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ARTICLE

Integration of rare expression outlier-associated
variants improves polygenic risk prediction

Craig Smail,!.2* Nicole M. Ferraro,! Qin Hui,3# Matthew G. Durrant,> Matthew Aguirre,!

Yosuke Tanigawa,! Marissa R. Keever-Keigher,2 Abhiram S. Rao,%” Johanne M. Justesen,! Xin Li,?
Michael J. Gloudemans,! Themistocles L. Assimes,? 10 Charles Kooperberg,!! Alexander P. Reiner,!2
Jie Huang,!? Christopher J. O’'Donnell,'#15.16 Yan V. Sun,34 Million Veteran Program, Manuel A. Rivas,!
and Stephen B. Montgomerys.6*

Summary

Polygenic risk scores (PRSs) quantify the contribution of multiple genetic loci to an individual’s likelihood of a complex trait or disease.
However, existing PRSs estimate this likelihood with common genetic variants, excluding the impact of rare variants. Here, we report
on a method to identify rare variants associated with outlier gene expression and integrate their impact into PRS predictions for body
mass index (BMI), obesity, and bariatric surgery. Between the top and bottom 10%, we observed a 20.8% increase in risk for obesity
(p = 3 x 107'), 62.3% increase in risk for severe obesity (p = 1 x 107°), and median 5.29 years earlier onset for bariatric surgery
(p = 0.008), as a function of expression outlier-associated rare variant burden when controlling for common variant PRS. We show
that these predictions were more significant than integrating the effects of rare protein-truncating variants (PTVs), observing a
mean 19% increase in phenotypic variance explained with expression outlier-associated rare variants when compared with PTVs
(p =2 x 107'%). We replicated these findings by using data from the Million Veteran Program and demonstrated that PRSs across mul-
tiple traits and diseases can benefit from the inclusion of expression outlier-associated rare variants identified through population-scale
transcriptome sequencing.
Introduction majority of DNA-sequencing-based approaches focus
only on rare, protein-truncating variants (PTVs)."* New
approaches that aggregate multiple rare variants have pro-
vided opportunity to improve risk prediction,'* however
these have further focused only on missense and PTV
rare variant burden. To extend to other impactful variants,
recent studies have focused on individuals with outlier

A major goal of complex disease genetics is predicting an
individual’s disease risk. Recent efforts have aimed at sum-
marizing genome-wide risk for multiple traits and diseases
via polygenic risk scores (PRSs),'® which are derived by
summing genome-wide common genetic variants associ-

ated with a given trait or disease. PRSs have demonstrated
stratification of genetic disease risk, but there remains sub-
stantial unexplained variability in these predictions.” One
potential explanation for this variability is the presence of
rare variants with large phenotypic effects that are unac-
counted for in PRS models.”

Despite the well-known contributions of specific, rare
genetic variants to complex traits and diseases,®” rare var-
iants in aggregate have been difficult to robustly charac-
terize and integrate into PRS predictions because of their
abundance in the genome, poor interpretability, and sam-
ple size constraints. Currently, beyond single risk loci
such as APOE in Alzheimer disease,'” BRCA1 in breast can-

cer,'’ and LDLR in familial hypercholesterolemia,'? the

gene expression demonstrating enrichments of multiple
classes of rare variants beyond missense and PTVs,'>'®
finding that such variants can have large effects on traits
and diseases.'”*"

Given the known large phenotypic effects of rare vari-
ants associated with outlier gene expression—and that
these variants are not currently included in existing
PRSs—we sought to test whether this subset of rare variants
in aggregate can aid in genetic risk prediction. We devel-
oped an approach that integrates outlier-associated rare
variants from population-scale, transcriptome sequencing
in the GTEx project (v8), and demonstrated improved dis-
ease and trait prediction in the UK Biobank (UKB)*' and
Million Veteran Program (MVP).

1Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA; 2Genomic Medicine Center, Children’s Mercy
Research Institute and Children’s Mercy Kansas City, Kansas City, MO, USA; 3Atlanta VA Health Care System, Decatur, GA, USA; 4Department of Epidemi-
ology, Emory University Rollins School of Public Health, Atlanta, GA, USA; 5Department of Genetics, Stanford University School of Medicine, Stanford, CA,
USA; 6'Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; 7Department of Bioengineering, Stanford University, Stanford,
CA, USA; ®CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China;
9Palo Alto VA Health Care System, Palo Alto, CA, USA; 19Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Med-
icine, Stanford, CA, USA; 'Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; 12Department of Epidemiology, University
of Washington, Seattle, WA, USA; *School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen,
Guangdong, China; 4Boston VA Health Care System, Boston, MA, USA; SDivision of Cardiology, Department of Medicine, Harvard Medical School, Bos-
ton, MA, USA; '°Division of Cardiology, Department of Medicine, Brigham Women’s Hospital, Boston, MA, USA

*Correspondence: csmail@cmh.edu (C.S.), smontgom@stanford.edu (S.B.M.)

https://doi.org/10.1016/j.ajhg.2022.04.015.

