THE LANCET

Supplementary appendix

This appendix formed part of the original submission. We post it as supplied by the authors.

Supplement to: Wolter N, Jassat W, DATCOV-Gen author group, et al. Clinical severity of omicron lineage BA.2 compared with BA.1 in South Africa. *Lancet* 2022; published online June 30. https://doi.org/10.1016/S0140-6736(22)00981-3.

Supplementary material

Supplementary table 1. Multivariable logistic regression analysis evaluating the association between S-gene positive infection, compared to S-gene target failure (SGTF) infection, and hospitalisation, South Africa, 1 December 2021 – 20 January 2022^a (N=92,962)

		Hospital admission ^b	Adjusted odds ratio
		n/N (%)	(95% CI)
SARS-CoV-2		N=95,470	
sub-lineage			
	SGTF (BA.1 proxy)	2,965/87,194 (3.4)	Ref
	S-gene positive	295/8,276 (3.6)	0.96 (0.85-1.09)
	(BA.2 proxy)		
Age group		N=95,470	
(years)			
	<5	226/1,681 (13.4)	7.49 (6.02-9.32)
	5-12	98/4,426 (2.2)	1.16 (0.89-1.50)
	13-18	109/5,278 (2.1)	1.06 (0.83-1.37)
	19-24	146/7,127 (2.1)	Ref
	25-39	855/35,551 (2.4)	1.19 (0.99-1.42)
	40-59	847/30,953 (2.7)	1.39 (1.16-1.66)
	≥60	979/10,454 (9.4)	4.97 (4.12-5.94)
Sex		N=94,564	
	Male	1,364/42,017 (3.3)	Ref
	Female	1,884/52,547 (3.6)	1.14 (1.06-1.22)
Province		N=93,849	
	Eastern Cape	3/100 (3.0)	1.35 (0.42-4.35)
	Free State	78/2,126 (3.7)	1.35 (1.01-1.82)

	Gauteng	1,517/51,745 (2.9)	1.38 (1.14-1.66)
	KwaZulu-Natal	1,026/20,615 (5.0)	2.16 (1.78-2.62)
	Limpopo	77/3,688 (2.1)	1.17 (0.88-1.57)
	Mpumalanga	179/4,559 (3.9)	2.13 (1.68-2.70)
	North West	156/4,272 (3.7)	1.95 (1.53-2.49)
	Northern Cape	33/1,203 (2.7)	0.97 (0.65-1.44)
	Western Cape	122/5,541 (2.2)	Ref
Healthcare		N=95,470	
sector			
	Public	1,049/23,498 (4.5)	Ref
	Private	2,211/71,972 (3.1)	0.63 (0.58-0.68)
Re-infection ^c		N=95,470	
	No	3,016/86,086 (3.5)	Ref
	Yes	244/9,384 (2.6)	0.99 (0.86-1.14)

^a Cases followed-up for hospital admission until 10 February 2022

^b Admission to hospital between 7 days prior to 21 days after diagnosis (specimen collection date)

^c Re-infection was defined as an individual with at least one positive SARS-CoV-2 test >90 days prior to the current episode

Supplementary table 2. Multivariable logistic regression analysis evaluating the association between S gene positive infection, compared to S-gene target failure (SGTF) infection, and severe disease among hospitalised individuals with known outcome, South Africa, 1 December 2021 – 20 January 2022^a (N=2,984)

		Severe disease ^a	Adjusted odds ratio
		n/N (%)	(95% CI)
SARS-CoV-2 sul)-	N=3,058	
lineage	-		
-	SGTF (BA.1 proxy)	929/2776 (33.5)	Ref
	S-gene positive	86/282 (30.5)	0.91 (0.68-1.22)
	(BA.2 proxy)		
Age group (yea	rs)	N=3,058	
	<5	37/216 (17.1)	0.79 (0.45-1.39)
	5-12	8/92 (8.7)	0.38 (0.16-0.90)
	13-18	18/103 (17.5)	0.80 (0.41-1.57)
	19-24	28/139 (20.1)	Ref
	25-39	135/804 (16.8)	0.83 (0.52-1.33)
	40-59	284/790 (36.0)	2.09 (1.33-3.31)
	≥60	505/914 (55.3)	4.36 (2.77-6.85)
Sex		N=3,046	
	Male	473/1,275 (37.1)	Ref
	Female	536/1,771 (30.3)	0.83 (0.70-0.98)
Province		N=2,994	
	Eastern Cape	1/3 (33.3)	2.21 (0.16-31.1)
	Free State	28/70 (40.0)	2.44 (1.19-5.02)
	Gauteng	509/1,384 (36.8)	2.79 (1.72-4.55)
	KwaZulu-Natal	297/996 (29.8)	1.78 (1.08-2.94)
	Limpopo	10/76 (13.2)	0.81 (0.34-1.89)

	Mpumalanga	56/173 (32.4)	2.07 (1.13-3.77)
	North West	33/144 (22.9)	1.56 (0.83-2.95)
	Northern Cape	26/31 (83.9)	12.43 (4.10-37.63)
	Western Cape	27/117 (23.1)	Ref
Co-morbidity ^c		N=3,058	
	Absent	636/2,244 (28.3)	Ref
	Present	379/814 (46.6)	1.52 (1.25-1.84)
Healthcare secto	or	N=3,058	
	Public	377/965 (39.1)	Ref
	Private	638/2093 (30.5)	0.86 (0.70-1.07)
Days between		N=3,058	
diagnosis and			
admission			
	1-7 days before	96/251 (38.3)	Ref
	diagnosis		
	0-6 days after	803/2,496 (32.2)	0.82 (0.60-1.11)
	diagnosis		
	7-21 days after	116/311 (37.3)	0.96 (0.65-1.41)
	diagnosis		
Re-infection ^d		N=3,058	
	No	963/2,831 (34.0)	Ref
	Yes	52/227 (22.9)	0.77 (0.54-1.11)
SARS-CoV-2		N=3,058	
vaccination ^e			
	No	178/437 (40.7)	Ref
	Yes	43/169 (25.4)	0.52 (0.33-0.82)
	Unknown	794/2,452 (32.4)	0.75 (0.57-0.98)

