
Supplemental Materials for Comparing trained and untrained

probabilistic ensemble forecasts of COVID-19 cases and deaths in

the United States

1 Illustration of component forecaster predictive medians

Supplemental Figures 1 and 2 show predictive medians for component forecasts of weekly cases and deaths
respectively in selected states with large counts of cases and deaths. We note several important characteristics
of the forecasts. For cases, in periods of exponential growth at the start of new waves, it has consistently
been the case that two or fewer forecasters accurately predicted that growth. On the other hand, more5

forecasters have captured periods of growth in deaths.
We also note that for both cases and deaths, there are many outlying forecasts. These can take the form

of forecasts that bear little relation to the observed data, such as forecasts of nearly zero cases near peaks as
shown in all facets of Supplemental Figure 1, or forecasts that are uniformly too high, such as the outlying
forecast of deaths in Florida that is visible in the second panel of Supplemental Figure 2.10

Another type of outlying forecast is one that predicts exponential growth that does not materialize, as
illustrated at several points in forecasts of cases in Florida and Texas (Supplemental Figure 1). We note
that these forecasts were unsuccessful, but closely match the trajectories of the few successful forecasts that
were made during the Omicron wave in January 2022. This illustrates a potential challenge with automated
outlier detection schemes in the context of a process where exponential growth is possible.15
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Supplemental Figure 1: Component forecasters’ predictive medians (blue) for weekly cases (black). For
legibility, only the predictive medians originating from every fifth forecast date are shown.
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Supplemental Figure 2: Component forecasters’ predictive medians (blue) for weekly deaths (black). For
legibility, only the predictive medians originating from every fifth forecast date are shown.
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2 Relative WIS of component forecasters

Supplemental Figures 3 and 4 show the relative WIS of each component forecaster as a function of the
forecast week for the weekly cases and weekly deaths targets respectively. For each week, we calculated a
standardized rank for each model based on where that model’s relative WIS fell relative to all other models
that had submissions that week. In these rankings, 0 indicates the model with the best performance, and 120

indicates the model with the worst performance as measured by relative WIS. We see that nonstationarity
of relative performance is very common, with many models alternating between weeks with top-ranking
performance and bottom-ranking performance.

Supplemental Figure 5 compares two methods for aggregating across forecasters. Recall that as defined
in the main text, the relative WIS uses a geometric mean to aggregate WIS ratios across pairs of forecasters.
To refresh the notation, we let I denote a set of combinations of location l and forecast creation date s
over which we desire to summarize model performance, and Im,m′ ⊆ I be the subset of those locations and
dates for which both models m and m′ provided forecasts. The relative WIS of model m over the set I is
calculated as

rWISm,geom
I =

θm

θbaseline
, where

θm =

 M∏
m′=1

(4 · |Im,m′ |)−1
∑

(l,s)∈Im,m′

∑s+4
t=s+1 WIS(qml,s,t,1:K , yl,t)

(4 · |Im,m′ |)−1
∑

(l,s)∈Im,m′

∑s+4
t=s+1 WIS(qm

′
l,s,t,1:K , yl,t)

 1
M

.

The figure compares to the alternate strategy of using an arithmetic mean to aggregate across model pairs:

rWISm,arith
I =

θm

θbaseline
, where

θm =
1

M

M∑
m′=1

(4 · |Im,m′ |)−1
∑

(l,s)∈Im,m′

∑s+4
t=s+1 WIS(qml,s,t,1:K , yl,t)

(4 · |Im,m′ |)−1
∑

(l,s)∈Im,m′

∑s+4
t=s+1 WIS(qm

′
l,s,t,1:K , yl,t)

.

There is no substantive difference between the relative WIS values obtained using these aggregation strategies.
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Supplemental Figure 3: Weekly component ranks according to relative WIS for forecasts of cases in the U.S.
A rank of 0 indicates that the model has the best performance in a given week, and a rank of 1 indicates
that it has the worst performance. There is a facet for each component forecaster, and the colored line shows
the standardized rank of that forecaster.

5



UT−Mobility Wadhwani_AI−BayesOpt YYG−ParamSearch

UCSD_NEU−DeepGLEAM UMass−MechBayes UMich−RidgeTfReg USACE−ERDC_SEIR USC−SI_kJalpha

UA−EpiCovDA UChicago−CovidIL UCLA−SuEIR UCM_MESALab−FoGSEIR UCSB−ACTS

RPI_UW−Mob_Collision SDSC_ISG−TrendModel SigSci−TS SteveMcConnell−CovidComplete SWC−TerminusCM

NotreDame−mobility OliverWyman−Navigator PSI−DRAFT Quantori−Multiagents RobertWalraven−ESG

MITCovAlliance−SIR MOBS−GLEAM_COVID MSRA−DeepST MUNI−ARIMA NotreDame−FRED

LNQ−ens1 Microsoft−DeepSTIA MIT_CritData−GBCF MIT_ISOLAT−Mixtures MIT−Cassandra

JHU_CSSE−DECOM JHU_IDD−CovidSP JHUAPL−Bucky Karlen−pypm LANL−GrowthRate

IEM_MED−CovidProject IHME−CurveFit IowaStateLW−STEM IUPUI−HkPrMobiDyR JCB−PRM

DDS−NBDS epiforecasts−ensemble1 Google_Harvard−CPF GT_CHHS−COVID19 GT−DeepCOVID

Covid19Sim−Simulator CovidActNow−SEIR_CAN CovidAnalytics−DELPHI COVIDhub−baseline CU−select