© 2022 American Society of Human Genetics.

o : The American Journal of Human Genetics 109, 1055-1064, June 2, 2022 1055


mailto:csmail@cmh.edu
mailto:smontgom@stanford.edu
https://doi.org/10.1016/j.ajhg.2022.04.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2022.04.015&domain=pdf

Subjects and methods

GTEx v8 data

Rare SNV calls passing quality control and mapped to the hg38
genome build were obtained from GTEx (v8) whole-genome
sequencing (WGS) data (see data and code availability). Using
the software bedtools** (-window flag), variants were linked to
genes if falling within the gene body, 10 kb upstream of transcrip-
tion start site or 10 kb downstream of the transcription end site.
The 10 kb window was chosen on the basis of prior studies that
demonstrated significant rare variant enrichment for outliers
compared to non-outliers with this window size.'>'"** We
restricted variants to those mapping to genes within autosomes.
Using the software Vcfanno,?* variants were intersected with
gnomAD (version 12.0.2, with liftover to the hg38 genome
build)>® and CADD?° databases to obtain the minor allele fre-
quency (MAF) and CADD score, respectively, for each variant.
MAFs were calculated across all individuals in gnomAD and
were retained for variants with gnomAD MAF < 1%. Variant ef-
fect annotations were obtained with Variant Effect Predictor
(VEP) (version 88).%”

RNA sequencing (RNA-seq) data were obtained from GTEx (v8)
(see data and code availability). To identify GTEx outlier gene
expression samples, normalized gene expression values (TPM)
were processed across 49 GTEx v8 tissues, limited to autosomal
genes annotated as protein coding or lincRNA. A minimum
expression filter was applied per gene (>20% individuals with
TPM > 0.1 and read count > 6); genes not passing this filter
were removed. Expression values were PEER*® factor corrected
(with 15 factors for tissues with <150 samples, 30 for tissues
with <250 samples, 45 for tissues with <350 samples, and 60
for tissues with >350 samples) and adjusted for the lead cis-
eQTL per gene for a given tissue as well as genotype principal
components of ancestry 1-3 and sex. Finally, residuals were
scaled and centered to generate expression Z scores. Individuals
exhibiting global patterns of outlier gene expression for a given
tissue were removed from the final corrected expression matrix
for that tissue. Global outlier is defined as any individual who
has a gene expression abs(Z score) > 2 in more than 100 genes
in a given tissue.

UKB data

UKB Phase 2 genome-wide association study (GWAS) summary sta-
tistics were obtained from the Neale Lab server (see data and
code availability). For the continuous trait BMI, we selected the in-
verse-rank-normalized (IRNT), both-sexes version (file name:
“21001_irnt.gwas.imputed_v3.both_sexes.tsv.bgz”). We selected a
further 1,963 GWAS:s for permutation testing by using the following
filtering criteria: both-sexes; IRNT version for all continuous traits;
any ordinal trait (n_cases = NA); or binary traits with n_cases >
1,000. As described more fully in the Neale Lab server documenta-
tion, the variants included in each GWAS had been filtered for impu-
tation score > 0.8, UKB MAF > 0.1%, and Hardy-Weinberg equilib-
rium p value > 1 x 107'°. Additionally, we removed all variants
flagged as low confidence (low_confidence_variant = TRUE).

All other phenotypic and genetic data were obtained from the
data instance approved under UKB application #24983 (see data
and code availability). Based on the information provided in pro-
tocol 44532, Stanford University IRB review has determined that
the research does not involve human subjects as defined in 45
CFR 46.102(f) or 21 CFR 50.3(g). All participants of UK Biobank
provided written informed consent. Individual-level values for

weight (UKB data field #21002) and BMI (UKB data field #21001)
were downloaded from the relevant phenotype file. We averaged
(using median) overall observations per individual for anyone
with multiple observations of the same phenotype. Additional
phenotypic and demographic data included age, sex, genotype-
derived principal components 1-10, genotyping array, and
comparative body size at age 10 (UKB data field #1687). To
compute age at bariatric surgery, we used OPCS-4 records for pro-
cedure codes G28.1 (partial gastrectomy and anastomosis of stom-
ach to duodenum), G28.2 (partial gastrectomy and anastomosis of
stomach to transposed jejunum), G28.3 (partial gastrectomy and
anastomosis of stomach to jejunum NEC), G28.4 (sleeve gastrec-
tomy and duodenal switch), G28.5 (sleeve gastrectomy NEC),
G31.2 (bypass of stomach by anastomosis of stomach to duo-
denum), G32.1 (bypass of stomach by anastomosis of stomach
to transposed jejunum), G33.1 (bypass of stomach by anastomosis
of stomach to jejunum NEC), and G71.6 (duodenal switch) com-
bined with an approximate date of birth from the fields month
of birth (UKB data field #52) and year of birth (UKB data field
#34). We followed the same procedure to obtain an approximate
age when ICD-10 code E66 (obesity) was first reported in the med-
ical record (UKB data field #130792). We further used age as
directly reported in the relevant file for diagnosis of stroke (UKB
data field #4056) and diagnosis of pulmonary embolism (UKB
data field #4022).

Individual-level genotypes for outlier-associated and matched
control rare variants were obtained from UKB genotyping callset
version 3. Variants in this callset were mapped to the hg19 genome
build; therefore, we used the software CrossMap” to convert
genome coordinates from hgl9 to hg38 given that GTEx (v8) is
mapped to hg38. We restricted variants to the high-confidence
set included in the UKB GWAS files described above.