^a Cases followed-up for in-hospital outcome until 10 February 2022

^b Severe disease defined as a hospitalised patient meeting at least one of the following criteria: admitted to ICU, received oxygen treatment, ventilated, received extracorporeal membrane oxygenation (ECMO), experienced acute respiratory distress syndrome (ARDS) and/or died

^c Co-morbidity defined as ≥1 of the following conditions: hypertension, diabetes, chronic cardiac disease, chronic kidney disease, asthma, chronic obstructive pulmonary disease (COPD), malignancy, HIV, and active or past tuberculosis

^d Re-infection was defined as an individual with at least one positive SARS-CoV-2 test >90 days prior to the current episode

^e Vaccination defined as ≥1 dose of SARS-CoV-2 vaccine (Johnson & Johnson / Pfizer-BioNTech)

Supplementary table 3. Comparison of clinical severity components by Omicron sub-lineage, among hospitalised individuals with known outcome, South Africa, 1 December 2021 – 20 January 2022^a (N=3,058)

	Omicron sub-lineage		P-value ^b
	SGTF (BA.1 proxy)	S-gene positive (BA.2 proxy)	
	n (%)	n (%)	
Severity component	N=2776	N=282	
ICU admission	252 (9.1)	26 (9.2)	0.937
Oxygen treatment	636 (22.9)	58 (20.6)	0.371
Ventilated	53 (1.9)	4 (1.4)	0.562
Received ECMO	0 (0.0)	0 (0.0)	N/A
ARDS	32 (1.2)	2 (0.7)	0.499
Died	242 (8.7)	20 (7.1)	0.353

SGTF: S-gene target failure, ICU: intensive care unit, ECMO: extracorporeal membrane oxygenation, ARDS: acute respiratory distress syndrome

^a Cases followed-up for in-hospital outcome until 10 February 2022

^b Pearson's Chi-squared test

ACKNOWLEDGEMENTS

We acknowledge all NGS-SA members and laboratory teams, laboratory teams at the Centre for Respiratory Diseases and Meningitis and the Sequencing Core Facility of the NICD (Johannesburg, South Africa) for genomic sequencing data; and the national SARS-CoV-2 NICD surveillance team and NICD Information Technology team for NMCSS case data. We thank all laboratories for submitting specimens for sequencing, all public and private laboratories for COVID-19 diagnostic test data, and all public laboratories and Lancet Laboratories for ThermoFisher TaqPath™ COVID-19 PCR data. We thank all hospitals and health-care workers submitting data through the DATCOV surveillance programme. We are grateful to Cecile Viboud and Kaiyuan Sun of the Fogarty International Center, National Institutes of Health (Bethesda, MD, USA), for their input on the analysis.

AUTHOR CONTRIBUTIONS

Conception and design of study: NW, WJ, SW, AvG, CC

Data collection and laboratory processing: NW, WJ, SW, RW, HM, DGA, JE, JNB, CS, NT, NC, MdP, NG, AI, AG, KM, WS, FKT, KS, ZM, NH, RP, JW, AvG, CC

Analysis and interpretation: NW, WJ, SW, RW, HM, MG, DGA, JE, JNB, CS, NC, MdP, NG, AI, AG, KM, WS, FKT, ZM, NH, RP, JW, HH, MD, AB AvG, CC

Accessed and verified the underlying data: NW, RW, HM, DGA, JE, AvG

Drafted the Article: NW, AvG, CC

All authors critically reviewed the Article.

*DATCOV-Gen author group: Sibongile Walaza^{1,4}, Richard Welch³, Harry Moultrie^{2,5}, Michelle Groome³, Daniel Gyamfi Amoako^{1,6}, Josie Everatt¹, Jinal N. Bhiman^{7,8}, Cathrine Scheepers^{7,8}, Naume Tebeila¹, Nicola Chiwandire¹, Mignon du Plessis^{1,2}, Nevashan Govender³, Arshad Ismail⁹, Allison Glass¹⁰, Koleka Mlisana^{11,12}, Wendy Stevens^{2,11}, Florette K. Treurnicht^{2,11}, Kathleen Subramoney^{2, 11}, Zinhle Makatini^{2,11}, Nei-yuan Hsiao^{11,13}, Raveen Parboosing^{2,11,14}, Jeannette Wadula ^{2,11,15}, Hannah Hussey¹⁶, Prof Mary-Ann Davies¹⁶, Prof Andrew Boulle¹⁶

¹ Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service, Johannesburg, South Africa

² School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

³ Division of Public Health Surveillance and Response, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service, Johannesburg, South Africa

⁴ School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

⁵ Centre for Tuberculosis, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service, Johannesburg, South Africa

⁶ School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa

⁷ Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa

⁸ SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

⁹ Sequencing Core Facility, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa

¹⁰ Lancet Laboratories, Johannesburg, South Africa

¹¹ National Health Laboratory Service (NHLS), South Africa

¹² School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa

¹³ Division of Medical Virology, University of Cape Town, Cape Town, South Africa

¹⁴ Department of Virology, University of KwaZulu-Natal, Durban, South Africa

¹⁵ Department of Clinical Microbiology & Infectious Diseases, CH Baragwanath Academic Hospital, Johannesburg, South Africa

¹⁶ Western Cape Government: Health and School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa