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Summary
The human genome contains tens of thousands of large tandem repeats and hundreds of genes that show common and highly variable

copy-number changes. Due to their large size and repetitive nature, these variable number tandem repeats (VNTRs) andmulticopy genes

are generally recalcitrant to standard genotyping approaches and, as a result, this class of variation is poorly characterized. However,

several recent studies have demonstrated that copy-number variation of VNTRs can modify local gene expression, epigenetics, and hu-

man traits, indicating that many have a functional role. Here, using read depth fromwhole-genome sequencing to profile copy number,

we report results of a phenome-wide association study (PheWAS) of VNTRs and multicopy genes in a discovery cohort of �35,000 sam-

ples, identifying 32 traits associatedwith copy number of 38 VNTRs andmulticopy genes at 1% FDR.We replicatedmany of these signals

in an independent cohort and observed that VNTRs showing trait associations were significantly enriched for expression QTLs with

nearby genes, providing strong support for our results. Fine-mapping studies indicated that in the majority (�90%) of cases, the

VNTRs and multicopy genes we identified represent the causal variants underlying the observed associations. Furthermore, several lie

in regions where prior SNV-based GWASs have failed to identify any significant associations with these traits. Our study indicates

that copy number of VNTRs and multicopy genes contributes to diverse human traits and suggests that complex structural variants

potentially explain some of the so-called ‘‘missing heritability’’ of SNV-based GWASs.
Introduction

Tandem repeats (TRs) are stretches of DNA composed of

two or more contiguous copies of a sequence of nucleo-

tides arranged in head-to-tail pattern, e.g., CAG-CAG-

CAG. The human genome contains >1 million TRs, which

collectively span �3% of our total genome.1 These TRs

range in motif size from mono-nucleotide TRs at one

extreme (e.g., TTTTTTT) to TRs with much larger motifs

that can in some cases be many kilobases (kb) in size,

even containing entire exons or genes within each

repeated unit.2

Despite making a large contribution to genomic

variation,3 historically the size and repetitive nature of

TRs has meant that they are often poorly assayed or

excluded from standard genotyping pipelines. This is

particularly true for those repeats with moderate to large

motif sizes, often termed variable number tandem repeats

(VNTRs) or macrosatellites (defined here as those with

motif sizes R 10 bp). This is because the size of many

VNTRs means that they generally cannot be spanned by

a single Illumina sequencing read, and any sequencing

reads that map to multiple loci are typically removed dur-

ing data processing. Furthermore, SNV arrays are unable to

directly genotype TR variants and microarray designs typi-

cally do not place probes within non-unique regions. As a
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result, unless specialized algorithms are used,4–6 VNTRs

and other large multicopy regions are typically ignored

by array or sequencing-based genome-wide association

studies (GWASs).

However, numerous studies thathave focusedon largeTRs

andmulticopy genes have indicated their potential to influ-

ence human traits. Copy-number variation (CNV) of the

antimicrobial b-defensin gene cluster at 8p23.1 (MIM:

602056) has been associated with susceptibility to psoria-

sis,7,8 copy number of the Kringle repeat within LPA (MIM:

152200) represents themajor genetic factor underlying vari-

ation in lipoproteinA levels,9–13whileCNVofa57bp coding

VNTRwithinACAN (MIM:155760)hasa strongeffectonhu-

man height.11,13 Similarly, CNVs of many VNTRs have been

implicated as regulators of both local epigenetics and gene

expression levels4,14–17 and as modifiers of disease suscepti-

bility in a variety of conditions, including Alzheimer’s,18

schizophrenia,19 and ALS.20

Building upon our prior studies in which we assessed the

regulatory potential of VNTRs,15 here we applied an

agnostic phenome-wide association study (PheWAS)

approach to determine the effect of CNV of VNTRs and

multicopy genes on diverse human traits. We utilized a

pipeline based on read depth for estimating copy number

from short-read whole-genome sequencing (WGS) data

and applied this to generate genotypes for 54,479 VNTRs
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and 1,105 copy-number variable genes that were associ-

ated with 283 traits in a discovery cohort comprising

35,254 ethnically diverse individuals sequenced as part of

the NHLBI TOPMed program, followed by replication anal-

ysis in an additional cohort of 9,159 individuals. Our study

identifies both known and previously unrecognized effects

of CNV of large TRs on a variety of human traits and indi-

cates broad potential for repetitive regions of the human

genome to exert effects on common phenotypes.
Material and methods

Description of cohorts used for association analysis
For discovery PheWAS, we utilized WGS data from seven cohorts

sequenced as part of the NHLBI TOPMed initiative (Freeze 8), ac-

cessed via dbGaP: Women’s Health Initiative (WHI) (dbGaP:

phs001237.v2.p1) (n ¼ 11,035), Atherosclerosis Risk in Commu-

nities (ARIC) (dbGaP: phs001211.v4.p3) (n ¼ 3,929), Multi-Ethnic

Study of Atherosclerosis (MESA) cohort (dbGaP: phs001416.v2.p1)

(n ¼ 5,370), The Jackson Heart Study (JHS) (dbGaP:

phs000964.v5.p1) (n ¼ 2,777), Cardiovascular Health Study (CHS)

(dbGaP: phs001368.v3.p2) (n ¼ 3,555), Genetic Epidemiology of

COPD (COPDGene) (dbGaP: phs000951.v5.p5) (n ¼ 9,882), and

the Framingham Heart Study (FHS) (dbGaP: phs000974.v4.p3)

(n ¼ 4,166). For replication analysis, we utilized 10,127 individuals

from The NHLBI TOPMed BioMe Biobank at Mount Sinai (dbGaP:

phs001644.v2.p2).

Using available SNV calls, we classified each individual into one

of five super-populations (European [EUR], South Asian [SAS], East

Asian [EAS], African [AFR], or American [AMR]), as outlined by the

gnomAD consortium.21 In brief, we utilized a defined set of

�64,000 informative high-quality linkage disequilibrium (LD)

pruned autosomal bi-allelic SNVs with minor allele frequency

(MAF) > 5% to calculate first 20 principal components (PCs) in

1000G data and projected the TOPMed data onto 1000G PC load-

ings by using GCTA (v1.92.4).22 To predict ancestry, we trained the

Random Forest (RF) classifier by using the first eight PCs of 1000G

data as features and RF setting (ntree ¼ 400). We used this trained

model with only 0.24% out of bag rate to infer ancestry in the

TOPMed data. In doing so, we generated SNV-based PCs for each

sample, which we utilized as covariates during association analysis

to account for sub-structure within each super-population. In or-

der to ensure that we only use unrelated samples in our association

analysis, we generated a pairwise kinship matrix by using the

KING-robust kinship estimation in PLINK2.23 Where any samples

with up to 3rd degree relationships with other individuals were

identified, we retained a single unrelated individual. After these

quality control steps, we retained data for 35,254 individuals

that were used in the discovery PheWAS and 9,159 BioMe samples

that were used for replication analysis.

