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Figure S1. Averaged 

cortical spectral amplitude 

maps per group. Surface 

maps represent source-

imaged spectral amplitude 

data averaged over all 

participants (left), as well as 

within each participant group 

(Alzheimer’s disease 

spectrum (ADS): middle; 

cognitively normal (CN): 

right). Scale bars to the far 

left indicate relative 

amplitude (in % total spectral 

power) for each frequency 

band denoted on the far right. 



 

Figure S2. Patient spectral deviations per frequency band and lobe. To standardize the source-imaged spectral 

amplitude maps per frequency, vertex-wise data for each patient were normalized to the distribution of the 

comparable data (i.e., the same frequency and vertex) from the cognitively normal group. The resulting patient 

spectral deviation maps are displayed, per frequency band, as grand-averages across the Alzheimer’s disease 

spectrum group on the cortical surfaces shown above. The frequency band corresponding to each set of surfaces 

is found to their left, and the color scale bars to their right indicate the relevant patient spectral deviation thresholds 

(in z-scores). Density plots surrounding each set of surface maps indicate the distribution of spectral amplitude of 

the cognitively normal group (light blue), averaged bilaterally over the four lobes of the brain. The tick marks 

below each density plot represent the individual data from the cognitively normal group that was used to generate 

this distribution, and the vertical dotted lines represent the mean (black) and standard deviations (gray) of these 

data. The colored points plotted horizontally indicate the comparable patient-level data for each participant in the 

Alzheimer’s disease spectrum group, with cooler colors indicating a greater decrease in amplitude, relative to the 

cognitively normal group, at that frequency, and warmer colors indicating the inverse. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure S3. Average spatial patterns of pathological oscillatory 

slowing in patients on the Alzheimer’s disease spectrum. After 

computation of spatially resolved pathological oscillatory slowing index 

(POSI) maps for each participant on the Alzheimer’s disease spectrum, 

these maps were averaged across patients to show the subjective spatial 

pattern of such slowing. The color scale bar on the right indicates the 

POSI thresholds used for this display (in patient spectral deviations 

[z]/Hz). Plots surrounding the surface maps represent these POSI scores 

at the level of each patient, averaged within each lobe of the brain, with 

frequency (in Hz) on the x-axis and patient spectral deviation (in z) on 

the y-axis. Light grey lines represent lines of best-fit from the linear 

model for each patient, and the black line indicates the line of best-fit 

across all patients, along with the corresponding confidence intervals in 

salmon. For each frequency band of interest, box plots represent 

conditional means, first and third quartiles, and minima and maxima, and 

violin plots show the probability density. 



  

Figure S4. Regions of significant pathological oscillatory slowing in patients on the 

Alzheimer’s disease spectrum, ventral and medial views. Surface maps on the left 

display the same data as in Figure 2, but with the cerebellum removed and from ventral and 

medial viewpoints to facilitate interpretation of effects in medial temporal regions. Surface 

maps on the right display the same effects, but with the parahippocampal cortices 

highlighted in green. 



  

Figure S5. Relative contribution of each frequency band to the inter-participant variability of the 

pathological oscillatory slowing index. Surface maps indicate the vertex-wise correlation (colorbar; in r) of 

spectral amplitude in each frequency band (indicated by Greek letters in the middle of each set) with the POSI 

metric, and are meant to display the relative contribution of each band to the inter-participant variability of the 

POSI metric. The median, absolute maximum, and absolute minimum correlation values are also reported in the 

middle of each set to aid interpretation. 



  

Figure S6. Model comparison of the pathological oscillatory slowing index 

versus spectral power for predicting general cognitive function. Surface maps to 

the right indicate results of a vertex-wise model comparison of the POSI metric 

versus simple derivatives of spectral amplitude (i.e., in the four relevant canonical 

frequency bands) for predicting general cognitive function (i.e., MoCA scores). The 

colorbar above represents the results of this comparison in values of ΔAIC (Akaike 

information criterion), where negative values indicate a better model when using the 

POSI metric, and positive values indicate the opposite, thresholded at a conservative 

[ΔAIC] > 3. The histogram to the left indicates the results from the same analysis, 

but unthresholded and plotted over all modeled vertices, with model preference (in 

ΔAIC) on the x-axis and the density function plotted on the y-axis. 



  

Figure S7. Vertex-wise relationships between pathological oscillatory neuronal slowing and processing 

speed in patients on the Alzheimer’s disease spectrum. Surface maps indicate the results of a regression of the 

vertex-wise POSI data against processing speed abilities. The color scale bar indicates the statistical (F) values of 

this test. Importantly, only vertices exhibiting a significant relationship between POSI and processing speed scores 

(pFWE < .05) are shown in color. The scatterplot to the right of the surface maps represents the POSI-processing 

speed relationship from the vertex exhibiting the strongest such effect (left IPC; -41, -65, 33), with POSI residuals 

(in z/Hz) on the x-axis and processing speed residuals (in demographically-normalized z-scores) on the y-axis. 