AIpert−pwllnod BPagano−RtDriven CEID−Walk CMU−TimeSeries Columbia_UNC−SurvCon

A
pr

 2
02

0
M

ay
 2

02
0

Ju
n 

20
20

Ju
l 2

02
0

A
ug

 2
02

0
S

ep
 2

02
0

O
ct

 2
02

0
N

ov
 2

02
0

D
ec

 2
02

0
Ja

n 
20

21
F

eb
 2

02
1

M
ar

 2
02

1
A

pr
 2

02
1

M
ay

 2
02

1
Ju

n 
20

21
Ju

l 2
02

1
A

ug
 2

02
1

S
ep

 2
02

1
O

ct
 2

02
1

N
ov

 2
02

1
D

ec
 2

02
1

Ja
n 

20
22

F
eb

 2
02

2
M

ar
 2

02
2

A
pr

 2
02

2
A

pr
 2

02
0

M
ay

 2
02

0
Ju

n 
20

20
Ju

l 2
02

0
A

ug
 2

02
0

S
ep

 2
02

0
O

ct
 2

02
0

N
ov

 2
02

0
D

ec
 2

02
0

Ja
n 

20
21

F
eb

 2
02

1
M

ar
 2

02
1

A
pr

 2
02

1
M

ay
 2

02
1

Ju
n 

20
21

Ju
l 2

02
1

A
ug

 2
02

1
S

ep
 2

02
1

O
ct

 2
02

1
N

ov
 2

02
1

D
ec

 2
02

1
Ja

n 
20

22
F

eb
 2

02
2

M
ar

 2
02

2
A

pr
 2

02
2

A
pr

 2
02

0
M

ay
 2

02
0

Ju
n 

20
20

Ju
l 2

02
0

A
ug

 2
02

0
S

ep
 2

02
0

O
ct

 2
02

0
N

ov
 2

02
0

D
ec

 2
02

0
Ja

n 
20

21
F

eb
 2

02
1

M
ar

 2
02

1
A

pr
 2

02
1

M
ay

 2
02

1
Ju

n 
20

21
Ju

l 2
02

1
A

ug
 2

02
1

S
ep

 2
02

1
O

ct
 2

02
1

N
ov

 2
02

1
D

ec
 2

02
1

Ja
n 

20
22

F
eb

 2
02

2
M

ar
 2

02
2

A
pr

 2
02

2
A

pr
 2

02
0

M
ay

 2
02

0
Ju

n 
20

20
Ju

l 2
02

0
A

ug
 2

02
0

S
ep

 2
02

0
O

ct
 2

02
0

N
ov

 2
02

0
D

ec
 2

02
0

Ja
n 

20
21

F
eb

 2
02

1
M

ar
 2

02
1

A
pr

 2
02

1
M

ay
 2

02
1

Ju
n 

20
21

Ju
l 2

02
1

A
ug

 2
02

1
S

ep
 2

02
1

O
ct

 2
02

1
N

ov
 2

02
1

D
ec

 2
02

1
Ja

n 
20

22
F

eb
 2

02
2

M
ar

 2
02

2
A

pr
 2

02
2

A
pr

 2
02

0
M

ay
 2

02
0

Ju
n 

20
20

Ju
l 2

02
0

A
ug

 2
02

0
S

ep
 2

02
0

O
ct

 2
02

0
N

ov
 2

02
0

D
ec

 2
02

0
Ja

n 
20

21
F

eb
 2

02
1

M
ar

 2
02

1
A

pr
 2

02
1

M
ay

 2
02

1
Ju

n 
20

21
Ju

l 2
02

1
A

ug
 2

02
1

S
ep

 2
02

1
O

ct
 2

02
1

N
ov

 2
02

1
D

ec
 2

02
1

Ja
n 

20
22

F
eb

 2
02

2
M

ar
 2

02
2

A
pr

 2
02

2

1

10

100

1

10

100

1

10

100

1

10

100

1

10

100

1

10

100

1

10

100

1

10

100

1

10

100

1

10

100

1

10

100

1

10

100

Forecast Date

R
el

at
iv

e 
W

IS
 (

lo
g 

sc
al

e)

0.00 0.25 0.50 0.75 1.00
Standardized Model Rank

Supplemental Figure 4: Weekly component ranks according to relative WIS for forecasts of deaths in the
U.S. A rank of 0 indicates that the model has the best performance in a given week, and a rank of 1 indicates
that it has the worst performance. There is a facet for each component forecaster, and the colored line shows
the standardized rank of that forecaster.
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Supplemental Figure 5: Comparison of aggregation methods used to summarize across models when calcu-
lating the relative WIS. Each point corresponds to one combination of component forecaster and forecast
date, and shows the relative WIS based on a trailing window of 12 weeks using the arithmetic mean to sum-
marize across models (horizontal axis) or the geometric mean to summarize across models (vertical axis).
The figure shows these results for all component model forecasts of incident cases at the state level in the
United States made on dates between July 27, 2020 and March 14, 2022 using the truth data available as of
the forecast date; the relative WIS scores shown are those that would have been used as input to the relative
WIS weighted ensemble methods for real-time forecasts.
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3 Comparison of logarithmic score and weighted interval score25

In the Forecast Hubs, all forecasts are represented by a set of predictive quantiles at specified probability
levels. This has motivated our decision to use the weighted interval score (WIS) for forecast evaluation, as the
WIS is a proper score for quantile forecasts. In this section, we discuss challenges with using the logarithmic
score when only predictive quantiles are available, and give a qualitative illustration of the difference between
the logarithmic score and the WIS. We give a general discussion in Section 3.1, and defer some technical30

details to Section 3.2.

3.1 Illustrative example comparing the logarithmic score and WIS

Suppose that we have a forecast submission consisting of quantiles of a predictive distribution at the 23
probability levels used in the Forecast Hub, and our goal is to calculate a score that measures the accuracy
of this forecast for the observed value yobs. One common choice of score for probabilistic forecasts is the35

logarithmic score; here we consider the negative logarithmic score so that its orientation matches that of the
WIS. If a predictive density fY (y) is available, the negative logarithmic score is defined as

NLS(fY , yobs) = − log[fY (yobs)]