This study was approved by and the procedures followedwere in

accordance with the ethical standards of the Institutional Review

Board of the Icahn School of Medicine under HS# 19-01376.

Phenotype data
In our discovery PheWAS, we utilized phenotype data derived

from two sources: (1) 38 quantitative and binary traits that had

been previously harmonized across multiple TOPMed cohorts,24

and (2) data on 245 quantitative, binary, and categorical traits

collected from phenotype records available within the dbGAP en-
1066 The American Journal of Human Genetics 109, 1065–1076, Jun
tries for the ARIC, CHS, JHS, MESA, and WHI cohorts. For quanti-

tative traits, we performed quality control by removing outlier

phenotype values that were R5 standard deviations (SD) from

the mean for each trait. Across all 283 traits utilized, the number

of individuals with data for each trait was highly variable, ranging

from 370 to 33,145 (median n ¼ 5,247). For replication analyses,

we utilized data for 11 quantitative traits from the Mount Sinai

BioMe cohort gathered from electronic medical records for which

there were data available for R1,000 individuals. For the 11 traits

utilized, sample sizes per trait ranged from 1,534 to 8,534 (median

n ¼ 8,180). In cases where an individual had repeated measure-

ments for a trait, we utilized the median value. A complete list

of the all phenotype data used is shown in Table S1.

Targeted genotyping of VNTRs and multicopy genes
Wedownloaded950,381autosomal tandemrepeats listed in the sim-

ple repeats track from the hg38 build of the UCSC genome browser,

retaining only those repeats withmotif sizeR 10 base pairs (bp) and

total lengthof repeat tractR100bp.WheremultipleTRannotations

overlapped, these were merged together into a single region. From

this set, we calculated the number of occurrences of dinucleotides

(AC, AG, AT, etc.) in themotif sequence of each VNTR and removed

those with low sequence complexity that consisted of >80% of the

same dinucleotide (n ¼ 16,344), resulting in 80,083 unique auto-

somal VNTR regions that were used in subsequent analysis.

In order to identify a set of genes that show frequent variation in

copy number in samples of diverse ancestry, we performed CNVna-

tor analysis (version 0.4.1, with default thresholds and bin size

100 bp) in 645 samples from the Human Genome Diversity Panel

(HGDP) that were sequenced with PCR-free Illumina WGS.25 In

each individual, we generated mean estimated copy number per

RefSeq gene based on all coding and UTR regions and calculated

the mean and SD of copy number per gene across the 645 samples.

Doing so identified a set of 1,105 autosomal genes that exhibited pu-

tative multiple copy number states in R1% of samples and that

showed thehighest variance in copynumber in the genome (hence-

forth referred to as multicopy genes). Many of these genes are pre-

sent inmultiple copies in the reference genomeand/or occur in clus-

tered gene families, are strongly over-represented within regions of

segmental duplication, and have been previously identified as ex-

hibiting high levels of CNV in the human population.14,25,26

In order to generate targeted copy number estimates in the

TOPMed cohort, we utilized mosdepth on the WGS CRAM align-

ment files for each TOPMed sample implemented within the Terra

cloud computing environment to measure read depth for a user-

defined set of loci.27 mosdepth was chosen over CNVnator because

of significantcost savings forprocessing the largenumberof samples

utilized in this study. For eachmulticopy gene,weutilized all coding

anduntranslated regionspergeneextendedby5100bpandmerged

per gene. For VNTRs, we utilized the regions defined by TandemRe-

peats Finder (as described above) and also profiled the 1 kb regions

flanking each VNTR for use in quality control (described below). In

addition, we also profiled a set of 200 invariant control genes for

use indownstreamquality control steps.Here,we selected 200high-

ly constrained (pLI scores> 0.9)28 autosomal genes that showed the

lowest copy-number variance in the HGDP. In order to correct for

variations in coverage that result from fluctuations in GC-content

of different genomic loci, we applied a GC-correction to the mos-

depth output by using the DenoiseReadCounts function in

GATK.29 We based all normalization only on autosomal regions to

avoid introducing technical bias between males and females result-

ing from differing read depths on the sex chromosomes. Scripts for
e 2, 2022



data generation, normalization, and quality control listed above are

published inanaccompanyingGitHubrepository (seedata andcode

availability).

To identify potential technical effects on individual samples, we

generated density and PCA plots based on both the copy estimates

of the 1 kb flanking regions of each VNTR and the set of 200

invariant genes, removing outlier samples (Figure S1). After these

filtering steps, we retained a total of 34,904 samples for the anal-

ysis of multicopy genes and 34,350 samples for the analysis of

VNTRs. We calculated the SD of each VNTR across the entire

cohort and removed VNTRs in the lowest quartile of SD from

further analysis. After filtering steps, a total of 54,479 VNTRs

were used for PheWAS analysis.

In situations where a VNTR is embedded within a larger copy

number variable region, copy number estimates for the VNTR

based on read depth can be confounded by variations of the wider

region, as these would result in gains or losses in the total number

of VNTR copies present, but without any change in the length of

the VNTR array. To identify VNTRs where our copy-number esti-

mates were potentially subject to this confounder, we utilized

copy-number analysis of 1 kb intervals at both the 30 and 50 re-
gions flanking each VNTR by using mosdepth. First, we removed

any VNTR where the correlation (R) between copy number of

the VNTR and both of the flanking regions was >0.5 or where

both flanks were <250 bp (usually representing regions where

two VNTRs were separated by <250 bp). Use of this size threshold

gave a reasonable compromise between stringency of filtering

while maintaining reasonable accuracy of copy-number measure-

ments. For the remaining VNTRs, based on the flanking regions,

we identified outlier samples and filtered the VNTR genotypes of

these outliers. Here, for each VNTR flank, we calculated the

mean and SD on the basis of samples between the 30th and 70th

percentiles of the population, defining outlier samples as those

that were>7 SD from the mean and with consistent directionality

for both 30 and 50 flanks. At each VNTR, genotypes for outlier sam-

ples were excluded from further analysis. Examples of this filtering

step are shown in Figure S2.

