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Figure S1. Use of density and PCA plots to remove outlier samples. To identify potential technical effects 

on individual samples, we generated density and PCA plots based on both the copy number estimates of 

VNTRs, and their 1 kb flanking regions. (A) Density plots for one TOPMed cohort based on the 3’ region 

flanking all VNTRs (left panel), the VNTRs themselves (center panel), and the 5’ region flanking all VNTRs 

(right panel). Each sample is shown by a line, with those in red considered outliers that were removed from 

further analysis. (B) Example PCA plot based on autosomal VNTR copy number estimates. Each TOPMed 

cohort is plotted using a different color, showing distinct clustering per cohort and thus justifying the use of 

independent association testing per cohort followed by meta-analysis. Samples lying outside the dashed red 

line were considered outliers, and were removed from further analysis. Similar plots were made using the top 

10 PCs and outliers removed. 



 

Figure S2. Use of copy number estimates for VNTR flanks to remove outlier samples where VNTR 
estimates are likely erroneous due to the presence of larger CNVs. We applied filters to remove outlier 

samples based on copy number estimates of the VNTR flanks: for each flanking region, we calculated the 

mean and StDev based on samples between the 30th and 70th percentiles of the population, defining outlier 

samples as those that were >7 StDevs from the mean and with consistent directionality for both flanks. Shown 

are two loci located within regions of known common copy number variation (Conrad et al. 2010). For each 

locus, the top plot shows read depth of the 5’ flank, the middle plot shows read depth within the VNTR, and the 

bottom plot shows read depth within the 3’ flank. Samples in each plot are sorted based on read depth of the 3’ 

flank, with those that meet the criteria for being a consistent outlier for both flanks shown in red. Genotypes for 

these samples were not considered in downstream association analysis. 

 

 

 



   

Figure S3. Copy number estimates for salivary amylase genes. (A) Absolute diploid copy number 

estimates generated using mosdepth for the salivary amylase 1 (AMY1) gene cluster at 1p21.1 in ~45,000 

individuals from eight TOPMed cohorts used in this study. While most individuals carry between 2-15 copies of 

this locus (Groot et al. 1989),35 we observed rare individuals carrying up to an estimated 39 copies of AMY1 

genes. (B) Comparison of estimated copy numbers for the AMY1 gene cluster obtained in TOPMed samples 

using read depth to those obtained in previously published cohorts using qPCR or PRT. The plot shows 

absolute copy number estimates for (i) European and multi-ancestry cohorts generated with qPCR published 

by Perry et al.,35 (ii) Eurasian individuals generated with PRT published by Carpenter et al.,37 and (iii) TOPMed 

cohorts generated by mosdepth for the grouped 1p21.1 AMY1 genes. In all cases, we present copy estimates 

rounded to the nearest integer. Both methods show similar frequency distributions, suggesting that the use of 

read depth yields accurate results. 



 

 

Figure S4. Additional examples of genes showing extreme variation in copy number. Using mosdepth, 

we generated copy number estimates for 1,105 multicopy genes in ~45,000 individuals. Within this cohort, we 

observed some genes that exhibited extreme variations in copy number, with some individuals having 

estimated copy numbers 10-20 times greater than the population average. To characterize these variants in 

more detail, we performed CNVnator analysis on 225 samples of interest, and plotted the estimated copy 

number across each locus. Shown are example plots of regions containing (A) AMY1/AMY2 genes 

(chr1:103,575,000-103,775,000), (B) PCDHB7/PCDHB8 (chr5:141,170,000-141,185,000), (C) DEFA genes 

(chr8:6,960,000-7,030,000), (D) ORM1/ORM2 (chr9:114,315,000-114,340,000). Each plot shows CNVnator 

estimated relative diploid copy number per 500 bp bin in 225 individuals, with the copy number profile of each 

individual shown as a dashed line. Below each plot is an image of the region taken from the UCSC Genome 

Browser showing gene and segmental duplication annotations. 

 



 

Figure S5. Identification of individual with zero copies of the entire ꞵ-defensin gene cluster at 8p23.1. 

Plot shows diploid copy number per 5 kb bin from CNVnator in 50 individuals for the ꞵ-defensin locus 

(chr8:6,750,001-8,500,000). Each line represents the copy number profile of one individual. The individual 

shown with the red line was originally identified using mosdepth as carrying ~zero copies of ꞵ-defensin genes 

in the region. Below the plot is an image of the region taken from the UCSC Genome Browser showing 

segmental duplication and gene annotations. 



 

Figure S6. Comparison of estimated copy numbers for the ꞵ-defensin gene cluster at 8p23.1 obtained 
in TOPMed samples using read depth to those obtained in previously published cohorts using the 
paralog ratio test (PRT) and quantitative PCR (qPCR). The plot shows absolute copy number estimates for 

(i) two European cohorts generated with PRT published by Hollox et al.,7 which is considered to be an accurate 

experimental method for quantifying multiallelic CNVs, (ii) a meta-analysis of six different studies that typed ꞵ-

defensin copy number using either PRT or qPCR (Hollox et al. 2017), and (iii) TOPMed cohorts generated by 

mosdepth for the grouped 8p23.1 ꞵ-defensin genes. In all cases, we present copy estimates rounded to the 

nearest integer. Both methods show highly similar frequency distributions, suggesting that the use of read 

depth yields accurate results. 

 



 

Figure S7. QQ plots of meta-analysis discovery PheWAS using multicopy genes and VNTRs. Genomic 

inflation was well controlled, with λ values between 1.00 and 1.04 for all ancestries tested. 

 

 

 

 

 

 



 

Figure S8. Copy number of PRSS1/PRSS2 correlates with the expression level of multiple neighboring 
T cell receptor ꞵ genes in cis. Using eQTL analysis in the PPMI cohort, we observed that the expression 

level of multiple neighboring TRB genes showed significant correlations (both positive and negative) with copy 

number of PRSS1/PRSS2. The vertical red bar indicates the position of PRSS1/PRSS2, with each dot 

representing the -log10 p-value of association between estimated copy number of PRSS1/PRSS2 and gene 

expression level from RNAseq in whole blood in the PPMI cohort. Points are colored based on the correlation 

value (R).  



     

Figure S9. Copy number of a 34mer tandem motif located within intron 1 of the F7 gene at 13q34 
(chr13:113,107,242-113,109,277) is not the causal variant associated with Factor VII levels in blood. (A) 
We identified a strong and consistent association between copy number of this VNTR and Factor VII levels in 

blood across multiple TOPMed cohorts (discovery meta-analysis p=2.85x10-43). (B) We repeated the 

association analysis with Factor VII levels using all SNVs located within ±100 kb of the VNTR, which identified 

dozens of significant associations with local SNVs (grey circles), many of which showed much stronger 

associations than the one observed for VNTR copy number (black square). Using MsCAVIAR, we confirmed 

that VNTR copy number was not the likely causal variant to explain the observed association with Factor VII 

levels, with 24 SNVs ranked by MsCAVIAR as having higher probabilities of being causal compared to the 

VNTR (Table S8). 
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