The line of best fit for this relationship is overlaid in black, along with the corresponding confidence intervals in 

gray. The color of each data point indicates clinical determination (blue: aMCI; red: probable AD). 



  

Figure S8. Spatial subtypes of neural slowing in patients on the Alzheimer’s disease spectrum. The 

line plot above (top panel) indicates the results of an analysis to determine the optimal number of clusters 

(k) for a k-means analysis, with increasing values of k (in # of clusters) plotted on the x-axis and the within-

cluster summed centroid distance (in squared Euclidean distance) on the y-axis. A clear “elbow” was 

apparent at k = 5, and the surface maps of the centroid locations for each of these five clusters are inlaid to 

the right. Note that the thresholds for these maps were selected so as to facilitate interpretation of the spatial 

variability within each cluster, but the absolute values of centroid locations (representing the relative slowing 

at that location for patients with this spatial “subtype”) are meaningfully different across clusters (i.e., 

clusters 1, 3 & 4 are mostly negative, cluster 2 is mostly positive, and cluster 5 is highly variable). The box-

and-whisker plot below indicates the results of a significant (p = .004) difference in attentional abilities 

across these five neural slowing subtypes. 



  

Figure S9. Relative functional network contributions to the neural slowing-Aβ relationship. The larger plot 

indicates the relative model contribution of each functional network (y-axis, in ΔAIC), relative to 100 

equivalently-sized random subsamples of non-network cortex, to the neural slowing-Aβ relationship. Each paired 

violin/box plot indicates the distribution of ΔAIC values for each network, over the 100 comparisons to random 

permutations of non-network vertices, with text indicating relevant network labels. Inlaid brain surface maps 

indicate the mean ΔAIC per each functional network, with warmer colors indicating a larger relative contribution 

to the neural slowing-Aβ model, and cooler colors indicating the opposite. Inlaid plots above indicate the mean 

amyloid burden (top left; in SUVR) and mean neural slowing effect (top right; in POSI units [z/Hz]) for each of 

these networks. For all instances, box plots represent conditional means, first and third quartiles, and minima and 

maxima, and violin plots show the probability density. 



 Table S1. Participant demographics and cognitive profiles. 

CN: cognitively normal controls; AD: Alzheimer’s disease spectrum; MoCA: Montreal Cognitive Assessment; MMSE: Mini-

Mental State Exam. Parentheticals for continuous variables indicate one standard deviation. †n = 52. *p < .05 (ADS vs CN), **p 

< .001 (ADS vs CN). 

  

 
Age 

(years) 

Sex 

(% female) 

Handedness 

(# left) 

Education 

(years) 
MoCA† 

MMSE 

 

CN 72.70 (4.73) 60 1 16.60 (2.87) 27.43 (1.99) 29.20 (1.06) 

ADS 69.21 (6.91)* 47 3 15.50 (2.72) 19.13 (4.76)** 23.66 (4.15)** 

 Processing Speed Attention Memory Learning Verbal Function  

CN 0.66 (0.83) 0.53 (0.60) 0.33 (0.56) 0.60 (0.76) 0.18 (0.76)  

ADS -0.90 (1.42)** -0.77 (1.06)** -2.28 (0.70)** -2.04 (0.88)** -1.04 (1.01)**  



Table S2. Model comparisons of the Pathological Oscillatory Slowing Index (POSI) versus spectral 

power for predicting regional amyloid-β burden. 

 

 

 

 

 

Aβ: amyloid-β; AIC: Akaike information criterion; POSI: pathological oscillatory slowing index. All models include age as a 

nuisance covariate. Note that lower AIC values indicate a better model. *p < .01, **p < .001. 

 

  

Metric 
Relationship to 

Aβ (t-value) 
AIC 

ΔAIC 

(POSI-Metric) 

POSI -61.96** 48395.97 – 

Delta Power -21.89** 51743.51 -3347.54 

Theta Power -3.14* 52211.75 -3815.78 

Alpha Power -31.77** 51214.47 -2818.50 

Beta Power 37.14** 50843.90 -2447.93 



Supplementary Materials and Methods 

Positron-Emission Tomography (PET) Processing 

PET images were attenuation-corrected using the CT data, reconstructed in MIMNeuro (slice 

thickness = 2 mm)1, converted to voxel-wise standardized uptake values based on body weight 

(SUVbw), and then normalized into MNI space. At this stage, each scan was read by a fellowship-

trained neuroradiologist, who was blinded to their group assignment, and assessed as being 

“amyloid-positive” or “amyloid-negative” using established clinical criteria1. Patients who were 

amyloid-negative were excluded from the AD spectrum group at this point. Images were then 

normalized to the crus of the cerebellum (SUIT template)2 to generate voxel-wise maps of SUV 

ratios3, and back-transformed into native space using each individual’s FreeSurfer-processed T1 

MRI data. The PET data overlapping with each individual’s cortical gray-matter ribbon was then 

projected onto a tessellated FSAverage template surface using mri_vol2surf (maximum value; 

projection fraction = 1; steps of 2)4, and spatially smoothed (FWHM: 8mm)5,6. 