UKB validation cohort

We defined a non-overlapping UKB cohort separate from the indi-
viduals included in the GWAS described above (see UKB data). Us-
ing the self-identified non-British White labels that were reported
in the UKB metadata, we first inferred a larger cohort of predicted
non-British White individuals by using the first and second geno-
type principal components. All individuals without a self-reported
ethnic identity that were within +/—3 SD of the calculated mean
principal component 1 (PC1) and principal component 2 (PC2)
values were inferred to be non-British White. All self-reported
non-British White individuals that fell out of this range were
excluded. We found that the BMI PRS distribution of this non-
British White cohort did not differ significantly from a normal dis-
tribution (Shapiro-Wilk normality test; p = 0.2774), suggesting
that the PRS generalizes well to this cohort. We further obtained
the plate and well information for all individuals included in the
UKB GWAS described above by using the “european_samples.tsv”
file available from the Neale Lab server (see data and code availabil-
ity), as well as for all individuals in our non-British White cohort.
We removed any individuals who appeared in the intersecting set.

Million Veteran Program (MVP) validation cohort

DNA extracted from individual blood samples were genotyped
with a customized Affymetrix Axiom biobank array, the MVP 1.0
Genotyping Array. The array was enriched for both common
and rare genetic variants of clinical significance in different ethnic
backgrounds. Quality-control procedures used to assign ancestry,
remove low-quality samples and variants, and perform genotype
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imputation to the 1000 Genomes reference panel were previously
described.* Individuals related more than second-degree cousins
were excluded.

We conducted HARE (harmonized ancestry and race/ethnicity)
analysis by using race/ethnicity information from MVP partici-
pants.’! Genotyped MVP participants are assigned into one of
the four HARE groups (Hispanic, non-Hispanic White, non-His-
panic Black, and non-Hispanic Asian) and “other.” The analysis
is based on a machine-learning algorithm, which integrates
race/ethnicity information from MVP baseline survey and high-
density genetic variation data. Trans-ethnic, and ethnicity-spe-
cific principal-component analyses were performed with
flashPCA.*> BMI was calculated as average BMI with all measure-
ments within a 3-year window around the date of MVP enroll-
ment (i.e.,, 1.5 years before/after the date of enrollment),
excluding height measurements that were >3 in or weight mea-
surements that were >60 Ibs from the average of each participant.

Genetic association with BMI in the MVP cohort was examined
among 217,980 non-Hispanic White participants. Given differ-
ences between MVP and UKB in genotyping array and imputation,
we could include 57,686 outlier-associated variants in the inde-
pendent outlier gene count (IOGC) score calculation for MVP—
65.6% of the total outlier-associated variant set. As a result of
data access restrictions, we were unable to calculate PRSs in MVP.

Identifying rare variants associated with GTEx gene
expression outliers and non-outliers

To link rare variants to expression outliers, we used the processed
RNA-seq data (see GTEx v8 data) for each tissue and identified indi-
viduals passing a defined absolute Z score expression level for a
given gene (abs(Z score) > 2). We also identified the set of individ-
uals with non-outlier gene expression, defined as abs(Z score) < 1
for a given gene and tissue. We retained only the genes with at least
one outlier individual. From the set of variants identified in outlier
individuals, we removed variants that were observed in any individ-
ual not passing the defined absolute Z score threshold in any tissue.
We further removed any variants linked to inconsistent outlier di-
rections in the same gene (e.g., under-expression in one outlier in-
dividual and over-expression in another). For the set of variants
identified in non-outlier individuals, we defined a corresponding
set of matching variants on the basis of the CADD score and gno-
mAD MAF of outlier variants in the same gene and tissue. For
CADD, we required a match within a +/—1 window. For gnomAD
MAE, we required a match within 0.1% of outlier variant gnomAD
MAF (for example, for an outlier variant with gnomAD MAF of
0.3%, the match window would be 0.2%-0.4%). We subsequently
confirmed there was no difference in local linkage disequilibrium
(LD) for outlier and matched non-outlier variants. For analyses inte-
grating PRSs, we further subset the list of outlier-associated and
non-variants mapping to genes containing >1 PRS variant.

Annotating missense variants and PTVs in UKB

To identify missense variants, we used annotations available on
the Neale Lab server (see data and code availability) by using the
“consequence” column available in the “variants.tsv.bgz” file.
We annotated predicted rare protein-truncating SNVs in the UKB
by using the imputed genotype callset (version 3). We restricted
variants to the high-confidence variant set described above (see
UKB data) and further retained only those variants with a rate of
missingness < 1% and UKB MAF < 1%. We performed variant
annotation by using the Ensembl VEP?” (April 2017 version)

with the LOFTEE plugin® using the hgl9 genome build. We
considered the following predicted consequences as protein-trun-
cating SNVs: frameshift variant, splice acceptor variant, splice
donor variant, stop lost, stop gained, and start lost. Finally,
repeating the same process as used for outlier-associated and
matched non-outlier variants, we restricted variants to those map-
ping to genes with >1 PRS variant. We checked for overlap be-
tween this set of PTVs and outlier-associated variants, finding
that 138 variants overlapped in both sets.

