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Supplemental Appendix 1: A maltose transport model6

To describe the rate of maltose uptake into the cytoplasm, we use an ABC transport model and7

Michaelis-Menten approximation of ABC transport that we previously derived (Norris et al. 2021).8

Because it has been shown in E. coli that the abundance of the maltose binding protein greatly exceeds9

the abundance of transporters (Boos and Shuman 1998), the Michaelis-Menten approximation is valid.10

Therefore, we take the concentration of complex of maltose bound to the maltose binding protein to11

be:12

[L:BP] ≈ [BP]total
[L]p

KBP + [L]p
. (A-1)13

14

where [BP]total is the total concentration of maltose binding protein in the periplasm; [L]p is the con-15

centration of free maltose in the periplasm; and KBP is the dissociation constant of maltose and maltose16

binding-protein.17

We take the uptake rate of maltose into the cytoplasm to be18

vc ≈ Vc
[BP]total

Kc + [BP]total

[L]p
KcKBP

Kc+[BP]total
+ [L]p

, Vc = k2[T]total, (A-2)19
20

where: Vc is the maximal cytoplasmic uptake rate;Kc is the dissociation constant of the bound maltose-21

maltose binding protein complex and the transport unit; k2 is the turnover rate of the membrane-bound22

transport unit; and [T]total is the total concentration of transport units in the periplasm.23

While transport into the cytoplasm is active and thus can occur against concentration gradients,24

transport into the periplasm via porins is diffusive. Thus, while the cytoplasmic uptake rate has the25

above form, the periplasmic uptake rate is better described by the following Michaelis-Menten equation26
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(Bosdriesz et al. 2018):27

vp ≈ Vp
[L]ext − [L]p

Kp + [L]ext + [L]p
, (A-3)28

where Kp is the half-saturation constant of the specific porin; and Vp is the maximal rate of uptake,29

which is a function of the number of expressed porins.30

At steady-state, the periplasmic transport rate (vp) must be equal to the cytoplasmic transport rate31

(vc). Thus, we equate the rates from Equations A-2 and A-3 to solve for [L]p as a function of [L]ext.32

A linear approximation33

Analysis of the form of [L:BP] as a function of [L]ext for the obtained parameter fits (Figure 4)34

shows that, for [L]ext / 5 µM, [L:BP] can be very well approximated by:35

[L:BP] = α[L]ext, α =
KcVp

KpVc
. (A-4)36

This analytical approximation can be obtained by assuming that [L]p � [L]ext and demonstrates that,37

in the micromolar regime, chemotactic response is independent of binding protein abundance (Figures38

S7 & S8) and only dependent on the ratio of porin abundance to transport unit abundance.39
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Supplemental Appendix 2: A chemotaxis model40

To model the chemotactic response of E. coli in mixed gradients of maltse and methyl-aspartate,41

we extend the Signaling Pathway-based E. coli Chemotaxis Simulator (SPECS; Jiang et al. 2010) to42

incorporate: (i) the heterogeneous MWC model (Keymer et al. 2006; Mello and Tu 2005) to consider43

the chemotactic response of cells to multiple chemoattractants; and (ii) our new sensing-and-transport44

model of chemotaxis to maltose that takes into account the transport kinetics of maltose into and out45

of the periplasm, as well as the indirect binding of maltose to the aspartate receptor via the maltose-46

binding protein.47

Analogous to the derivation of the MWC model presented by Tu (2013), we derive the free energy48

difference between the active and inactive states of a receptor cluster. We assume that the receptors in49

a cluster are either all active or all inactive. A single receptor has four possible states: active (a = 1)50

or inactive (a = 0) and bound (l = 1) or vacant (l = 0), with probability, P (a, l), where:51

P (1, 0)

P (0, 0)
= e−fm(m),

P (0, 1)

P (0, 0)
= CI, and

P (1, 1)

P (1, 0)
= CA, (A-5)52

where CI and CA are functions that we derive below.53

Because the expected activity level of a single receptor is 〈a〉receptor = P (1, 0) + P (1, 1) and54

P (0, 0) + P (0, 1) + P (1, 0) + P (1, 1) = 1,55

〈a〉receptor =
e−fm(m) [1 + CA]

1 + CI + e−fm(m) (1 + CA)
. (A-6)56

We define the free energy difference, ∆f , such that 〈a〉receptor =
(
1 + e−∆f

)−1
. Thus,57

∆f = −fm(m)− log

[
1 + CI

1 + CA

]
. (A-7)58

Because we assume that all of the n receptors are active or all of them are inactive, the expected activity59

level of the entire receptor cluster is 〈a〉 =
(
1 + e−n∆f

)−1 (Phillips et al. 2012).60

Therefore, a general formulation for the average activity level of a cell sensing chemoattractant L61

is62

〈a〉 =
1

1 + e[nfm(m)+nfL([L])]
, fL([L]) = log

[
1 + CI

1 + CA

]
, (A-8)63
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where m is the methylation level and CI (CA) is the ratio of the probabilities of a receptor being bound64

versus ligand-free for an inactive (respectively, active) receptor.65

We first rederive theC term for MeAsp to demonstrate how the MWC model can be extended to de-66

scribe maltose chemotaxis. By definition, the dissociation constant isKMeAsp = [R]free[MeAsp]/[R:MeAsp],67

where [R]free and [MeAsp] are the effective concentrations of free receptor and ligand in the periplasm68

and [R:MeAsp] is the concentration of bound receptor. Defining [R] = [R]free+[R:MeAsp], [R:MeAsp] =69

[R][MeAsp]/ (KMeAsp + [MeAsp]) . Thus, the probability a receptor is bound is70

P =
[R:MeAsp]

[R]
=

[MeAsp]

KMeAsp + [MeAsp]
, (A-9)71

so72

C =
P

1− P
=

[MeAsp]

KMeAsp
. (A-10)73

Therefore, distinguishing an active from an inactive receptor,74

fMeAsp([MeAsp]) = log

[
1 + [MeAsp]/KI,MeAsp

1 + [MeAsp]/KA,MeAsp

]
. (A-11)75

Note that because MeAsp is not metabolized by the cell, the steady-state concentration of MeAsp in76

the periplasm is equal to the extracellular concentration of MeAsp.77

Adding sensing to the ABC transport model complicates an already complicated system. To sense78

maltose, the receptors must compete with the ABC transporters to bind with the ligand-binding protein79

complex. Optimally, however, sensing would minimally hinder transport to thus minimally decrease80

the cell’s growth rate. We thus make the simplifying assumption that sensing does not affect transport81

but simply “reads” the state of the system. This is a reasonable approximation given that the abundance82

of maltose-binding protein greatly exceeds the abundance of the cognate ABC transporter.83

Therefore, we assume that the ABC transporters and receptors do not compete for the ligand-84

binding protein complex and likewise assume that the receptors do not affect binding and dissociation85

of the binding protein with maltose. Therefore, we modify the transport model to incorporate sensing86

only via a simple modification to Equation A-1:87

[L:BP]0 ≡ [R:L:BP] + [L:BP] ≈ [BP]total
[L]p

KBP + [L]p
, (A-12)88
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where R:L:BP is the receptor bound to the ligand-binding protein complex.89

We assume that the receptor can only bind to the complex and not to the binding protein on its own90

so that we can describe sensing by the following mass-action kinetics:91

R + L:BP
kf−−⇀↽−−
kr

R:L:BP92

At steady-state, the concentration of the bound receptor does not change, so that93

[R:L:BP] =
[R][L:BP]

K
, K =

kr

kf
. (A-13)94

Combining Equations A-12 and A-13, we obtain that the total concentration of maltose-MBP com-95

plex bound to an inactive (I) or active (A) receptor is96

[R:L:BP]I,A =
([R]total − [R:L:BP]I,A) ([L:BP]0 − [R:L:BP]I,A)

KI,A
, (A-14)97

where KI,A = KI when all of the receptors in the cluster are inactive and KI,A = KA when all of the98

receptors are active. Therefore, the terms [R:L:BP]I,A are the solutions to quadratic equations, and the99

free energy term for maltose is:100

fMal([L]ext) = log

[
1 + CI

1 + CA

]
, CI,A =

[R:L:BP]I,A
[R]total − [R:L:BP]I,A

. (A-15)101

We can use the Heterogeneous MWC (HMWC) model (Keymer et al. 2006; Mello and Tu 2005) to102

describe the average activity level in mixed gradients of MeAsp and maltose because MeAsp and the103

maltose-binding protein complex bind independently to distinct sites of Tar (Mowbray and Koshland104

1987):105

〈a〉 =
1

1 + enTar[fm(m)+fMeAsp([MeAsp])+fMal([L]ext)]
. (A-16)106

5



References107

Boos, Winfried, and Howard Shuman. 1998. “Maltose/maltodextrin system of Escherichia coli: trans-108

port, metabolism, and regulation”. Microbiology and Molecular Biology Reviews 62 (1): 204–229.109

http://mmbr.asm.org/content/62/1/204.short.110

Bosdriesz, Evert, et al. 2018. “Low affinity uniporter carrier proteins can increase net substrate up-111

take rate by reducing efflux”. Scientific Reports 8 (1): 5576. ISSN: 2045-2322. doi:10.1038/112

s41598-018-23528-7. https://www.nature.com/articles/s41598-018-113

23528-7.114

Jiang, Lili, et al. 2010. “Quantitative Modeling of Escherichia coli Chemotactic Motion in Environ-115

ments Varying in Space and Time”. PLoS Comput Biol 6 (4).116

Keymer, Juan E, et al. 2006. “Chemosensing in Escherichia coli: Two regimes of two-state receptors”.117

Proceedings of the National Academy of Sciences 103 (6): 1786–1791.118

Mello, Bernardo A, and Yuhai Tu. 2005. “An allosteric model for heterogeneous receptor complexes:119

understanding bacterial chemotaxis responses to multiple stimuli”. Proceedings of the National120

Academy of Sciences 102 (48): 17354–17359.121

Mowbray, Sherry L., and Daniel E. Koshland. 1987. “Additive and independent responses in a single122

receptor: Aspartate and maltose stimuli on the tar protein”. Cell 50 (2): 171–180. ISSN: 0092-8674.123

doi:10.1016/0092- 8674(87)90213- 3. http://www.sciencedirect.com/124

science/article/pii/0092867487902133.125

Norris, Noele, et al. 2021. “Mechanistic model of nutrient uptake explains dichotomy between marine126

oligotrophic and copiotrophic bacteria”. PLOS Computational Biology 17, no. 5 (): 1–21. doi:10.127

1371/journal.pcbi.1009023. https://doi.org/10.1371/journal.pcbi.128

1009023.129

Phillips, Rob, et al. 2012. “Bacterial Chemotaxis”. In Physical Biology of the Cell, 872–883. Garland130

Science. ISBN: 978-1-134-11158-9.131

6



 7 

Supplemental Figures 157 

 158 

          159 

Figure S1: Western blot for MalE. The bar plot shows the relative concentration of MalE normalized by 160 

total protein concentrations over the following growth and experimental conditions: (1) wild-type cell 161 

grown in tryptone broth, put in solution without any maltose, (2) wild-type cell grown in tryptone broth, 162 

put in 1 μM maltose, (3) wild-type cell grown in tryptone broth, put in 10 μM maltose, (4) wild-type cell 163 

grown in tryptone broth and harvested at OD600 = 0.9, put in 1 μM maltose, (5) wild-type cell grown in 164 

tryptone broth with 500 μM maltose, put in 1 μM maltose, (6) del-malE strain grown in tryptone broth 165 

with 500 μM maltose, put in 1 μM maltose, (7) del-tar strain grown in tryptone broth with 500 μM 166 

maltose, put in 1μM maltose. (8-10) three MalE concentrations. The loading volume was 10 μL for all 167 

samples. We conclude that MalE abundances were invariant over the experimental conditions shown in 168 

Figure 3 because abundances did not vary greatly over lanes 1-3. We estimated that supplementing the 169 

tryptone broth with maltose during growth doubled MalE abundance by comparing lanes 1 and 5. 170 

171 
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 172 

Figure S2: Predicted steady-state distributions of cells using best fit of SPECS with 173 

indirect-binding model.  Experimental cell distributions in maltose with predictions from 174 

SPECS simulator incorporated with indirect-binding model and using best-fit parameters from 175 

parameter sweep (Methods): nTar = 6, KBP = 2.6 μM, KI,Mal/[BP] = 0.8, KA,Mal/[BP] = 1.92, and p0 176 

= 0.   177 
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 178 

Figure S3: The linear approximation of the transport-and-sensing model. (A) Experimental 179 

data and best fit using transport-and-sensing chemotaxis model. (B) Experimental data and best 180 

fit using linear approximation of transport-and-sensing chemotaxis model, in which we assume 181 

[L:BP] ≈ 𝛼[L]ext. The best-fit parameter values obtained from the parameter sweep are: K!/α =182 

	0.72 µM, K"/α = 1.18	µM, and [R]/α = 1.18 µM. The linear approximation does not capture 183 

the saturation of the response at 20 µM maltose because our transport model suggests that [L:BP] 184 

is, in fact, a sigmoidal function of [L]ext (Figure 4).  185 
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 186 

Figure S4: Chemotactic response if transport were not porin-limited. We obtained the above 187 

plots using the fitted parameters of the transport-and-sensing chemotaxis model but incorrectly 188 

assuming that [L]p ≈ [L]ext so that [L: BP] ≈ [BP]#$#%&[L]'(#/(K)* + [L]'(#). (A) We plot the 189 

experimental data for reference. When we assume that transport is no longer porin-limited, our 190 

model predicts that the cell can no longer sense gradients in the micromolar regime. (B) Instead, 191 

its chemotactic sensitivity has shifted down to the nanomolar regime.  192 
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 193 

Figure S5: Increasing the dynamic sensing range by decreasing outer-membrane 194 

permeability. If the cell further decreased maltoporin abundance to make transport even more 195 

porin-limited, it could increase its dynamic sensing range. However, this would decrease uptake 196 

affinity. We hypothesize that this trade-off between sensing range and uptake affinity may 197 

explain E. coli’s narrow sensing range for maltose.  198 
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 199 

Figure S6: Insensitivity of chemotactic response to binding protein abundance. Although 200 

the chemotactic response disappears when the binding protein abundance, [BP], is drastically 201 

reduced by a factor of 100 (A), the chemotactic response is insensitive to both smaller variations 202 

in abundance (B) and increases in binding protein abundance (C&D). This insensitivity to 203 

binding protein abundance can be easily seen from the linear approximation of the chemotactic 204 

signal, [L:BP], as a function of [L]ext: it is independent of [BP]. 205 

206 
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 207 

Figure S7: Sensitivity of response to binding protein abundance. Here we use our fitted 208 

SPECS model to predict the peak chemotactic response as a function of binding protein 209 

abundance. To quantify the response, we use the chemotaxis migration coefficient (CMC), which 210 

is defined as CMC = 	 〈(〉-.//	
.//	

, where 〈x〉 is the average position in microns of the cells across the 211 

600 µm channel. (A&B) Our model suggests that the CMC does not vary for sufficiently high 212 

binding protein abundances. The red dot indicates our estimate of the cells’ average binding 213 

protein abundance and corresponding response at 4 µM maltose. (C&D) On the other hand, if 214 

instead transport were not porin-limited, the response would be highly sensitive to binding 215 

protein abundance. 216 
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 217 

 218 

Figure S8: Sensitivity of the chemotactic response to binding protein abundance when 219 

transport is not porin-limited. If instead transport were not porin-limited so that [L]p ≈ [L]ext, 220 

then the chemotactic response would be proportional to binding protein abundance and thus the 221 

response would be highly sensitive to variations in binding protein abundance.   222 
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 225 
Figure S9: Cells are repelled from high concentrations of MeAsp. (A) Steady-state 226 

distributions from experimental chemotaxis assays in gradients of MeAsp along with predicted 227 

best-fit using analytical approximation with direct-binding model. (B) pH of MeAsp solutions 228 

used in experiments. Because we suspect pH taxis causes repulsion (Hu & Tu, 2014), we 229 

restricted our model fitting to concentrations of MeAsp less than 500 μM.  230 
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 231 

Figure S10: Fitting the transport-and-sensing model to FRET activity assays. Here we 232 

compare the best fits obtained by Neumann et al. using their indirect binding model and best fits 233 

we obtained using our transport-and-sensing (TS) model (Methods). The FRET assay data in (A) 234 

shows the dose response of E. coli LJ110 D(cheY cheZ) to step additions of maltose or methyl-235 

aspartate (MeAsp), and (B) shows the dynamic range to three-fold step additions, during which 236 

the cells were adapted prior to each new addition (Neumann et al., 2010). The indirect-binding 237 

model assumes that the periplasmic concentration of free maltose equals the extracellular 238 

concentration, and its fit is with receptor cooperativity nTar = 6, binding protein dissociation 239 

constant K)* = 2 µM, dissociation constant to binding protein ratios 𝐾!,2%&/[BP] 	=	0.4 and 240 

𝐾",2%&/[BP] 	= 6, and methyl-aspartate dissociation constants 𝐾!,2'"34 = 30	µM and 241 

𝐾",2'"34 = 500	µM. Fit A of our transport-and-sensing (TS) model uses parameters: nTar = 6, KI, 242 

MeAsp = 27.5 µM,  KA, MeAsp = 365 µM, KI, Mal = 14.4 µM, KA, Mal = 49.7 µM, [R]total = 12.6 µM, 243 

[BP]total  = 101 µM, and 𝑉5/𝑉4 = 1.09 ´ 10-5. Fit B uses parameters: nTar = 6, KI, MeAsp = 27.5 µM,  244 

KA, MeAsp = 363 µM, KI, Mal = 394 µM, KA, Mal = 2,040 µM, [R]total = 21.0 µM, [BP]total  = 1290 µM, 245 
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and 𝑉5/𝑉4 = 1.00 ´ 10-5. Fit A correctly predicts maltose-Tar dissociation constants in the 246 

micromolar range but predicts low binding protein abundances. On the other hand, Fit B predicts 247 

reasonable protein abundances but much too high dissociation constants.248 
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 249 

Figure S11: Modifying binding-protein abundance for Fit A of transport-and-sensing model 250 

to FRET data. Fit A of the transport-and-sensing model (Figure S10) predicts a binding-protein 251 

abundance that is a factor of ten lower than previous literature estimates. However, the finding 252 

from the FRET assays that increased binding-protein expression increases chemotactic 253 

sensitivity supports our hypothesis that binding-protein abundance was low for the strain and 254 

culture conditions of the FRET assays: our model predicts that, in this regime of low binding-255 

protein abundance, chemotactic sensitivity increases with binding protein abundance. 256 

A B
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 258 

Figure S12: Predicted steady-state distributions of cells in maltose gradients using SPECS 259 

simulator with fits using FRET activity level assays. (A) Experimental cell distributions shown with 260 

predictions from SPECS simulator incorporated with indirect-binding model and using parameters from 261 

fitted FRET data: nTar = 4, KBP = 2 μM, KI,Mal/[BP] = 0.4, KA,Mal/[BP] = 6, and p0 = 0.1 (Neumann, et 262 

al. 2010). Same experimental cell distributions shown with predictions from SPECS simulator 263 

incorporated with transport-and-sensing model and using Fit A (B) or Fit B (C) obtained from fitting 264 

FRET data (Figure S10) with nTar = 4. 265 