In a setting where we do not have the predictive density fY , but only predictive quantiles, the logarithmic
score cannot be calculated. One possible route forward is to attempt to reconstruct the predictive density
from the provided predictive quantiles. We illustrate here that within the limits of the predictive quantiles,40

it is possible to obtain a reasonable approximation of the predictive density. Here, we do so by fitting a
monotonic spline to the provided quantiles to approximate the cumulative distribution function, and then
differentiating to approximate the probability density function. However, extrapolating beyond the predictive
quantiles is more of a challenge, and requires some assumption to be made about the behavior of the tails
of the predictive distribution. This assumption can have a large impact on the log score when observations45

fall in the tails.
Supplemental Figure 6 illustrates this using an example of a hypothetical forecast submission consisting

of quantiles of the predictive distribution Y ∼ log normal(4, 0.5). We compare this predictive distribution
with two approximations of it that are derived from the quantiles: one assuming a normal distribution for
the tails, and the second assuming a Cauchy distribution for the tails. Although there are apparently only50

minor differences in the CDFs and PDFs of these distributions, the log scores diverge substantially in the
tails. By construction, all three distributions have the same quantiles at the 23 points that were included
in the submission, and so the WIS is identical for all three distributions. To summarize, when only a set of
predictive quantiles are provided, there is not enough information to characterize the behavior of the forecast
distribution in the tails, and so a log score cannot be calculated. On the other hand, the WIS is defined only55

in terms of the specified predictive quantiles, and so it does not suffer from this problem.
Qualitatively, the figure shows that both the negative log score and the WIS are minimized when the

observed value falls near the center of the predictive distribution, and are larger when the observation falls
in the tails. More formally, the negative log score is optimized when the observed value falls at a predictive
mode, while the weighted interval score is optimized when the observed value falls at the predictive median.60

See Bracher et al. (2021) for additional discussion of these scores and the continuous ranked probability
score.

3.2 Methods for approximating a predictive density based on predictive quan-
tiles

Here we describe the methods used in the previous section for obtaining an approximate predictive density65

f̂Y based on a set of predictive quantiles q1, . . . , qK at probability levels τ1, . . . , τK . The method works in
two phases: (1) we estimate the density on the interior of the predictive quantiles as the derivative of a
monotonic spline that estimates the CDF; and (2) we approximate the tails with a distribution in a specified
location-scale family.

For the interior points, we fit a monotonic spline that interpolates the set of “observations” {(q1, τ1), . . . , (qK , τK)}.70

This spline is an estimate of the predictive CDF, and its derivative estimates the predictive PDF. Because
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quantiles are shown with black points in the top panel.
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the spline passes through the points (q1, τ1) and (qK , τK), the integral of its derivative over the interval
[q1, qK ] is equal to τK − τ1.

We estimate the density for the left and right tails separately, assuming that they come from a specified
location-scale family. Setting notation, suppose that Y = a + b · Z where the random variable Z has a75

specified distribution. Recall that at the probability level τ , a quantile of Y can be calculated in terms of
the corresponding quantile of Z via qY (τ) = a + b · qZ(τ). Using the quantiles at two probability levels τi
and τj , we can calculate the value of b using

qY (τi)− qY (τj)

qZ(τi)− qZ(τj)
=
a+ b · qZ(τi)− (a+ b · qZ(τj))

qZ(τi)− qZ(τj)

= b · qZ(τi)− qZ(τj)

qZ(τi)− qZ(τj)

= b

Similarly, we can calculate the value of a as

qY (τi)− b · qZ(τi) = a+ b · qZ(τi)− b · qZ(τi) = a

In the above expressions, we use the two smallest quantiles when estimating the lower tail and the two80

largest quantiles when estimating the upper tail. With these choices, by construction the lower tail integrates
to τ1 on the interval (−∞, q1] and the upper tail integrates to 1− τK on the interval [qK ,∞).
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4 Quantile ensembles as horizontal combinations of predictive CDFs

Supplemental Figure 7 illustrates the ensemble methods considered in this manuscript as horizontal com-
binations of the cumulative distribution functions of predictive distributions from component forecasters,85

computing a weighted or unweighted mean or median at each quantile probability level along the vertical
axis.
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Supplemental Figure 7: Illustration of four ensemble methods for forecasting incident deaths in Ohio at a
forecast horizon of 1 week from February 15, 2021. Each line corresponds to the forecast distribution from
one component model or ensemble, and is obtained by interpolating between the 23 predictive quantiles; the
resulting curves approximate the predictive CDFs associated with these forecasts. The curves are cut off
for two component forecasters with extremely wide predictive distributions. At each quantile level along the
vertical axis, the ensemble forecasts are obtained as a combination of the component model forecasts at that
quantile level.
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5 Expanded results from primary analysis

This section includes figures giving additional views of the primary results from Figures 3, 4, 5, and 7 in the
article.90

5.1 Full distributions of Weighted Interval Score differences

For legibility, Figures 3 and 7 in the main text displayed the central tendency (central quantiles and means) of
differences in weighted interval scores between the different methods, but suppressed outliers corresponding
to individual combinations of forecast dates and horizons with large differences between the equal weighted
median ensemble and another ensemble method. Supplemental Figures 8 and 9 display full box plots includ-95

ing outliers that were suppressed in the main text.

12



   
   

   
   

   
   

   
   

   
   

 E
ns

em
bl

e 
M

et
ho

d 
M

ea
n 

W
IS

 M
in

us
   

   
   

   
   

   
   

   
   

   
 E

qu
al

ly
 W

ei
gh

te
d 

M
ed

ia
n 

M
ea

n 
W

IS

+++ +++ +++ +++

+++ +++ +++ +++

+ + + +

+ + + +

Model Development: US Prospective Evaluation: US

C
ases

D
eaths

Equ
al 

W
eig

ht
ed

M
ea

n

Equ
al 

W
eig

ht
ed

M
ed

ian

Rel.
 W

IS
 W

eig
ht

ed

M
ea

n

Rel.
 W

IS
 W

eig
ht

ed

M
ed

ian

Equ
al 

W
eig

ht
ed

M
ea

n

Equ
al 

W
eig

ht
ed

M
ed

ian

Rel.
 W

IS
 W

eig
ht

ed

M
ea

n

Rel.
 W

IS
 W

eig
ht

ed

M
ed

ian

−25,000

0

25,000

50,000

75,000

100,000

0

100

200

300

Combination Method

Number of
Component Forecasters

All Models

Top 10

Top 5

Supplemental Figure 8: Performance measures for ensemble forecasts of weekly cases and deaths in the U.S.
The vertical axis is the difference in mean WIS for the given ensemble method and the equally weighted
median ensemble. Boxplots summarize the distribution of these differences in means, averaging across all
locations for each combination of forecast date and horizon. A cross is displayed at the difference in overall
mean scores for the specified combination method and the equally weighted median averaging across all
locations, forecast dates, and horizons. A negative value indicates that the given method outperformed the
equally weighted median.
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Supplemental Figure 9: Performance measures for ensemble forecasts of weekly cases and deaths in Europe.
The vertical axis is the difference in mean WIS for the given ensemble method and the equally weighted
median ensemble. Boxplots summarize the distribution of these differences in means, averaging across all
locations for each combination of forecast date and horizon. A cross is displayed at the difference in overall
mean scores for the specified combination method and the equally weighted median averaging across all
locations, forecast dates, and horizons. A negative value indicates that the given method outperformed the
equally weighted median.
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5.2 Scores by forecast creation date

Supplemental Figures 10 and 11 show relative WIS for the ensemble methods over time for forecasts in the
US and in Europe respectively. The included ensemble methods are 1) an equally weighted mean ensemble,
2) an equally weighted median ensemble, 3) a weighted mean ensemble, and 4) a weighted median ensemble.100

Both of the weighted ensembles combine the ten component forecasters with best individual performance
as measured by the relative WIS, and are trained on a sliding 12-week window. The component forecasters
included in the trained ensembles are updated each week based on performance during the training window.
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Supplemental Figure 10: Weekly reported cases and deaths at the national level in the United States and
mean weighted interval scores (WIS) relative to the baseline for state-level forecasts over time for four
ensembles. Mean WIS is calculated separately for each combination of forecast horizon and forecast creation
date, averaging across all states and territories, and then normalized relative to the mean WIS for the
baseline model. Lower scores indicate better forecast performance. A vertical dashed line is shown at the
start of the prospective evaluation phase.
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Supplemental Figure 11: Weekly reported cases and deaths aggregated across all European countries included
in the European Forecast Hub and mean weighted interval scores (WIS) relative to the baseline for state-level
forecasts over time for four ensembles. Mean WIS is calculated separately for each combination of forecast
horizon and forecast creation date, averaging across all states and territories, and then normalized relative to
the mean WIS for the baseline model. Lower scores indicate better forecast performance. A vertical dashed
line is shown at the start of the prospective evaluation phase.
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5.3 95% prediction interval widths

Supplemental Figures 12 and 13 illustrate that the widths of 95% prediction intervals for the ensemble105

forecasters generally fall in the middle of the widths of the intervals from the component forecasters. This is
true because the ensemble forecasts are a (weighted) mean or median of predictive quantiles of the component
forecasters. In particular, the equal weighted median forecast typically has a 95% interval width that ranks
very close to the middle of the other forecasters’ interval widths.

We note that interval coverage rates are not in themselves a measure of forecast skill, and it is important110

to also consider whether the interval contains the forecasted quantity at the nominal coverage rate (i.e.,
whether the forecasts are well-calibrated). The figures in the main text include displays of calibration as
well as proper scores that measure both calibration and sharpness together.
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Supplemental Figure 12: Standardized ranks of 95% prediction intervals for weekly cases from component
forecasters, the equally weighted median ensemble, and the relative WIS weighted median ensemble. For
each combination of location, forecast date, and forecast horizon, we rank the widths of 95% prediction
intervals from all forecasters that submitted the relevant forecast on a scale from 0 to 1, where the forecaster
with the narrowest interval has rank 0 and the forecaster with the widest interval has rank 1. Density plots
summarize the distribution of these ranks for each forecaster; forecasters are sorted by their median rank.
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Supplemental Figure 13: Standardized ranks of 95% prediction intervals for weekly deaths from component
forecasters, the equally weighted median ensemble, and the relative WIS weighted median ensemble. For
each combination of location, forecast date, and forecast horizon, we rank the widths of 95% prediction
intervals from all forecasters that submitted the relevant forecast on a scale from 0 to 1, where the forecaster
with the narrowest interval has rank 0 and the forecaster with the widest interval has rank 1. Density plots
summarize the distribution of these ranks for each forecaster; forecasters are sorted by their median rank.

20



5.4 Impact of reporting anomalies

We conducted a supplemental analysis in which we removed forecasts that were affected by reporting anoma-115

lies before calculating summaries of forecast performance. We catalogued two types of reporting anomalies,
as illustrated in Supplemental Figure 14:

1. Outliers were identified manually by examining plots of the data. Negative weekly counts and other
observations that did not appear to match local trends were recorded as outliers.

2. Revisions were identified automatically. The value for a particular week was identified as a large120

revision if the difference between the original reported value and the final reported value was at least
20, and that difference was at least 40% of the initial reported value or the final reported value.

For the purpose of this analysis, forecasts with a target end date coinciding with an observation that
was identified as an outlier were excluded. This is because we would prefer forecasting methods to focus on
capturing the epidemiological process rather than aspects of the reporting process that lead to outliers.125

Forecasts with a forecast date on the date of a value that was later revised, or within the following 3
weeks unless the revision had already been made by the time of the forecast, were excluded. These forecasts
were excluded because the input data used for the forecast were not a reliable indicator of the state of the
epidemic at the time of the forecast. One might reasonably expect forecasters to account for the possibility
of such data revisions, but this analysis represents a conservative examination of whether these revisions130

affected the main results in the article.
Together, these criteria led to removal of 531 combinations of location, forecast date, and forecast horizon

out of 19,256 such combinations throughout the model development and prospective evaluation phases in
the U.S.

Supplemental Figures 15 and 16 mirror Figure 3 in the primary text and Supplemental Figure 8, summa-135

rizing forecast skill after removing scores affected by reporting anomalies. Although the forecasts affected by
reporting anomalies generally had higher WIS values than other forecasts, they did not have unusually large
differences in WIS between forecasting methods. The results about the relative performance of ensemble
methods hold stable whether or not the forecasts affected by data anomalies are removed.
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Supplemental Figure 14: An illustration of data anomalies identified for weekly deaths in the state of Texas.
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Supplemental Figure 15: Summaries of forecast performance after removing forecasts affected by reporting
anomalies. Panel (a) shows the 25th percentile, median, and 75th percentile of differences in mean WIS
between specified ensemble methods and the equally weighted median ensemble, where the means average
across locations for each combination of forecast date and forecast horizon. Crosses show the difference
in overall mean WIS averaging across all locations, forecast dates, and forecast horizons. Panel (b) shows
the calibration of predictive quantiles, with the difference between the empirical coverage rate and the
nominal coverage rate on the vertical axis. A well calibrated model will have a difference between the
empirical coverage rate and the nominal quantile level that is approximately zero. A method that generates
conservative two-sided intervals would have a difference that is negative for nominal quantile levels less than
0.5 and positive for nominal quantile levels greater than 0.5.
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Supplemental Figure 16: Summaries of forecast performance after removing forecasts affected by reporting
anomalies. Boxplots summarize the distribution of differences in mean WIS between specified ensemble
methods and the equally weighted median ensemble, where the means average across locations for each
combination of forecast date and forecast horizon. Crosses show the overall difference in mean WIS averaging
across all locations, forecast dates, and forecast horizons.
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6 Model variations considered during development phase140

Here we present some results for model variations considered during the model development phase. All
figures here represent only scores for forecast dates before May 3, 2021.

6.1 Additional combination methods and training window sizes

The manuscript gives results for equally weighted mean and median ensembles, and relative WIS weighted
mean and median ensembles, using a fixed training set window size of the 12 weeks prior to the forecast145

date. Here we show results on the development set for forecasts using a range of training set window sizes
including 4 weeks, 8 weeks, 12 weeks, and all available forecast history. We also consider two additional
combination methods along with those presented in the main text.

The first of these new combination methods is a weighted mean. As a reminder, qml,s,t,k denotes the
predictive quantile at probability level k from component model m at location l, forecast date s, and target
end date t. With this notation, the weighted mean ensemble forecast quantiles are calculated as

qensl,s,t,k =

M∑
m=1

wm
s q

m
l,s,t,k.

The model weights wm
s are constrained to be non-negative and sum to one; in case of missing forecasts,

the weights for any missing models are set to zero and the remaining weights are rescaled to sum to 1. As150

indicated by the subscript s, the weights wm
s are updated each week by optimizing the ensemble WIS over

the training window of the specified number of weeks before the forecast date s.
The second of the new combination methods is a weighted median ensemble that uses the weights esti-

mated for the weighted mean ensemble. This offers comparable flexibility to the weighted mean ensemble,
but has the disadvantage that the weights are not obtained by optimizing the forecast skill of the method155

that is actually used for forecast combination. Direct estimation of the weights for a weighted median by
optimizing ensemble WIS is challenging because the objective function is not differentiable in the weights;
the optimization problem is a mixed integer linear program, which is computationally demanding. In other
experiments, we also considered a method for computing an approximate weighted median by the smoothing
weighted distribution of predictive quantiles from component forecasters. However, this method’s perfor-160

mance was not substantively different from the other methods considered here and we omit those results for
brevity.

Supplemental Figures 17 and 18 display the results of this expanded comparison including all combi-
nations of the training set window size, the six combination methods, and three variations on the number
of top-performing component forecasters included in the ensemble. Across all combinations of training set165

window size, number of component forecasters included, and target variable (cases or deaths), the relative
WIS weighted median ensemble had the most stable performance. For deaths, it had the best mean WIS
for all training set window sizes, though it had similar performance to the equally weighted median of the
top 5 models. For cases, it was more often matched by other methods, though the performance of the other
methods was more inconsistent across different settings for other tuning parameters. Across most settings,170

using a relative WIS weighted mean or median offered an improvement in mean WIS over taking an equally
weighted mean or median of top performing models.

There is perhaps a slight indication that an intermediate training set size of 8 to 12 weeks is better than
training on 4 weeks or the full available history, but this signal is not strong. Some of the combination
methods were better when fewer top models were included, but the relative WIS weighted median method175

was not sensitive to this setting.
We selected the relative WIS weighted mean and median ensembles for the prospective evaluation because

they were consistently better than both more flexibly weighted methods and equally weighted combinations of
top-performing components when forecasting cases, and were comparable to the best of the other approaches
when forecasting deaths. We selected an intermediate training set window size of 12 weeks because both the180

relative WIS weighted mean and median methods did well with that training set size. We selected including
the top ten component forecasters as an intermediate setting for that tuning parameter, though we did not
see a strong reason to prefer it to the other possibilities we considered.
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Supplemental Figure 17: The 25th percentile, median, and 75th percentile of differences in mean WIS
between specified ensemble methods and the equally weighted median of all component forcasters, where
the means average across locations for each combination of forecast date and forecast horizon. Crosses show
the overall difference in mean WIS averaging across all locations, forecast dates, and forecast horizons. A
negative value indicates that the method corresponding to a particular combination of training set size,
number of component forecasters included, and combination method outperformed the ensemble calculated
as an equally weighted median of all component forecasts.
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Supplemental Figure 18: Boxplots summarizing the full distribution of differences in mean WIS between
specified ensemble methods and the equally weighted median of all component forcasters, where the means
average across locations for each combination of forecast date and forecast horizon. Crosses show the overall
difference in mean WIS averaging across all locations, forecast dates, and forecast horizons. A negative
value indicates that the method corresponding to a particular combination of training set size, number
of component forecasters included, and combination method outperformed the ensemble calculated as an
equally weighted median of all component forecasts.
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6.2 Separate weights at different forecast horizons

We considered a variation on the relative WIS weighted median ensemble that estimated separate weights for185

each of the one through four week ahead forecast horizons. In this approach, the relative WIS of component
forecasters was calculated separately at each forecast horizon, and the estimation of the weighting parameter
θ was performed separately to optimize the forecast skill of the ensemble at each horizon.

Supplemental Figure 19 shows the results of this per-horizon weighting scheme for the relative WIS
weighted median ensemble combining the top 10 component forecasters. We found that using separate190

model weights at each forecast horizon led to small improvements in mean WIS at short-term forecast
horizons of one to two weeks ahead, but slightly worse mean WIS at longer forecast horizons of three to four
weeks ahead.

We see two possible contributing factors to these results. First, forecasts at long horizons have scores
that are larger in magnitude than forecasts at short horizons, and so tend to dominate the overall score when195

averaging across horizons. This may result in weights that favor performance at longer term horizons when
weights are shared across horizons, thereby harming performance of forecasts at short horizons. Second,
sharing weights across horizons may be particularly helpful for longer term forecasts because of the gain
in the training set sample size that comes with weight sharing. For example, with a training set size of
four weeks and weights estimated separately by horizon, only one week’s worth of forecasts are actually200

included in the training set for weight estimation at a horizon of four weeks, because the target data for
four-week ahead forecasts made within the past three weeks have not yet been observed at the time of
weight estimation. Sharing weights across horizons means that more information about model performance
is available for weight estimation at these longer horizons. In support of this explanation, note that the
magnitude of relative losses in forecast skill from estimating per-horizon weights at longer forecast horizons205

decreases as the training set size increases.
These results suggest the possibility of a blended strategy, where per-horizon estimation is used to obtain

the weights for short horizons but the weights for longer horizons are estimated by sharing information across
all horizons. In light of the small magnitude of the gains from using a per-horizon weighting at short horizons,
we decided to pursue a unified approach of using shared weights across all horizons to reduce methodological210

and narrative complexity.
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Supplemental Figure 19: Boxplots summarizing forecast skill for forecasts of weekly cases, varying whether
model weights are shared across all forecast horizons or are estimated separately for each forecast horizon.
The vertical axis is the difference in mean skill for the given ensemble specification when component weights
are shared across all horizons and the same specification with separate component weights for each forecast
horizon. The boxplots summarize the distribution of these differences for each combination of forecast date
and horizon, averaging across all locations. A cross is displayed at the difference in overall mean scores.
A negative value indicates that the method with separate component weights for each forecast horizon
outperformed the corresponding specification with weights shared across forecast horizons. For this analysis,
only results for relative WIS weighted ensembles combining the ten best individual component forecasters
are presented.
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6.3 Separate weights at different quantile levels

We considered strategies for estimation of separate model weights at each quantile level rather than sharing
model weights across all quantile levels. We considered this possibility for both the relative WIS weighted
median ensemble and the convex mean ensemble that directly optimizes the component weights rather than215

setting them to be a sigmoid function of the relative WIS. In both variations, weights were estimated by
optimizing the contribution to the WIS from each quantile level separately, i.e., the pinball loss. Similarly,
for the relative WIS weighted median, the relative WIS for component models that is used as an input for
calculating model weights was obtained separately based on the contribution to WIS at each quantile level.

Supplemental Figures 20 and 21 summarize the WIS of these methods on the model development set,220

comparing these approaches to the corresponding methods with a single weight per model that is shared
across all quantile levels. Supplemental Figure 22 displays the probabilistic calibration of these model
variations in terms of one-sided coverage rates for predictive quantiles. In this experiment, all methods
combine the top ten component forecasters; we consider varying training set window sizes.

Allowing for separate parameters per quantile level led to worse mean WIS. Additionally, for both cases225

and deaths, the per-quantile weighting schemes led to generally narrower predictive distributions with worse
calibration in the tails. This effect was much stronger for forecasts of cases than forecasts of deaths, and it
was stronger for the relative WIS weighted median ensemble than the convex weighted mean ensemble.
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Supplemental Figure 20: Boxplots summarizing forecast skill for forecasts of weekly cases from a relative WIS
weighted median ensemble, varying whether model weights are shared across all quantile levels (“Per Model”)
or are estimated separately for each quantile level (“Per Quantile”). The vertical axis is the difference in
mean skill for the given ensemble specification when component weights are shared across all quantile levels
and the same specification with separate component weights for each quantile level. The boxplots summarize
the distribution of these differences for each combination of forecast date and horizon, averaging across all
locations. A cross is displayed at the difference in overall mean scores. A negative value indicates that the
method with separate component weights for each quantile level outperformed the corresponding specification
with weights shared across quantile levels.
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Supplemental Figure 21: Boxplots summarizing forecast skill for forecasts of weekly cases from a convex
weighted mean ensemble with directly estimated weights, varying whether model weights are shared across
all quantile levels (“Per Model”) or are estimated separately for each quantile level (“Per Quantile”). The
vertical axis is the difference in mean skill for the given ensemble specification when component weights
are shared across all quantile levels and the same specification with separate component weights for each
quantile level. The boxplots summarize the distribution of these differences for each combination of forecast
date and horizon, averaging across all locations. A cross is displayed at the difference in overall mean
scores. A negative value indicates that the method with separate component weights for each quantile level
outperformed the corresponding specification with weights shared across quantile levels.
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Supplemental Figure 22: Quantile coverage rates for the convex weighted mean ensemble and the relative
WIS weighted median ensemble, varying whether weights are estimated separately per quantile level (“Per
Quantile”) or shared across all quantile levels (“Per Model”). All methods combine the top 10 component
forecasters in the training set window size specified in facet rows. The vertical axis is the difference between
the empirical coverage rate and the nominal coverage rate. A well calibrated method would have a difference
of 0 between the empirical and nominal coverage rates, and a method that generates conservative (wide)
interval forecasts would have a negative difference for quantile levels less than 0.5 and a positive difference
for quantile levels greater than 0.5.
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7 Performance of trained methods near local peaks

We identified local peaks in state level weekly cases and deaths as weeks that had the maximum incidence230

within a centered rolling window of 11 weeks (i.e., weeks that had the largest reported weekly counts among
the preceding five and following five weeks). By visual inspection, we made manual adjustments to the weeks
identified using this rule to remove outliers and weeks that did not correspond to a visually distinct peak.
The resulting weeks identified as local peaks are shown in Supplemental Figures 23 and 24. Within our
evaluation time frame, there were 159 local peaks for weekly cases and 146 local peaks for weekly deaths235

across all locations.
Supplemental Figure 25 summarizes the central tendency of the errors for predictive medians across all

forecasts at the state level in the U.S. and for just those forecasts issued in the week before a local peak. The
errors are calculated as the value of the predictive median minus the observed count of cases or deaths in the
target week, so that errors close to zero are preferred. We show results for three ensemble specifications: the240

equally weighted median of all component forecasters, the equally weighted median of the top 10 forecasters,
and the relative WIS weighted median of the top 10 forecasters. Note that the equally weighted median of
all components is untrained, the relative WIS weighted median of the top 10 forecasters is trained, and the
equally weighted median of the top 10 forecasters represents an intermediate strategy: it is also trained, but
it is not as strongly adaptive to component performance as the weighted median. Both trained ensembles245

use a training set window size of 12 weeks. We summarize our observations about these errors as follows:

1. Across all forecasts of cases, the median error is similar for all three strategies, but the magnitude of
the average error from the relative WIS weighted median is slightly larger than the magnitude of the
average error from the equally weighted median of all components.

2. Across all forecasts of deaths, the median error is similar for all three strategies, but the magnitude250

of the average errors from the relative WIS weighted median is slightly smaller than the magnitude of
the average error from the equally weighted median of all components.

3. For forecasts of cases near peaks, the trained methods were better than the untrained approach in
the peak week, but have much larger errors at longer horizons. This indicates that forecasts from
the trained methods “overshot” and missed the turning points by a larger margin than the untrained255

method.

4. For forecasts of deaths near peaks, the trained methods have comparable performance to the untrained
methods. In contrast to forecasts of cases, training did not exacerbate the tendency to overshoot near
local peaks when forecasting deaths.

Supplemental Figure 26 shows illustrative examples of forecasts made the week before a local peak260

from the equally weighted median of all components and the relative WIS weighted median of the top 10
components. We can see a systematic tendency for the predictions from the trained method near local peaks
to predict a continuation of rising trends for cases, whereas the forecasts of deaths more often capture the
coming downturn.
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Supplemental Figure 23: Identified local peaks for weekly cases at the state level. Vertical dashed lines
indicate the boundaries of the evaluation phase (the combined model development and prospective evaluation
phases). Vertical orange lines indicate the locations of identified local peaks.
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Supplemental Figure 24: Identified local peaks for weekly deaths at the state level. Vertical dashed lines
indicate the boundaries of the evaluation phase (the combined model development and prospective evaluation
phases). Vertical orange lines indicate the locations of identified local peaks.
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Supplemental Figure 25: Errors of the predictive median across all forecasts, and for forecasts issued the
week before a local peak in weekly cases or deaths. For forecasts issued before a peak, the one week ahead
forecasts are for cases in the week of the local peak and forecasts at longer horizons are for cases in weeks
after the local peak. The vertical axis is the difference between the predictive median and the observed
value. A positive value indicates that the predictive median was larger than the eventually observed value,
and a negative value indicates that the predictive median was less than the eventually observed value; a
difference of zero is best. Boxes summarize the 25th percentile, median, and 75th percentile of these errors,
and crosses show the mean error.
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(a) Forecasts of cases in states with the largest peaks
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(b) Forecasts of deaths in states with the largest peaks
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Supplemental Figure 26: Forecast distributions for weekly cases and deaths issued the week before a local
peak. Forecasts are shown for all peaks during the evaluation period in the four states with the largest local
peaks. Vertical lines indicate the time of the peak, corresponding to the date of a one-week-ahead forecast.
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8 Characteristics of component weights in the post hoc weighted265

mean ensemble

Supplemental Figure 27 summarizes characteristics of the component forecaster weights that were obtained
from the post hoc weighted mean ensemble. Panel (a) illustrates that in general, the weights were distributed
across a larger number of component forecasters in forecasts of deaths than in forecasts of cases. Panel (b)
illustrates that the component forecaster weights were only weakly autocorrelated in the post hoc weighted270

mean ensemble, quantifying the observation that the weights changed substantially from week to week; this
can be seen in Figures 4 and 5 in the main text. In contrast, the component forecaster weights were more
strongly autocorrelated in the relative WIS weighted mean ensemble. In part, this is due to the use of a 12
week rolling window for estimating component weights; much of the training data for weight estimation is
shared in consecutive weeks.275
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 (a) Component forecaster weight concentration for post hoc weighted mean ensemble

 (b) Lag 1 autocorrelation of component forecaster weights
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Supplemental Figure 27: Characteristics of the component forecaster weights in the post hoc weighted mean
ensemble and the relative WIS weighted mean ensemble used in the prospective analysis. Panel (a) shows
the number of component forecasters that were required to reach a specified cumulative weight in the post
hoc weighted mean ensemble. For example, for cases, in about 95% of forecast dates at least one component
forecaster got weight 0.25 or greater. Panel (b) shows the lag 1 autocorrelation of weight assigned to
each component forecaster across weeks. A vertical dashed line shows the mean autocorrelation across all
component forecasters.
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9 Post hoc evaluation of component weight regularization

Section 3.4 of the main text describes a post hoc evaluation of regularizing the component forecaster weights
in trained ensembles by imposing a limit on the maximum weight that can be assigned to any component.
Supplemental Figure 28 illustrates that for most forecast dates, imposing this limit on the maximum com-
ponent weight has negligible effects on the WIS of the ensemble forecasts. However, there are a few forecast280

dates, particularly concentrated near local peaks for cases, where regularization has a larger impact, with
some regularization being helpful for reducing the mean WIS.
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Supplemental Figure 28: Mean WIS for state level forecasts of weekly cases and deaths in the United States,
where averages for each forecast date are calculated across all locations and forecast horizons. Results are
shown for six variations on relative WIS weighted median ensembles that combine the top 10 component
forecasters based on a rolling 12 week training set, using different limits for the maximum weight that can
be assigned to any component forecaster. A maximum weight limit of 1.0 corresponds to the unregularized
approach considered in the prospective analysis in the main text, while a maximum weight limit of 0.1
corresponds to an equal weighting of the ten selected forecasters.
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10 Differences in forecast missingness in the U.S. and Europe

Supplemental Figures 29 through 32 show histograms of the number of locations forecasted by the compo-
nent models contributing to the U.S. COVID-19 Forecast Hub and the European COVID-19 Forecast Hub.285

Patterns of submission are starkly different for the U.S. and the EU. In the U.S., nearly all models submit
forecasts for at least the 50 US States, and many additionally submit forecasts for the District of Columbia
and US territories. In the EU, roughly half of forecasters provide forecasts for all or most European countries,
while the other half provide forecasts for only a few countries.

