 
deducing organ-specific enriched biological processes and pathways. The authors have previously 
applied an equivalent strategy on human baseline datasets coming from 32 different organs 
(Prakash A, et al. 2021, bioRxiv) and to compare human cell lines and tumour samples (Jarnuczak AF, 
et al. 2021, Sci Data). The originality of the present work relies in the cross-species comparisons that 
were further added. Indeed, the authors also conducted orthologs analyses to compare protein 
expression profiles of different tissue/organ types across mouse, rat and human samples. Finally, the 
output of the study has been integrated into the Expression Atlas, which is a nice way to make the 
work widely available. 

Response: We thank the reviewer for their positive feedback. 

 
As a specific remark, it is a shame that the current status of annotation/metadata availability of 
public datasets still requires, prior and fastidious, thorough manual cleaning/reannotation of the 
datasets before they can be reused for such a study. The authors should even more clearly highlight 
this shortcoming which constitutes a real brake to this type of studies and more generally to the re-
use of public datasets. 

Response: We agree with this statement. However, I think we have already highlighted enough this 
problem in the ‘Discussion’ section. It is really a difficult one to solve due to different reasons. We 
also highlight there some of our recent activities in that context, including the development of the 
MAGE-TAB-Proteomics format. 
 
This work is worth being published in a journal like PLOS Computational Biology as this strategy can, 
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and should be, increasingly applied to a wide range of available –omics, and in particular, proteomics 
datasets. 
 
I have only two major comments that should be adressed in a revised version of the manuscript : 
- Instead of using finely extracted quantitative data from MaxQuant and then proceeding to a 
"coarse" binning, the authors should conduct the same analysis directly on spectral counting data 
(ex. length-normalised unique peptide counts). It would be very interesting to show whether/or not 
this has an impact on the results. 

Response: Please see our response to Reviewer 1 related to spectral counting approaches and the 
resource PaxDB. We believe that spectral counting is no longer state-of-the-art in most proteomics 
settings for the reasons explained there, so we believe that making such comparison is not really 
very useful. However, we thought it would be interesting to compare our results with the spectral 
counting data generated by others. We have used then the values available in PaxDB for this 
comparison. 

We compared our iBAQ normalised protein abundance results with the normalised protein 
abundances in PaxDB for mouse. We were only able to compare abundances from brain, heart, 
kidney, liver, lung, pancreas, and spleen as these were the common organs between PaxDB and our 
analysis. We saw generally a good correlation between these organs (Supplementary Figure S2). For 
rat however, we were unable to compare the abundances against PaxDB as there are no data there 
for individual organs (only available for the whole organism and several cell types).  

In Supplementary Figure S2 it can be observed that the expression of low abundant proteins seems 
to be underestimated in PaxDB when compared with our iBAQ results, as shown by a S-shaped curve 
in the scatterplot in organs such as brain, heart, liver and lung. The ‘dynamic exclusion’ setting used 
by modern mass spectrometers allows to measure expression of low abundant proteins more 
accurately. This is a limitation when using spectral counting methods. We have included this figure in 
Supplementary File 4, and added a summary of our findings in the revised version of the manuscript. 
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Figure S2. Comparison of mouse protein abundances in various organs between the results 
generated in study and the data available in PaxDB. 

 
- The authors should correlate their results achieved with proteomics data with antibody-based data 
extracted from Protein Atlas. This later inclusion would provide an added-value to the work. 

Response: The existing proteomics data in Human Protein Atlas (HPA) for mouse is available as 
protein-coding transcripts per million (pTPM), so data is derived from transcriptomics data, not from 
antibody-based data. Our understanding is that protein expression results for mouse proteins are 
therefore not available in the HPA. In this context, please see our response about the correlation 
between mRNA and protein expression values, performed as a response to one of the comments 
from Reviewer 2.   

References 

1. Hodge K. et al., Cleaning up the masses: exclusion lists to reduce contamination with HPLC-
MS/MS. J Proteomics. 2013 Aug 2;88:92-103. 

R2 = 0.44

R2 = 0.5

R2 = 0.61

R2 = 0.49

R2 = 0.42

R2 = 0.6

R2 = 0.56

Spleen

Liver Lung Pancreas

Brain Heart Kidney

0 5 10 15 20 25

0 5 10 15 20 25 0 5 10 15 20 25

−10

0

10

−10

0

10

−10

0

10

log2(FOT normalised iBAQ)  Mouse_Wang et al 2021

lo
g2

(a
bu

nd
an

ce
)  

M
ou

se
_P

ax
D

B
Mouse protein abundance comparison (Wang et al 2021 vs PaxDB)



 11 

2. Fernandez-Costa C. et al., Impact of the Identification Strategy on the Reproducibility of the 
DDA and DIA Results. J Proteome Res. 2020 Aug 7;19(8):3153-3161. 

3. Prakash A, García-Seisdedos D, Wang S, Kundu DJ, Collins A, George N, et al. An integrated 
view of baseline protein expression in human tissues. bioRxiv. 2021:2021.09.10.459811. doi: 
10.1101/2021.09.10.459811. 

 