Calculating PRSs

We computed PRSs by using publicly available PRS weights ob-
tained from The Polygenic Score (PGS) Catalog (see data and
code availability): body mass index (PGS Catalog ID:
PGS000027). Scores were calculated with the software plink
(version 2.0) (-score flag, including “sum” modifier). Scores were
scaled to generate PRS Z scores.

GWAS effect size permutation test

We performed a permutation test (n permutations = 1,000) to
assess how often randomly drawn outlier-associated variants had
larger GWAS effect sizes than matched non-outlier variants across
genes. For each GWAS, the input data are files containing outlier-
associated and non-outlier variants along with GWAS effect size,
gene ID, outlier direction (under-expression/over-expression),
and tissue. Additionally, for GWAS of traits and disease where we
also integrate PRS information, we subset outlier genes to those
with >1 PRS variant. For each tissue/gene/outlier-direction tuple,
we randomly select one outlier-associated variant and one
matched non-outlier variant. We then identify the variant (i.e.,
outlier-associated/non-outlier) with the largest GWAS absolute ef-
fect size. Summarizing across all tuples, we construct a 2 x 2 con-
tingency table to compute the odds of observing an outlier-associ-
ated variant with a larger absolute effect size than non-outlier
variant across genes. To generate a null distribution, we repeated
this analysis for matched non-outlier variants only, comparing
two randomly chosen non-outlier variants per tuple.

GTEx cis-eQTL slope and phenotype risk concordance
with outlier-associated rare variants

Significant GTEx cis-eQTL summary statistics were obtained from
the GTEx Portal (“*.v8.signif_variant_gene_pairs.txt” file suffix;
see data and code availability). For each tissue, we selected genes
with >1 outlier-associated variant and >1 cis-eQTL variant and
filtered for SNVs only and merged variants with UKB GWAS sum-
mary statistics. For genes with >1 cis-eQTL in a given tissue, the
variant with the smallest UKB GWAS p value was retained. We
removed genes where cis-eQTLs had either risk or protective
GWAS effects but the same eQTL slope direction. Outlier-associ-
ated variants were then compared on the slope and GWAS effect
direction of gene-level summarized cis-eQTL results (e.g., for cis-
eQTL variants with a positive median cis-eQTL slope and GWAS
risk direction, we assessed if outlier-associated variants for the
same gene were overexpressed and had a GWAS risk direction).
We stratified results by cis-eQTL GWAS p value, number of cis-
eQTL tissues per gene, and outlier expression Z score.

Outlier-associated variant effect enrichment in BMI PRS
outliers

To investigate enrichments in outlier-associated variant effects in
individuals whose observed BMI differs substantially from their
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PRS-group prediction, we first calculated BMI Z scores separately
across deciles of PRS risk. We then assessed enrichment across
variant effect subtypes for IOGC top and bottom decile individuals
who fall close or far from mean PRS-decile BMI. Enrichments were
composed of individuals with respect to their IOGC score direc-
tion—for bottom 10% IOGC individuals, we defined BMI Z
score < 0 and > —0.5 as close to mean and Z score < —2.5 as far
from mean. Similarly, for top 10% IOGC individuals, BMI Z
score > 0 and < 0.5 was considered close to mean and Z
score > 2.5 far from mean.

Quantifying effects of IOGC score on phenotype
prediction

Outlier-associated, non-outlier, and predicted protein-truncating
variants were written to a separate file and input to the software
plink*® (version 2.0; using —extract flag) to identify UKB individuals
in the validation cohort who are heterozygous or homozygous for
each variant. We then used the relevant UKB GWAS (e.g., BMI) effect
estimate to assign effect directions to each outlier variant (i.e., risk/
protective). As noted above (see UKB validation cohort), the UKB
cohort used to estimate variant effect direction is non-overlapping
with the cohort we used to calculate IOGC scores.

To compute IOGC scores for each individual in our UKB valida-
tion cohort, we first count the number of unique effect directions
per gene. Per individual, we convert the beta effect estimate per
variant to an integer by using a sign function,

-1 lf 61( < 0#
sgn(fy) := { 0 if B = 0,
1 if B > 0.

where gy is the UKB GWAS beta coefficient for variant k. In prac-
tice, effect sizes of zero are not generally observed, so we expect
to see only values of —1 or 1. Following this step, we take the
distinct values per gene (i.e., remove duplicates); because our
goal is to use outlier variants to quantify putative outlier gene
expression, this step prevents double counting. As such, if we
denote the vector of sgn(6x) for variants linked to a given i gene
as s, then

si = {sgn(Bx) }xc 4, Where 6; is the index set of varients in gene i.

We define s; for each gene with at least one outlier variant, then
take a sum over genes to yield the IOGC score. We split the geno-
types of individual j into vectors gj; for each §; and compute:

IOGC, = Zsig,-,-.

Linear regression was used for quantitative phenotypes and lo-
gistic regression for binary phenotypes. All statistical analyses
were performed with R (version 3.6.0). Plots were generated with
ggplot2 (version 3.3.0).%*

Results

Identification of rare variants associated with gene
expression outliers

To identify candidate, large-effect rare variants, we focused
on rare variants associated with gene expression outliers
that could also be tested for their effects on complex traits
in the UKB. We first intersected the set of SNVs with

gnomAD” MAF > 0 and < 1% identified in GTEx v8
with high-quality imputed variants in the UKB (subjects
and methods; Figure 1A). From a starting set of 8,150,921
unique rare SNVs, we identified 1,773,318 (21.8%) variants
that overlapped with those in UKB. From this intersecting
set, we compared the set of variants found in GTEx outlier
to non-outlier individuals to isolate the subset of rare var-
iants present in gene expression outlier individuals only
(subjects and methods). Variants were subsequently anno-
tated to a gene if they fell within the gene body or +/-10
kb around the gene. Following this approach, we identified
90,898 unique outlier-associated variants for 15,871 genes.

We observed that individuals were often carriers for mul-
tiple outlier-associated rare variants highlighting the
potential for rare variants in aggregate to contribute to a
polygenic phenotype. Within the UKB, we observed that
each individual had an average of 288 (SD = 53) outlier-
associated rare variants. In comparison, each individual
had on average 25 (SD = 3) rare PTVs (subjects and
methods).

Rare expression outlier-associated variants impact BMI
To assess the degree to which multiple rare variants across
genes can impact a polygenic trait, we focused on BMI
from the UKB. We first observed that outlier-associated
rare variants had the potential for large BMI effects; for
example, an outlier-associated rare variant linked to the
gene MAP2K5 had a BMI effect size in the top 0.05% of
all variants with a locus centered on the top genome-
wide significant hit (Figure 1B) and was further in the
top 0.003% across all variants genome-wide.

We next systematically assessed whether outlier-associ-
ated rare variants had larger effect sizes on BMI than
non-outlier rare variants (subjects and methods). We
observed a median odds of 1.04 when comparing outlier
versus non-outlier variants and a median odds of 1.00
when comparing non-outlier variants to themselves (Wil-
coxon test, p < 1 x 107! (Figure 1C). We repeated this
approach for increasing outlier expression Z score thresh-
olds, observing progressively increased odds of outlier var-
iants with larger BMI effects (median odds (BMI GWAS):
abs(Z) > 4 = 1.20; abs(Z) > 6 = 1.51) but not when
comparing non-outlier variants only (median odds (BMI
GWAS): abs(Z) > 4 = 1.00; abs(Z) > 6 = 1.00) (Wilcoxon
test, p < 1 X 10~ for both comparisons) (Figure 1D).

We subsequently ran the permutation test across 1,963
traits and diseases including GWAS meta-categories (can-
cer, non-cancer diseases, treatment/medication) released
in UKB Phase 2 GWAS (subjects and methods). We
observed a median odds of 1.03 (SD = 0.02) across all dis-
ease and traits when comparing outlier with non-outlier
variants, an effect that further increased with increasing
outlier expression Z score thresholds (Figure S1). This indi-
cates that outlier-associated rare variants are modestly en-
riched for rare variants with impacts on multiple traits
and diseases and that the degree of outlier influences the
magnitude of this effect.

1058 The American Journal of Human Genetics 7109, 1055-1064, June 2, 2022



A Rare variants linked
to dysregulated gene
expression

Outliers

Effect
magnitude

Systematic comparison of
rare variant effects

B g

Figure 1. Phenotypic effects of rare
outlier-associated variants across genes

(A) Rare SNVs were identified in gene
expression outlier individuals across 49
GTEx v8 tissues. The phenotypic effects
of these variants were systematically
compared with protein-truncating variants

:
'S
] g &
: » &
Gene Expression & @ Q
P o"\

Rare molecular
outlier SNVs

Effects on polygenic
disease risk prediction

&b and matched rare non-outlier variants and
&;"@@ jointly modeled with PRS estimates.

(B) Example gene locus (MAP2KS5) contain-
ing a common variant genome-wide signifi-
cant hit for BMI illustrates the large pheno-
typic effect of an outlier-associated variant:
(left) showing distribution of —loglO(p
values) for UKB BMI GWAS for all outlier

Disease risk

Gene

PRS prediction

(blue halo) and non-outlier (gray halo) vari-
ants linked to the gene; (right) associated ef-
fect sizes, stratified by UKB allele count and

Molecular outlier
variant burden

highlighting variants included in a PRS for
BMI (pink halo). Points colored by LD
(1000 Genomes phase 3, European samples)

B _ . relative to lead variant in gene locus (purple
o ® ©outier diamond).
N 0104 Non-Outlier (C) Distribution of odds estimates from per-
p
) ®rRs . .
5 mutation testing to assess how often
D (054 randomly drawn outlier-associated variants
© had larger BMI GWAS effect sizes than
2 matched non-outlier variants across genes
= 0.00 (blue shading). This process was repeated
o for randomly selected non-outlier variants
S -0.054 only (gray). p values obtained with a Wil-
o = o coxon test.
T T = T T T : | . (D) Distribution of odds from permutation
673 675 67.7 679 68.1 683 1e+03  1e+04  1e+05 1e+06  testing (permutation testing method as
Position on chr15 (Mb) Allele Count (UKBB) detailed in B), across more-stringent outlier
Z scores. p values obtained with a Wilcoxon
(o] : D test.
Outlier : 304 E . Outlier
Non-Outiier | Non-Outlier
1 - ! -
o i) P<1xt0e z 20 ! :,b:ﬁ)r o 2 calculated BMI and obesity PRS for
| 5 ! abs(Z)>=4 a subset of UKB individuals (n =
! 104 ! P<1x107 96,606) and observed the expected gra-
! é g :bsﬁz)r;ﬁi dients in mean BMI and weight
[/ \ <1x " .
0+ ; e W— 01 = : . . increasing by PRS deciles (Figure S3).
0.9 1.0 1.1 05 1.0 15 2.0 s s
Odds top GWAS effect Odds top GWAS effect We then used a linear regression model

To validate whether rare, outlier-associated variant effects
on BMIwere consistent in allelic series with common effects,
we tested the consistency of their effect directions on BMI
with common cis-eQTL variants. We compared the BMI
GWAS effect direction between cis-eQTLs and outlier-associ-
ated variants at each locus (as an example, positive cis-eQTL
slope and over-expression outliers both leading to increased
BMI risk) (subjects and methods). We stratified results by cis-
eQTL variant BMI p value and outlier-associated variant Z
score and observed an overall mean concordance of 69%
(binomial test, p = 0.001) (Figure S2).

10GC score improves genetic risk prediction

By demonstrating that multiple rare variants can contribute
to a polygenic trait, such as BMI, we next assessed whether
we could construct a score to aggregate their impacts in
combination with established PRS predictions. We first

to assess change in BMI given an indi-

vidual’s PRS, sex, age, first ten compo-
nents of genetic ancestry, genotyping array, and a novel
score that quantifies the total outlier-associated, rare
variant burden per individual, computed by subtracting to-
tal protective from total risk outlier-associated variants
collapsed to gene level (subjects and methods). We refer to
this score as the independent outlier gene count (IOGC)
score. We observed significant coefficient estimates for 10/
15 features in the model (Figure S4). Further, as PRS was
also included in the model, subsequent analyses focused
on the additional predictive benefit of the IOGC score.

We observed that each standard deviation (SD) increase in
IOGC score (mean absolute change in net outlier-associated
gene count = 14.5 genes) was associated with a mean rate
of change in BMI of 0.139 kg/m? (linear regression,
p < 1 x 107 ') (Figure 2A). We observed similar predic-
tive power for obesity (BMI > 30 kg/m?), diagnostic

history of obesity (ICD-10 code E66), and severe obesity
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Figure 2. Increasing burden of outlier rare variants is associated with a significant deviation in body mass index and obesity and
earlier age of onset for bariatric surgery

(A) Mean BMI across 96,606 UKB individuals binned by IOGC score percentile (gray points). Linear regression fit is displayed in blue.
Dashed line indicates cohort average. p value obtained from linear regression.

(B and C) Mean rates of obesity (BMI > 30 kg/mz) (B) and severe obesity (BMI > 40 kg/ m?) (C), across deciles of IOGC score. Dashed line
indicates cohort averages. Error bars indicate standard error of the mean. p values obtained from logistic regression.

(D) Age at time of bariatric surgery for individuals in top and bottom 10% of IOGC score. Crossbars indicate median, error bars indicate
90% of data range. p value obtained from Wilcoxon test.

(E) Deviation from cohort mean BMI in UKB and MVP as a function of IOGC score decile. p values obtained from linear regression.
(F) Risk for obesity (BMI > 30 kg/m?) in UKB and MVP comparing individuals stratified to top and bottom 10% of IOGC score. Error bars
indicate 95% confidence interval. p values obtained from Fisher’s exact test.

(BMI > 40 kg/m?) as a function of IOGC (Figures 2Band 2C;  calculated age at time of procedure and observed a median
Figures SSA and S5B; Table S1). We investigated whether the ~ 5.29 years earlier onset among individuals in the top decile
degree of outlier gene expression integrated into the IOGC  of IOGC score compared to bottom decile (median age at
score affected change in BMI, observing an increase in bariatric surgery: decile 1 = 61.28; decile 10 = 55.98; Wil-
IOGC score coefficient at more extreme Z score thresholds coxon test, p = 0.008; Figure 2D) and a median 6.16 years
(abs(Z) > 2: linear regression r = 0.009, p < 1 X 10716 earlier medical diagnosis of obesity (ICD-10 code E66) (me-
abs(Z) > 3:r=0.015,p=2 x 1075 abs(Z) > 4:r=0.016, dian age at diagnosis: decile 1 = 54.30; decile 10 = 48.14;
p = 0.02) (Figure S5C), and that the IOGC score subset to ~ Wilcoxon test, p = 0.009). Among the individuals in the
under-expression outlier-associated variants had slightly top decile of IOGC who had a medical history of bariatric
larger impacts than over-expression outlier-associated vari- surgery, 50% would not have been considered high-risk
ants (under-expression outlier: linear regression r = 0.011, from their PRS alone (defined as PRS Z score < 1). Among
p = 3 x 107'% over-expression outlier: r = 0.009, p = individuals classified as severely obese (BMI > 40 kg/m?),
2 x 107'?) (Figure S5D). We also see evidence that IOGCis we observed suggestive evidence of an earlier age of onset
transferable across ancestries (Figures SS5E-S5G), however for comorbidities, including stroke and pulmonary embo-
we expect that increased study of non-Europeans will enrich  lism, as a function of IOGC score (Figure S6).
the discovery of outlier-associated rare variants. We further observed that the IOGC score was predictive
Given the trajectories for obesity risk associated with foreffects that manifest from childhood. We identified a sub-
IOGC score, we hypothesized that IOGC could impact set of individuals in UKB (n = 45,840) who provided self-re-
the time course for obesity-related medical interventions ported information on being “plumper” or “thinner” than
such as bariatric surgery. For individuals with evidence of average at age 10 (UKB data field #1687). We tested the
bariatric surgery (n = 159; subjects and methods), we association of IOGC score with childhood body size (subjects
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and methods) and observed a modest increase in the
likelihood across each decile of IOGC of having a “plumper”
comparative body size at 10 (logistic regression, p = 0.003);
comparing low and high deciles of IOGC score (10%,
90%), we observed a mean “plumper” body size at age 10
in IOGC decile 1 of 30.41% and 33.98% in IOGC decile 10.

We investigated whether IOGC from UKB replicated in a
large-scale external cohort. We calculated IOGC in MVP by
using the intersecting set of outlier-associated variants
available in both cohorts (N variants = 57,686) (subjects
and methods). We observed that IOGC was significantly
associated with BMI in MVP (linear regression, r = 0.007,
p =5 x 1077; Figure 2E). We also observed replication of
effects of IOGC on risk for obesity when comparing indi-
viduals in the top decile of IOGC score compared to bot-
tom decile (Fisher’s exact test, MVP: odds ratio = 1.15 [CI
1.08-1.22], p = 8 x 107% UKB: odds ratio = 1.22 [CI
1.15-1.30], p = 2 x 10~?; subjects and methods; Figure 2F).

To assess whether rare variants used in calculating
the IOGC were driving effects on BMI in excess of the addi-
tion of random rare variants, we compared IOGC results

5 6 7 8
I0GC decile

— T ' and methods; Figure S7B). We repeated
this test for the subset of outlier-
associated variants at an expression
outlier threshold abs(Z score) > 3,

observing a greater than 3-fold increase in incremental R?
compared to matched non-outlier variants (mean incremen-
tal R% outlier = 0.016%; non-outlier = 0.005%; Wilcoxon
test, p < 1 x 107'%), highlighting the larger phenotypic ef-
fects of rare variants linked to more-extreme gene expression
outliers.

© -
o

I0GC aggregates multiple classes of large-impact rare
variants beyond PTVs

We investigated the composition of outlier-associated
variants contributing to IOGC-based prediction. We
compared rare variants within individuals with significant
uncaptured variance between their PRS prediction and
their observed BMI (subjects and methods). We observed
that individuals far from their predicted PRS mean were
significantly enriched for missense, regulatory, 3’ and 5’
UTR outlier-associated variants, and outlier-associated var-
iants proximal (+/—1 kb) to the transcription start site
(TSS) (Figure 3A) and with further evidence of contribu-
tions from splice outlier-associated variants (Fisher’s exact
test; missense: odds ratio = 1.11 [CI 0.99-1.23], p = 0.05;
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regulatory: odds ratio = 1.06 [CI 1.02-1.10], p = 0.006; 3’
UTR: odds ratio = 1.09 [CI 1.01-1.17], p = 0.04; 5’ UTR:
odds ratio = 1.19 [CI 1.03-1.37], p = 0.02; TSS: 1.14 [CI
1.05-1.24], p = 0.002). We repeated this process with
matched non-outlier variants (subjects and methods) and
observed no significant enrichments.

We further sought to establish the relative predictive po-
wer of outlier-associated variants compared to the aggre-
gated effects of rare PTVs. From the same high-confidence
UKB imputed rare variant set as described above, we identi-
fied 1,509 rare PTVs mapped to 1,354 BMI PRS genes,
comprising 344 frameshift indels, 192 splice acceptor, 317
splice donor, 78 start lost, 525 stop gained, and 53 stop
lost variants (methods). Restricting to the intersecting set
of genes with at least one outlier-associated variant and
one PTV (n genes = 1,016), we observed that outlier-associ-
ated variants had overall larger BMI effects than PTVs (Wil-
coxon test, p=2 X 10712 (Figure 3B). We calculated IOGC
scores by using the full set of PTVs and observed no signifi-
cant effect on BMI (linear regression, p = 0.06) (Figure 3C).
In a permutation test using variants within the intersecting
gene set (n genes = 1,016), we observed a mean increase of
19% in incremental R* comparing IOGC by using outlier-
associated variants or PTVs (mean incremental R?: outlier-
associated variants = 0.0029%; PTVs = 0.0024%; Wilcoxon
test, p =2 x 10~ '%) (Figure S8).