Neuropsychological Testing 

We focused on five cognitive domains impacted in patients with AD: verbal memory (Wechsler 

Memory Scale-Fourth edition [WMS-IV] Logical Memory II Delayed Recall and Recognition; 

Hopkins Verbal Learning Test-Revised [HVLT-R] Delayed Recall and Recognition 

Discriminability Index), learning (WMS-IV Logical Memory I Recall; HVLT-R Learning Trials 

1-3), attention and executive function (Wechsler Adult Intelligence Scale-Fourth edition [WAIS-

IV] Digit Span Forward, Backward, and Sequencing; Trail Making Test Part B), verbal function 

(Boston Naming Test; Semantic Verbal Fluency/Animals; Phonemic Verbal Fluency/Controlled 

Oral Word Association Test), and processing speed (WAIS-IV Coding; Trail Making Test Part A). 

Demographically corrected test z-scores within each functional domain were averaged to create 

composite domain z-scores by participant. To corroborate the independence of these domain 

composite scores, we computed a ratio of z-scores in the cognitively normal group representing 

the mean of all relationships amongst intra-domain tests, divided by the mean of all relationships 

with inter-domain tests. All domains had a ratio of zintra/zinter > 1.50, and the mean zintra/zinter ratio 

over all domains was 3.46 (SD = 1.85). This indicates that these domains were ~250% more 

internally- than externally related. Instrumental activities of daily living (IADLs) were also 

measured (in collaboration with a spouse or child informant for patients on the AD spectrum) using 



the Functional Activities Questionnaire (FAQ)7, pre-morbid function was assessed using the Wide 

Range Achievement Test 4 (WRAT-4), and general cognitive status was measured using the 

Montreal Cognitive Assessment (MoCA)8 and the Mini-mental State Examination (MMSE) 9. 

Head Surface Digitization & Continuous Head Localization 

Preceding MEG measurement, four coils were attached to the participant’s head and localized, 

together with the three fiducial points and scalp surface, using a 3-D digitizer (Fastrak 3SF0002, 

Polhemus Navigator Sciences, Colchester, VT, USA). Once the participant was positioned for 

MEG recording, an electric current with a unique frequency label (i.e., 293, 307, 314, and 321 Hz) 

was fed to each of the coils. This induced a measurable magnetic field and allowed each coil to be 

localized in reference to the sensors throughout the recording session. Since coil locations were 

also known in head coordinates, all MEG measurements could be transformed into a common 

coordinate system. 

Magnetoencephalography (MEG) Preprocessing 

After import into Brainstorm, MEG data were bandpass filtered between 1 and 200 Hz and notch 

filtered at 60, 120, and 180 Hz, and ocular and cardiac artifacts were identified using an automated 

identification algorithm, supplemented by visual inspection of their temporal and spatial 

topography. From these artifacts, Signal-Space Projectors (SSPs) were generated for each type of 

artifact, the temporal and spatial topography of these SSPs were reviewed, and those accounting 

for expected ocular and cardiac components were removed from the gradiometer data. Artifact-

reduced MEG data were then arbitrarily epoched into non-overlapping blocks of 4 s and 

downsampled to 500 Hz. Epochs still containing major artifacts (e.g., SQUID jumps) were 

excluded within each participant using the ∪ of standardized thresholds of ± 2.5 median absolute 

deviations from the median for signal amplitude and gradient.  

Spatial Clustering Analysis 

To explore the potential clinical relevance of differing spatial patterns of neural slowing, we 

performed k-means clustering of the spatial POSI data using Matlab’s kmeans function. The 

number of clusters was determined by sequentially increasing k from 1 to 20, selecting the solution 

with the lowest sum of point-to-centroid distances over 10 repetitions for each value of k, and 



plotting the resulting point-to-centroid distance sums to identify the value k where these sums 

reached a point of inflection (i.e., “elbow”).78 Using the optimal k-value identified with this 

method, we then extracted spatial maps of the centroid approximations per each cluster for 

visualization purposes. This approach indicated 5 relatively distinct spatial patterns of neural 

slowing in our patient group (Figure S6, top). To examine the relevance of these spatial patterns 

for clinical outcomes, we used linear models to test for differences in domain-specific cognitive 

scores (i.e., memory, learning, attention, processing speed, and verbal function) across these five 

groups of patients, beyond the effects of age. 
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