Supplemental Figures 33 through 36 show the effective weights used in each location after accounting for290

forecast missingness by rescaling the weights assigned to available models so that they sum to one. In the
U.S., the effective weights closely match the nominal estimated weights in nearly all states, differing only
slightly in the territories. In the EU, missingness is more prevalent and it is common for only a few of the
selected top 10 component forecasters to provide forecasts for many countries.
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Supplemental Figure 29: Histograms of the number of locations forecasted by each contributing forecaster
for weekly cases in the U.S. The top 10 forecasters, indicated with blue shading, were selected for inclusion
in the weighted ensembles used for prospective evaluation.
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Supplemental Figure 30: Histograms of the number of locations forecasted by each contributing forecaster
for weekly deaths in the US. The top 10 forecasters, indicated with blue shading, were selected for inclusion
in the weighted ensembles used for prospective evaluation.
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Supplemental Figure 31: Histograms of the number of locations forecasted by each contributing forecaster
for weekly cases in Europe. The top 10 forecasters, indicated with blue shading, were selected for inclusion
in the weighted ensembles used for prospective evaluation.
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Supplemental Figure 32: Histograms of the number of locations forecasted by each contributing forecaster
for weekly deaths in Europe. The top 10 forecasters, indicated with blue shading, were selected for inclusion
in the weighted ensembles used for prospective evaluation.
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Supplemental Figure 33: Component weights for forecasts of weekly cases in the U.S., facetted by forecast
date. Only the weights for the first week in each month are shown due to space constraints. The estimated
weights that would be used if all models were available for a particular location are shown at left within each
facet. The weights actually used for each location are obtained by setting the weight for components that
are missing forecasts for that location to 0 and rescaling the others proportionally so that they sum to 1.
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Supplemental Figure 34: Component weights for forecasts of weekly deaths in the U.S., facetted by forecast
date. Only the weights for the first week in each month are shown due to space constraints. The estimated
weights that would be used if all models were available for a particular location are shown at left within each
facet. The weights actually used for each location are obtained by setting the weight for components that
are missing forecasts for that location to 0 and rescaling the others proportionally so that they sum to 1.
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Supplemental Figure 35: Component weights for forecasts of weekly cases in Europe, facetted by forecast
date. Only the weights for the first week in each month are shown due to space constraints. The estimated
weights that would be used if all models were available for a particular location are shown at left within each
facet. The weights actually used for each location are obtained by setting the weight for components that
are missing forecasts for that location to 0 and rescaling the others proportionally so that they sum to 1.
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Supplemental Figure 36: Component weights for forecasts of weekly deaths in Europe, facetted by forecast
date. Only the weights for the first week in each month are shown due to space constraints. The estimated
weights that would be used if all models were available for a particular location are shown at left within each
facet. The weights actually used for each location are obtained by setting the weight for components that
are missing forecasts for that location to 0 and rescaling the others proportionally so that they sum to 1.

51



11 Adherence to EPIFORGE Guidelines295

Section Item Item Description Pages

Title/Abstract 1 Study described as a forecast or prediction research in at
least the title or abstract

1

Introduction 2 Purpose of study and forecasting targets defined 4

Methods 3 Methods fully documented 6-13

Methods 4 Identify whether the forecast was performed prospectively,
in real-time, and/or retrospectively

7

Methods 5 Origin of input source data explicitly described with refer-
ence

6

Methods 6 Source data made available, or reasons why this was not
possible documented

13

Methods 7 Input data processing procedures described in detail 6-9

Methods 8 Statement and description of model type, with model as-
sumptions documented with references

11-13

Methods 9 Model code made available, or reasons why this was not
possible documented

13

Methods 10 Description of model validation, with justification of ap-
proach.

6-13

Methods 11 Description of forecast accuracy evaluation method, with
justification

9-11

Methods 12 Where possible, compare model results to a benchmark or
other comparator model, with justification of comparator
choice

9

Methods 13 Description of forecast horizon, and justification of its
length

6

Results 14 Uncertainty of forecasting results presented and explained 8, 15, 16, 20-22

Results 15 Results briefly summarized in lay terms, including a lay
interpretation of forecast uncertainty

-

Results 16 If results are published as a data object, encourage a time-
stamped version number

13

Discussion 17 Limitations of forecast described, including limitations spe-
cific to data quality and methods

23, 26, 27

Discussion 18 If the research is applicable to a specific epidemic, comment
on its potential implications and impact for public health
action and decision making

28

Discussion 19 If the research is applicable to a specific epidemic, comment
on how generalizable it may be across populations

26, 28

52



References

Bracher, J., Ray, E. L., Gneiting, T., & Reich, N. G. (2021). Evaluating epidemic forecasts in an
interval format. PLOS Computational Biology , 17 , e1008618. doi:10.1371/journal.pcbi.1008618.
arXiv:33577550.

53

http://dx.doi.org/10.1371/journal.pcbi.1008618
http://arxiv.org/abs/33577550

	Illustration of component forecaster predictive medians
	Relative WIS of component forecasters
	Comparison of logarithmic score and weighted interval score
	Illustrative example comparing the logarithmic score and WIS
	Methods for approximating a predictive density based on predictive quantiles

	Quantile ensembles as horizontal combinations of predictive CDFs
	Expanded results from primary analysis
	Full distributions of Weighted Interval Score differences
	Scores by forecast creation date
	95% prediction interval widths
	Impact of reporting anomalies

	Model variations considered during development phase
	Additional combination methods and training window sizes
	Separate weights at different forecast horizons
	Separate weights at different quantile levels

	Performance of trained methods near local peaks
	Characteristics of component weights in the post hoc weighted mean ensemble
	Post hoc evaluation of component weight regularization
	Differences in forecast missingness in the U.S. and Europe
	Adherence to EPIFORGE Guidelines