Many multicopy gene families co-vary together within single

CNV regions yet are annotated with divergent names in the refer-

ence genome, e.g., the five identical copies of PRR20 are annotated

as PRR20A through PRR20E in hg38. In order to reduce redun-

dancy when performing association testing for multicopy genes,

wemerged together copy-number estimates for genes that fulfilled

the following criteria: (1) showed highly correlated (R > 0.9) mos-

depth results across all WGS samples tested, (2) were located on

the same chromosome<1Mb apart, and (3) the gene name shared

R3 letters in common. We manually inspected these merged re-

sults to ensure high specificity and in this way generated average

copy-number estimates for 331 separate genes, which were

grouped into 104 gene families (e.g., the data for the five PRR20

genes were summarized as a single averaged value, renamed

‘‘PRR20_grp’’), which were utilized in subsequent PheWAS testing.

Gene copy numbers aggregated in this way are shown in Table S2.

After this merging step, we utilized data for a final set of 878multi-

copy genes in subsequent PheWAS analysis.

As mosdepth only provides a read count per locus, we converted

normalized mosdepth read counts to estimated genomic copy

numbers in order to provide a more intuitive output. We utilized

225 individuals from the cohort in whom VNTRs and multicopy

genes were also profiled with CNVnator, which provides a direct

estimate of relative genomic copy number. For each locus, we

used data from these 225 individuals to build a linear regression
The America
model that was used to convert the mosdepth output into relative

genomic copy number. It should be noted that in non-unique

genomic loci that contain multiple copies of a repeated motif,

CNVnator copy-number estimates represent the fold change in to-

tal (diploid) repeat number relative to the number of motifs annotated

in the (haploid) reference genome. Thus, for PRR20 that has five

copies in hg38, a CNVnator value of 2 corresponds to 10 copies

of the gene per diploid genome.

Phenome-wide association analysis
We performed PheWAS for discovery of associations of human

traits with copy number of VNTRs and multicopy genes by using

REGENIE,30 incorporating covariates of sex, age, and the top three

principal components derived from analysis of SNVs to account

for ancestry. Additionally, we used the top five PCs derived from

either invariant genes (for multicopy genes) or the 1 kb flanking

regions (for VNTRs) to account for technical effects on copy-num-

ber estimates from read depth. In order to minimize potential con-

founders such as batch effects resulting from the use of multiple

different cohorts, or from traits and/or genotypes that had

different frequencies among ancestries, we performed association

analysis separately after dividing samples into sub-cohorts based

on both TOPMed cohort (ARIC, CHS, JHS, MESA, WHI, FHS,

COPD) and major ancestral group (EUR, AFR, AMR, EAS, SAS).

For each association, we discarded any sub-cohorts with insuffi-

cient sample size, defined as those where phenotype data was

available for<50 samples with quantitative traits or<100 samples

for binary/categorical traits. Summary results for each ancestry,

and for all ancestries combined, were then generated by Z-score-

based meta-analyses with METAL.31 We applied multiple testing

corrections by using both false discovery rate (FDR) and Bonfer-

roni methods based on the total number of loci and traits

analyzed, using the p.adjust function in R (see web resources),

considering associations with <1% FDR as putatively significant.

However, it should be noted that these multiple testing correc-

tions are most likely overly stringent given that some of the traits

utilized are highly correlated.

For replication analysis, we selected all associations that had

<1% FDR in our discovery PheWAS and utilized data for 11

matched quantitative traits that were available in the BioMe

cohort with a sample size of R1,000 individuals. We removed

outlier phenotype values that were R5 SD from the mean for

each trait, generated copy-number estimates with mosdepth,

and performed association testing with the same methodology

as in the discovery PheWAS.

Identification of causal variants via MsCAVIAR
To identify likely causal variants underlying trait associations, we

utilizedMsCAVIAR,32 an extension to CAVIAR33 that is suitable for

the analysis of multiple cohorts of different ancestries. For each

significant VNTR or multicopy gene identified in the discovery

PheWAS, we identified all SNVs with MAF R 1% located within

5100 kb, excluding those that failed tests for Hardy-Weinberg

equilibrium (p < 10�300), had R10% missing genotypes, or had

<5 observations of the minor allele in any of the sub-cohorts

analyzed. We then performed association analysis of each SNV

with the trait by using REGENIE followed by meta-analysis with

METAL, utilizing the same methodology and covariates as used

in the original PheWAS. In order to define the LD structure for

SNVs in each cohort/ancestry, we encoded SNV genotypes as 0,

1, or 2 based on the number of copies of the reference allele and

defined LD structure by calculating pairwise Pearson correlation
n Journal of Human Genetics 109, 1065–1076, June 2, 2022 1067



coefficients in R for each pair of SNVs. We then used the top 100

most significantly associated SNVs at each locus, along with geno-

type of the respective VNTR/multicopy gene, as input into

MsCAVIAR to infer the most likely causal variant at each locus

with default thresholds with rho probability (-r) of 0.95, gamma

(-g) of 0.01, and two as the maximum number of causal variants.

Association analysis of multicopy genes with local gene

expression
As the original GTEx analysis included a requirement for RNA

sequencing (RNA-seq) reads to have unique alignments within

the reference genome in order to be considered, we hypothesized

that there would be systematic bias in the measurement of expres-

sion levels for many multicopy genes, e.g., in GTEx data, the five

PRR20 genes are listed as being not expressed across all human tis-

sues, most likely because RNA-seq reads for these genes had non-

unique mapping and were thus discarded. To identify potential ef-

fects of CNVof multicopy genes on their own expression level, we

therefore performed a re-analysis of GTEx data in which we

omitted the requirement for RNA-seq reads to have unique align-

ments within the reference genome. We utilized Illumina WGS

data for 394 samples from the GTEx project that had been

sequenced with PCR-free WGS. We downloaded RNA-seq data

for these samples and performed a re-analysis with an identical

pipeline to the GTEx consortium, except for the use of feature-

Counts that allowed multi-mapping reads to be included in the

analysis (with parameters set to -t exon -g gene_id –minOverlap

20 –fracOverlap 0.5 -M -O -Q 0 –ignoreDup). We considered asso-

ciations with <10% FDR as putatively significant.

For the PRSS1/PRSS2 locus, we also performed a cis-eQTL analysis

by using data from 676 individuals from the Parkinson’s Progres-

sion Markers Initiative (PPMI) cohort for which both RNA-seq

data derived from whole blood and WGS data were available. We

used copy-number estimates for PRSS1/PRSS2 derived from

CNVnator analysis and Gencode gene annotations and utilized a

methodology as described previously.15
Results

Copy-number estimates of VNTRs and multicopy genes

in �45,000 individuals

Using normalized read depth from Illumina WGS data as a

proxy for diploid copynumber,weprofiled�45,000 samples

sequenced as part of the TOPMedprogram, generating copy-

number estimates for a set of 54,479 VNTRs and for a set of

1,105 autosomal genes showing common CNV in a diverse

human population. Example data for the b-defensin

gene cluster is shown in Figure 1A and for the salivary

amylase gene cluster in Figure S3. Given that the

number of individuals we profiled was much larger than in

previous studies,14,25,26 we observed instances of rare

individuals exhibiting extremes of copy number, with

estimated copy numbers for some genes that were 10–20

times greater than the population average. Examples of

genes showing highly amplified copy number include

HPR (MIM: 140210), CCL3L1/CCL4L1/TBC1D3B (MIM:

601395/603782/610144), the salivary amylases AMY1

(MIM: 104700/104701/104702), protocadherins PCDHB7/

PCDHB8 (MIM: 606333/606334), a-defensins DEFA (MIM:
1068 The American Journal of Human Genetics 109, 1065–1076, Jun
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(Figures 1B and S4). At the other extreme, we also observed

one individual who apparently completely lacked the entire

b-defensin gene cluster at 8p23.1 (Figure S5).

We compared our copy-number estimates derived from

read depth to those generated by other approaches. Previ-

ously, using a set of samples sequenced with both Pacific

Biosciences long reads and Illumina WGS, we had

observed a high correlation (R2 ¼ 0.81) between VNTR

copy estimates derived from read depth with those ob-

tained via long-read sequencing.15 A previous study had

utilized the paralog ratio test (PRT) to estimate b-defensin

copy number in�1,000 Europeans.7 Althoughwewere un-

able to genotype these same samples, based on read depth,

we observed an almost identical distribution of copy-num-

ber estimates for b-defensin in TOPMed samples of Euro-

pean ancestry compared to these samples previously geno-

typed with the PRT, suggesting that the two methods yield

highly concordant results (Figure S6). Similar results were

also obtained when comparing copy-number estimates

for salivary amylase generated by read depth with previ-

ously published data generated via quantitative PCR

(qPCR) and PRT34,35 (Figure S3).

Phenome-wide association analysis of VNTRs and

multicopy genes

To assess the potential influence of copy-number changes

of VNTRs and multicopy genes on human traits, we per-

formed PheWAS in a discovery cohort comprising

�35,000 individuals of diverse ancestry derived from seven

different cohorts that had been sequenced as part of the

NHLBI TOPMed study. Considering results based on the

meta-analyses of all ancestries combined, at a threshold of

<1% FDR, we identified 21 pairwise associations with

VNTRs (Table S3) and 42 pairwise trait associations with

multicopy genes (Table S4). Using quantile-quantile (QQ)

plots to explore the distribution of observed versus ex-

pected associations, we observed a clear enrichment for sig-

nificant associations compared to the null distribution,

with little evidence of genomic inflation for either VNTRs

or multicopy genes (values of l ¼ 1.02 and 1.04, respec-

tively) (Figure S7). The genome-wide distribution of associ-

ation signals for VNTRs and multicopy genes are shown in

Figure 2.

We identified several significant associations that have

been previously reported in the literature, indicative that

our methodology detected robust associations. These

included an inverse association of LPA copy number with li-

poprotein A levels9,10 and reducedHBA2 copy number asso-

ciated with multiple red blood cell traits (MIM: 141850).36

Also notable was a previously reported association of a cod-

ing VNTR in ACAN with standing body height,11,13 which

in our analysis, achieved FDR q ¼ 0.011, thus just missing

our statistical significance threshold. In addition, our

PheWAS also identified LPA copy number as influencing

risk of percutaneous transluminal coronary angioplasty, a

common surgical intervention for cardiovascular disease,
e 2, 2022



Figure 1. Identification of extreme variations in gene copy number in the human population
(A–C) (A) Diploid copy number estimates generated using mosdepth for the b-defensin gene family at 8p23.1 in �45,000 individuals
from eight TOPMed cohorts used in this study.While most individuals carry between 2 and 8 copies of the b-defensin locus, we observed
rare individuals with up to 16 copies and conversely one individual who apparently completely lacked b-defensin (Figure S5). Other ex-
amples of genes exhibiting extreme variations in copy number include (B) HPR, where one individual carried an estimated �42 copies,
compared to a median of two in the general population, and (C) CCL3L1/CCL4L1. Plots in (B) and (C) show CNVnator relative diploid
copy number per 500 bp bin in 225 selected individuals. Below each plot is an image of the region taken from the UCSC Genome
Browser showing gene and segmental duplication annotations. Additional examples are shown in Figure S4.
indicating we were able to detect phenotypic consequences

downstream of the primary influence of LPA copy number.

Other biologically plausible associations identified include

a VNTR located within intron 2 of F7 (factor VII) (MIM:

613878) showing strong association with circulating factor

VII levels and a VNTR located within intron 1 of FADS2

(fatty acid desaturase 2) (MIM: 606149) associated with

levels of specific fatty acids.

We also identifiedmultiple VNTRs located at 14q11.2 that

were associated with levels of interleukin-6, fibrinogen, and

multiple immune cells in the blood. Notably, these VNTRs

are all embedded within a large cluster of T cell receptor a

genes (TRA), and three of them had been identified in prior

analyses as expression quantitative trait loci (eQTLs) for

nearbyTRAgenes.Overall, comparing resultswithourprevi-

ous study that identified VNTRs that act as eQTLs in the

GTExandPPMI cohorts,15weobserved thatVNTRs showing
The America
significant trait associations were significantly enriched for

eQTLs when compared to the background set of all VNTRs

tested (5.2-fold enrichment, p ¼ 5.43 10�4).

The influence of gene copy number on local gene

expression

In previous work, we identified VNTRs that act as eQTLs

andmethylation QTLs.15 Here, by performing a re-analysis

of WGS and RNA-seq data from 48 tissues released by the

GTEx consortium, we extended this approach to also iden-

tify associations between gene copy number and (1) their

own expression level or (2) the expression level of other

nearby genes. In total, at a 10% FDR threshold, we identi-

fied 217 multicopy genes that were significantly associated

with their own copy number in one or more tissues. Of

these, 98.1% of the pairwise correlations showed positive

directionality, indicating that for many multicopy genes,
n Journal of Human Genetics 109, 1065–1076, June 2, 2022 1069



Figure 2. Manhattan plots showing
genomic location of variants identified in
a PheWAS using 283 traits
Results for (A) 54,479 VNTRs and (B) 878
multicopy genes in �35,000 TOPMed indi-
viduals. Name(s) of multicopy genes are
shown adjacent to each significant associa-
tion in the lower panel. Note the discontin-
uous y axis used to display the results for
multicopy genes, resulting from the very
strong association of LPA copy number
with lipoprotein A levels. Dashed green
and blue horizontal lines indicate the p ¼
0.05 Bonferroni and 1% FDR significance
thresholds, respectively. Points in red indi-
cate significant associations at <1% FDR.
Full results are shown in Tables S3 and S4.
increased genomic copy number results in increased gene

expression, as expected (Table S5).

However, in some cases we also identified more complex

effects, such as examples where neighboring copy-number-

invariant genes also showed altered expression levels. Repre-

sentative examples of the patterns observed at the RHD and

HPR loci are shown in Figure 3.While the expression of both

RHD and HPR show strong positive correlations with their

own copy number across nearly all tissues analyzed, at

both loci the expression levels ofmultipleneighboringgenes

are also correlated with copy number. At the HPR locus, we

identified six neighboring genes within 5100 kb that all

showed positive correlations with HPR copy number, even

though all six genes were located outside the HPR CNV re-

gion. At the RHD locus, while three genes that lie within

the common CNV region were all strongly positively associ-

ated with RHD copy number, three other genes that lie

outside of the CNValso showed expression levels that corre-

lated variably with RHD copy number, including one gene

(TMEM50A) whose expression was positively correlated

withRHD copynumber in some tissues andnegatively corre-

lated with RHD copy number in other tissues. These results

indicate that many CNVs that alter gene copy number can

alsohavewider effects that often alter the regulationof other

copy-number-invariant genes in cis.

One notable example of this phenomenon was the

PRSS1/PRSS2 locus (MIM: 276000/601564), the copy num-

ber of which was associated with circulating lymphocyte

and white blood cell levels. Our eQTL analysis identified

that PRSS1/PRSS2 copy number was associated with the
1070 The American Journal of Human Genetics 109, 1065–1076, June 2, 2022
expression level of multiple neigh-

boring TRB (T cell receptor b) genes,

suggesting a potential link to explain

how CNV of a digestive enzyme could

lead to altered immune function

(Figure S8).

Replication in an independent

cohort

In order to assess the robustness of the

associations we identified in the dis-
covery cohort, we conducted replication analysis by using

9,159 individuals from the BioMe cohort for which both

WGS and phenotype data were available. Here, we focused

on 11 quantitative traits that showed significant associa-

tions (<1% FDR) with either VNTRs and/or multicopy

genes in our discovery cohort and for which data were

available in at least 1,000 BioMe individuals. Utilizing an

identical methodology to the discovery PheWAS, six

of the eight VNTR:trait pairs tested showed strong replica-

tion in BioMe, and replication p values for these associa-

tions ranged from 2.4 3 10�25 to 5.2 3 10�51 (Table S6).

Similarly, nine of 17 multicopy gene:trait pairs tested

showed replication in at least one ancestry in BioMe, and

replication p values ranged from 0.04 to 1.6 3 10�133

(Table S7).

Fine-mapping indicates most VNTR and multicopy gene

variation associations are causal

Because of the LD structure of the genome, multiple

different genetic variants within a locus may show associ-

ation with a trait, but only one or a few of these are likely

to be causal. In order to assess whether the VNTRs and

multicopy genes identified in our PheWAS represent the

likely causal variants responsible for the observed associa-

tion signals, we applied MsCAVIAR.32 Using this

approach, we observed that for 24 of 28 (86%) VNTR:trait

associations and 40 of 42 (95%) multicopy gene:trait

associations, the VNTR/multicopy gene was ranked as

the most likely causal variant compared to local SNVs

(Tables S8 and S9).



Figure 3. Genomic copy number of multicopy genes often correlates with their own expression level and that of multiple neigh-
boring genes in cis
(A and B) The RHD locus (chr1: 25,200,000–25,450,000) (A) and the HPR locus (chr16: 71,900,000–72,125,000) (B). At the base of each
plot, the colored bar plots show custom UCSCGenome Browser tracks indicating significant (<10% FDR) correlation (R) values between
estimated copy number of the CNV (red shaded) region and gene expression level across the 48 GTEx tissues analyzed. Direct correla-
tions are indicated by positive R values (i.e., projecting up above the baseline), while inverse correlations are indicated by negative R
values (i.e., projecting down below the baseline). For both RHD and HPR, increased genomic copy number resulted in increased expres-
sion (i.e., positive correlations) for genes within the CNV region. In addition, despite being located outside the CNV region, the expres-
sion level of multiple other neighboring genes also showed either positive and/or negative correlations with copy number of RHD and
HPR. The upper plot in each panel shows CNVnator relative diploid copy number per 500 bp bin in 225 selected individuals, and the
common copy number variable region is shaded in red. The lower plot in each panel shows an image of the region taken from the UCSC
Genome Browser showing gene and segmental duplication annotations in addition to significant eQTL results. Complete eQTL data for
all multicopy genes in the GTEx cohort are shown in Table S5.
Closer examination of some of these regions corrobo-

rated this result. Figure 4 shows the example of a 37mer

VNTR located within a large cluster of T cell receptor genes

at 14q11.2 (chr14: 22,355,658–22,355,834) that was

scored by MsCAVIAR as the likely causal variant at this lo-

cus associated with lymphocyte concentration in blood. In

our discovery PheWAS, we identified a strong and consis-

tent association between copy number of this VNTR and

lymphocyte concentration across all TOPMed cohorts

and ancestries tested (discovery meta-analysis p ¼
2.9 3 10�30) and which strongly replicated in the BioMe

cohort (p¼ 5.23 10�51). Our previous association analysis

in the PPMI cohort had identified this same VNTR as an

eQTL of the nearby transcript ENSG00000256221.1,15 sup-

porting this as a potentially functional variant. However,

no prior GWASs have reported any association signals for

lymphocyte concentration in this region.37 We confirmed

the absence of local associations between lymphocyte con-

centration and local SNVs by repeating the association

analysis with all SNVs located within 5100 kb of the

VNTR, which identified no significant signals. Applying

MsCAVIAR, we confirmed that copy number of the

VNTR was the most likely causal variant to explain the

observed association with lymphocyte concentration (pos-

terior p ¼ 0.988) (Table S8). Of note, the same VNTR was

also significantly associated with white cell count, neutro-

phil count, and interleukin 6 levels.

In contrast, we performed a similar analysis of a 34mer

tandem motif located within intron 1 of F7 at 13q34

(chr13: 113,107,242–113,109,277) (Figure S9). Although
The America
this VNTR showed a strong and consistent association

with factor VII levels in blood across multiple TOPMed co-

horts (discovery meta-analysis p ¼ 2.85 3 10�43), multiple

prior GWASs have reported associations for factor VII levels

in this region.37 Consistent with this, MsCAVIAR ranked

24 nearby SNVs each as having a higher probability of

being potentially causal compared to the VNTR. We

confirmed this by repeating the association analysis with

all SNVs located within 5100 kb of the VNTR, identifying

>20 local SNVs that showed stronger association with fac-

tor VII levels than observed for VNTR copy number, consis-

tent with the notion that the VNTR is unlikely to be the

causal variant at this locus.

Discussion

Almost all published GWASs have utilized genotyping data

from SNVs, which are typically assayed with microarrays.

One of the fundamental assumptions underlying SNV-

based GWASs is that due to the LD architecture of the hu-

man genome, the true causal variants that drive associa-

tion signals at a locus do not have to be directly genotyped

as long as these causal variants can be ‘‘tagged’’ by com-

mon flanking SNVs. However, a resulting limitation of

this approach is that any genomic variant that is neither

directly genotyped nor shows sufficient LD with flanking

SNVs is not effectively assayed and therefore remains

essentially invisible to standard SNV-based GWASs.

Here, we utilized an alternate approach based on read

depth to specifically genotype large polymorphic tandem
n Journal of Human Genetics 109, 1065–1076, June 2, 2022 1071



Figure 4. Copy number of a 37mer VNTR
locatedwithin a large cluster of T cell recep-
tor genes at 14q11.2 (chr14: 22,355,658–
22,355,834) is the likely causal variant asso-
ciated with lymphocyte concentration in
blood
(A) We identified a strong and consistent as-
sociation between copy number of this
VNTR and lymphocyte concentration across
all TOPMed cohorts and ancestries tested
(discovery meta-analysis p ¼ 2.9 3 10�30).
In contrast, no prior GWASs have reported
signals for lymphocyte concentration in
this region.37

(B) We confirmed the absence of SNV associ-
ations in this region by repeating the associ-
ation analysis with lymphocyte concentra-
tion using all SNVs located within 5100
kb of the VNTR (gray circles), which all
yielded non-significant p values compared
to the VNTR (black square). MsCAVIAR
confirmed the VNTR as the single most
likely causal variant to explain the observed
association with lymphocyte concentration
(posterior p ¼ 0.988) (Table S8). The same
VNTR was also significantly associated with
white cell count, neutrophil count, and
interleukin 6 levels.
repeats that are typically ignored by most genomic studies.

Using these as input for a PheWAS, we were able to identify

several dozen VNTRs and multicopy genes, CNVs of which

are associated with a variety of human traits. This included

several associations that have been previously reported in

the literature, including the Kringle repeat of LPA that in-

fluences lipoprotein A levels,9,10 a coding VNTR within

ACAN that has a strong effect on height,11,13 and reduced

HBA2 copy number that influences multiple red blood cell

traits,36 thus validating our methodology. Furthermore, we

were able to replicate many signals in a second cohort.

Due to the LD architecture of the genome that often re-

sults in multiple variants within a region that are all associ-

ated with a trait, a fundamental question in the field of

association analysis is the identification of causal variants,

i.e., those that are primarily responsible for the observed

association rather than simply being ‘‘passengers’’ that are

in LD with the true causal variant. As we primarily investi-
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gated VNTRs and multicopy genes,

to assess whether these represented

the causal variants underlying the asso-

ciation signals identified, we applied

fine-mapping approaches to compare

them against local SNVs. This analysis

indicated that the large majority of as-

sociations we identified (86%–95%)

are likely causal for the associations we

report. At several of these loci, no prior

associations with the trait had been

identified by SNV-based GWASs, sug-

gesting that changes in copy number

of these VNTRs are not sufficiently
tagged by flanking SNVs or are individually too weakly asso-

ciated with the phenotype to be detectable in standard

GWASs. Thus, by specifically focusing on VNTRs andmulti-

copy genes, i.e., complex variants that are typically ignored

in most genomic studies, we were able to identify novel

causal variants contributing to human phenotypic varia-

tion that seemingly remain invisible to standard GWAS ap-

proaches that rely on genotyping SNVs. As such, consistent

with prior hypotheses, our data provide strong support that

complex structural variants underlie at least some of the so-

called ‘‘missing heritability’’ of GWASs.38

Given the relatively large sample size we used in compar-

ison to prior studies, we were able to identify several loci ex-

hibiting much more extreme copy-number changes in the

human population than have been previously reported.

For example, a prior study of the Human Genome Diversity

Panel reported that HPR varies from 2 to 9 copies in the

global population,25 with the highest copy number



observed in African individuals, where increased copy num-

ber is thought to be confer resistance to trypanosome infec-

tion.39 However, we identified individuals carrying up to an

estimated 42 copies of this gene and observed similar

extreme copy numbers for several other genes. Such focal

amplifications most likely occur through a mechanism of

non-allelic homologous recombination that generate long

tandem arrays and have been reported previously at loci

such as b-defensin and REXO1L1, where extreme copy-

number amplifications can occasionally lead to cytogeneti-

cally visible euchromatic variants that can span multiple

megabases.40–42

Although the overwhelmingmajority of VNTRs we tested

are non-coding, we observed a significant enrichment for

those associated with traits by PheWAS to act as eQTLs for

nearby genes, indicating that in many cases copy-number

changes of VNTRs most likely exert their effects on human

phenotypes through altered regulation of local gene expres-

sion. In the case of multicopy genes, by definition, CNV of

these regions results in copy-number changes to entire

gene(s). As such, the most parsimonious explanation of

how CNV of a gene leads to an altered phenotype is that

changes in gene copy number result in concomitant alter-

ations in the expression level of the gene (and presumably

therefore the resulting protein level). We specifically inves-

tigated this hypothesis by performing an eQTL study in

which we first re-analyzed GTEx data but allowed RNA-

seq reads with multiple genomic alignments to be consid-

ered when quantifying gene expression levels, a methodol-

ogy that is most likely better suited than the original GTEx

pipeline for characterizing genes that often have multiple

copies in the reference genome. Indeed, consistent with

the expectation that increased genomic copy number of a

gene will result in increased expression, the overwhelming

majority (>98%) of significant correlations showed positive

directionality. However, somewhat surprisingly, we also

observed that inmany cases, CNVof somemulticopy genes

also results in altered expression of other neighboring genes

in cis, even where copy number of these neighboring

genes remained constant. This has also been noted previ-

ously in studies of much larger recurrent microdeletion/

duplication regions43–45 and thus seems to be a common

effect of many copy-number variants. Notably, this phe-

nomenon provides a biologically plausible mechanism to

explain how CNV of PRSS1/PRSS2, which represent the

major digestive trypsinogens secreted by the pancreas into

the gut, could influence the level of circulating immune

cells through regulatory effects on the expression of nearby

T cell receptor b genes.

While the analysis approach we used here has certain ad-

vantages, the use of read depth for typing VNTRs also has

several limitations, as follows: (1) read depth does not pro-

vide any allelic information and only yields a relative esti-

mate of total copy number from the sum of both alleles;

(2) it is unable to differentiate between divergent repeatmo-

tifs that may independently vary in copy number; (3) as

mapping of reads to a VNTR is based on alignment to the
The America
reference sequence, repeatmotifs thatdiverge fromthe refer-

ence genome wouldmost likely be poorly assayed ormissed

entirely; (4) theabilityof readdepth for genotypingVNTRs is

inversely related to both motif size and copy number, and

thus, copy number estimates of VNTRs with shorter motifs

and lower copy number will tend to have lower accuracy;

(5) the use of read depth can also be confounded through

batch effects in WGS data or where a VNTR is contained

withina larger regionofCNV.However,we applied stringent

quality control steps to remove such confounders (Figure S1

and material and methods) and performed replication and

eQTL studies in separate cohorts to provide secondary sup-

port for many of the associations we identified.

Although we also performed separate analyses of each

major human ancestry, the resulting reduction in sample

size meant that we had very limited power to identify

ancestry-specific associations. The only clear example of

this that we were able to identify was the association of

reduced HBA2 copy number with multiple red blood cell

traits, all of which were highly significant in individuals

of African ancestry but barely reached nominal signifi-

cance in Europeans despite having a much larger sample

size. This observation is consistent with the known preva-

lence of b-thalassemia in regions wheremalaria is endemic,

where heterozygous deletions of HBA2 are thought to pro-

vide enhanced immunity against malaria.46

Finally, it should also be noted that although we utilized

data for �35,000 individuals in our discovery PheWAS,

phenotype data for most of the traits tested in our discovery

cohort were available only for a fraction of these, with a me-

dian of 5,247 phenotyped individuals per trait. Given this

relatively modest sample size for the majority of traits we

studied, statistical power was a limiting factor in this study.

We predict that the use of larger cohorts will reveal much

more extensive effects of VNTRs and multicopy on diverse

humantraits andhas thepotential touncovergeneticpredis-

positions that are recalcitrant to standard SNV-basedGWASs.
Data and code availability

We have generated a GitHub repository, https://github.com/

AndyMSSMLab/PHEWAS_in_CNV, that contains scripts used to

perform PheWAS analysis with VNTRs and multicopy genes,

including data generation, data normalization, quality control

steps, and association analysis.

Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2022.04.016.
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Web resources

Database of Genotypes and Phenotypes (dbGaP), GTEx data,

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id¼phs000424.v7.p2

Database of Genotypes and Phenotypes (dbGaP), NHLBI TOPMed:

Genetic Epidemiology of COPD (COPDGene), https://www.

ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id¼phs000951.v5.p5

Database of Genotypes and Phenotypes (dbGaP), NHLBI TOPMed:

Genomic Activities such as Whole Genome Sequencing and

Related Phenotypes in the Framingham Heart Study, https://

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id¼phs000974.v4.p3

Database of Genotypes and Phenotypes (dbGaP), NHLBI TOPMed:

MESA and MESA Family AA-CAC, https://www.ncbi.nlm.nih.

gov/projects/gap/cgi-bin/study.cgi?study_id¼phs001416.v2.p1

Database of Genotypes and Phenotypes (dbGaP), NHLBI TOPMed

- NHGRI CCDG: Atherosclerosis Risk in Communities (ARIC),

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id¼phs001211.v4.p3

Database of Genotypes and Phenotypes (dbGaP), NHLBI TOPMed -

NHGRI CCDG: The BioMe Biobank atMount Sinai, https://www.

ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id¼phs001644.v2.p2

Database of Genotypes and Phenotypes (dbGaP), NHLBI TOPMed:

The Jackson Heart Study (JHS), https://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?study_id¼phs000964.v5.p1

Database of Genotypes and Phenotypes (dbGaP), NHLBI TOPMed:

Trans-Omics for Precision Medicine (TOPMed) Whole Genome

Sequencing Project: Cardiovascular Health Study, https://www.

ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id¼phs001368.v3.p2

Database of Genotypes and Phenotypes (dbGaP), NHLBI TOPMed:

Women’s Health Initiative (WHI), https://www.ncbi.nlm.nih.

gov/projects/gap/cgi-bin/study.cgi?study_id¼phs001237.v2.p1

GTEX portal, https://www.gtexportal.org/

GWAS catalog, https://www.ebi.ac.uk/gwas/

Human Genome Diversity Panel, https://www.internationalgen

ome.org/data-portal/data-collection/hgdp

OMIM, http://www.omim.org/

Parkinson’s Progression Markers Initiative (PPMI), https://www.

ppmi-info.org/

RDocumentation, https://www.rdocumentation.org/packages/sta

ts/versions/3.6.2/topics/p.adjust.

UCSC Genome Browser, http://genome.ucsc.edu
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Figure S1. Use of density and PCA plots to remove outlier samples. To identify potential technical effects 

on individual samples, we generated density and PCA plots based on both the copy number estimates of 

VNTRs, and their 1 kb flanking regions. (A) Density plots for one TOPMed cohort based on the 3’ region 

flanking all VNTRs (left panel), the VNTRs themselves (center panel), and the 5’ region flanking all VNTRs 

(right panel). Each sample is shown by a line, with those in red considered outliers that were removed from 

further analysis. (B) Example PCA plot based on autosomal VNTR copy number estimates. Each TOPMed 

cohort is plotted using a different color, showing distinct clustering per cohort and thus justifying the use of 

independent association testing per cohort followed by meta-analysis. Samples lying outside the dashed red 

line were considered outliers, and were removed from further analysis. Similar plots were made using the top 

10 PCs and outliers removed. 



 

Figure S2. Use of copy number estimates for VNTR flanks to remove outlier samples where VNTR 
estimates are likely erroneous due to the presence of larger CNVs. We applied filters to remove outlier 

samples based on copy number estimates of the VNTR flanks: for each flanking region, we calculated the 

mean and StDev based on samples between the 30th and 70th percentiles of the population, defining outlier 

samples as those that were >7 StDevs from the mean and with consistent directionality for both flanks. Shown 

are two loci located within regions of known common copy number variation (Conrad et al. 2010). For each 

locus, the top plot shows read depth of the 5’ flank, the middle plot shows read depth within the VNTR, and the 

bottom plot shows read depth within the 3’ flank. Samples in each plot are sorted based on read depth of the 3’ 

flank, with those that meet the criteria for being a consistent outlier for both flanks shown in red. Genotypes for 

these samples were not considered in downstream association analysis. 

 

 

 



   

Figure S3. Copy number estimates for salivary amylase genes. (A) Absolute diploid copy number 

estimates generated using mosdepth for the salivary amylase 1 (AMY1) gene cluster at 1p21.1 in ~45,000 

individuals from eight TOPMed cohorts used in this study. While most individuals carry between 2-15 copies of 

this locus (Groot et al. 1989),35 we observed rare individuals carrying up to an estimated 39 copies of AMY1 

genes. (B) Comparison of estimated copy numbers for the AMY1 gene cluster obtained in TOPMed samples 

using read depth to those obtained in previously published cohorts using qPCR or PRT. The plot shows 

absolute copy number estimates for (i) European and multi-ancestry cohorts generated with qPCR published 

by Perry et al.,35 (ii) Eurasian individuals generated with PRT published by Carpenter et al.,37 and (iii) TOPMed 

cohorts generated by mosdepth for the grouped 1p21.1 AMY1 genes. In all cases, we present copy estimates 

rounded to the nearest integer. Both methods show similar frequency distributions, suggesting that the use of 

read depth yields accurate results. 



 

 

Figure S4. Additional examples of genes showing extreme variation in copy number. Using mosdepth, 

we generated copy number estimates for 1,105 multicopy genes in ~45,000 individuals. Within this cohort, we 

observed some genes that exhibited extreme variations in copy number, with some individuals having 

estimated copy numbers 10-20 times greater than the population average. To characterize these variants in 

more detail, we performed CNVnator analysis on 225 samples of interest, and plotted the estimated copy 

number across each locus. Shown are example plots of regions containing (A) AMY1/AMY2 genes 

(chr1:103,575,000-103,775,000), (B) PCDHB7/PCDHB8 (chr5:141,170,000-141,185,000), (C) DEFA genes 

(chr8:6,960,000-7,030,000), (D) ORM1/ORM2 (chr9:114,315,000-114,340,000). Each plot shows CNVnator 

estimated relative diploid copy number per 500 bp bin in 225 individuals, with the copy number profile of each 

individual shown as a dashed line. Below each plot is an image of the region taken from the UCSC Genome 

Browser showing gene and segmental duplication annotations. 

 



 

Figure S5. Identification of individual with zero copies of the entire ꞵ-defensin gene cluster at 8p23.1. 

Plot shows diploid copy number per 5 kb bin from CNVnator in 50 individuals for the ꞵ-defensin locus 

(chr8:6,750,001-8,500,000). Each line represents the copy number profile of one individual. The individual 

shown with the red line was originally identified using mosdepth as carrying ~zero copies of ꞵ-defensin genes 

in the region. Below the plot is an image of the region taken from the UCSC Genome Browser showing 

segmental duplication and gene annotations. 



 

Figure S6. Comparison of estimated copy numbers for the ꞵ-defensin gene cluster at 8p23.1 obtained 
in TOPMed samples using read depth to those obtained in previously published cohorts using the 
paralog ratio test (PRT) and quantitative PCR (qPCR). The plot shows absolute copy number estimates for 

(i) two European cohorts generated with PRT published by Hollox et al.,7 which is considered to be an accurate 

experimental method for quantifying multiallelic CNVs, (ii) a meta-analysis of six different studies that typed ꞵ-

defensin copy number using either PRT or qPCR (Hollox et al. 2017), and (iii) TOPMed cohorts generated by 

mosdepth for the grouped 8p23.1 ꞵ-defensin genes. In all cases, we present copy estimates rounded to the 

nearest integer. Both methods show highly similar frequency distributions, suggesting that the use of read 

depth yields accurate results. 

 



 

Figure S7. QQ plots of meta-analysis discovery PheWAS using multicopy genes and VNTRs. Genomic 

inflation was well controlled, with λ values between 1.00 and 1.04 for all ancestries tested. 

 

 

 

 

 

 



 

Figure S8. Copy number of PRSS1/PRSS2 correlates with the expression level of multiple neighboring 
T cell receptor ꞵ genes in cis. Using eQTL analysis in the PPMI cohort, we observed that the expression 

level of multiple neighboring TRB genes showed significant correlations (both positive and negative) with copy 

number of PRSS1/PRSS2. The vertical red bar indicates the position of PRSS1/PRSS2, with each dot 

representing the -log10 p-value of association between estimated copy number of PRSS1/PRSS2 and gene 

expression level from RNAseq in whole blood in the PPMI cohort. Points are colored based on the correlation 

value (R).  



     

Figure S9. Copy number of a 34mer tandem motif located within intron 1 of the F7 gene at 13q34 
(chr13:113,107,242-113,109,277) is not the causal variant associated with Factor VII levels in blood. (A) 
We identified a strong and consistent association between copy number of this VNTR and Factor VII levels in 

blood across multiple TOPMed cohorts (discovery meta-analysis p=2.85x10-43). (B) We repeated the 

association analysis with Factor VII levels using all SNVs located within ±100 kb of the VNTR, which identified 

dozens of significant associations with local SNVs (grey circles), many of which showed much stronger 

associations than the one observed for VNTR copy number (black square). Using MsCAVIAR, we confirmed 

that VNTR copy number was not the likely causal variant to explain the observed association with Factor VII 

levels, with 24 SNVs ranked by MsCAVIAR as having higher probabilities of being causal compared to the 

VNTR (Table S8). 
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