Discussion

Integration of rare variants within PRSs provides an oppor-
tunity to improve prediction of genetic traits and dis-
eases.'*>*® We have demonstrated that a high burden of
rare variants identified by their association with outlier
gene expression can lead to substantial deviations in PRS-
predicted phenotype. Furthermore, by integrating these
rare variants into genetic risk prediction using the IOGC
score, we demonstrated improvements in predicting risk
for obesity beyond what was achievable with common
variant-based PRSs. For example, we observed that IOGC
could account for observed instances of PRS lower-risk indi-
viduals with increased risk for severe-obesity-related medi-
cal interventions, such as bariatric surgery.

The power of this approach is enabled by identifying
expression outlier-associated rare variants in GTEx; these
variants represent strong candidates for corresponding
phenotypic effects and are not limited to protein-coding
variant effects alone.'” However, given that this cohort is
limited to 714 individuals, it is certain that many expres-
sion outlier-associated rare variants remain to be identi-
fied. Future large-scale RNA-seq studies in population
biobanks, catalogs of expression outlier-associated rare var-
iants, and personal -omics will only increase the efficacy of
this approach. Furthermore, we could recover only a subset
of outlier-associated rare variants in UKB because of limita-
tions in rare variant imputation; recently released WGS in
the UKB will recover more expression outlier-associated
rare variants including ultra-rare variants, indels, and

structural variants (SVs).>’? Notably however, by using
only the subset of outlier-associated rare variants between
GTEx and UKB, we demonstrated improved power for ge-
netic risk prediction beyond what could be achieved by
integrating the effects of multiple rare PTVs alone.

Our approach has the opportunity for multiple future
methodological improvements. The IOGC score assesses
the number of genes with outlier-associated variants and
does not use their effect size weights because of statistical
imprecision as a result of current cohort sizes. A number
of other rare variant burden testing approaches are avail-
able.*” A recent study by Lali et al.'* showed that it is
possible to construct an individual rare variant score
without collapsing to genes; however, this was limited to
variants mapping to only a subset of the full set of genes
containing PRS variants. By including outlier-associated
rare variants in these models, we would expect opportu-
nities to increase the power of these approaches. Further,
in this work, we focused only on gene expression outlier-
associated rare variants. Our own work has shown that
splicing outlier-associated rare variants are also abundant
and can contribute to complex traits.'® Future studies
may benefit from integrating a broader collection of
outlier-associated rare variant effects or outliers from addi-
tional multi-omics phenotypes.

Combined, our study demonstrates utility for the pre-
diction of polygenic traits and diseases with both gene
expression outlier-associated rare variants and PRS.

Data and code availability

GTEx (v8) RNA-seq and WGS data are available from dbGaP
(dbGaP: phs000424.v8.p2). GTEx (v8) eQTL summary statistics
were obtained from the GTEx Portal available at https://
gtexportal.org/home/datasets. UK Biobank (UKB) data were ob-
tained under application number 24983 (PI: Dr. Manuel Rivas).
UKB Phase 2 GWAS summary statistics were obtained from the
Neale Lab server available at http://www.nealelab.is/uk-biobank.
Polygenic risk score (PRS) for body mass index was obtained
from PGS Catalog available at https://www.pgscatalog.org/. Gene
annotation data were obtained from GENCODE (version 19) avail-
able at https://www.gencodegenes.org/human/release_19.html.
Allele frequency data were obtained from gnomAD (version
12.0.2) available at https://console.cloud.google.com/storage/
browser/gnomad-public/release/2.0.2/. The code generated during
this study is available at https://github.com/csmail/iogc.
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Supplemental information can be found online at https://doi.org/
10.1016/j.ajhg.2022.04.015.
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Supplementary Figure 1. A. Distribution of median odds across permutations for selected UKB
phenotypes comparing GWAS effect estimates for outlier-associated variants compared with non-outlier
variants (blue) and non-outlier variants only (gray). P-value from Wilcoxon test. B. Distribution of median
odds across permutations for selected UKB GWAS phenotypes subdivided in to meta-categories (cancer;
disease (non-cancer); treatment/medication) comparing GWAS effect estimates for outlier-associated
variants compared with non-outlier variants (blue) and non-outlier variants only (gray). The analysis was
repeated at more extreme thresholds of outlier gene expression abs(Z-score). P-values from Wilcoxon test.
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Supplementary Figure 2. Rate of concordance between cis-eQTL and outlier-associated variants per
gene, matched on cis-eQTL slope/outlier direction and GWAS effect direction (risk/protective) and stratified
by cis-eQTL GWAS P-Value, number of cis-eQTL variants per gene, and outlier gene expression abs(Z-
score). P-values obtained from Binomial test.
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Supplementary Figure 3. Mean weight (left) and BMI (right) observed in UKB validation cohort across
deciles of a polygenic risk score for BMI.
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Supplementary Figure 4. Linear regression coefficients from a model testing the effect of IOGC score
(blue circle) on BMI in UKB, adjusting for the effects of PRS, sex, age, genotype array, and first 10 principal
components of ancestry (black circles). All predictors were scaled (mean=0 and variance=1) and ordered
by their regression coefficient estimate to aid visual comparison. P-values obtained from linear regression.
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Supplementary Figure 5. A. Incremental R2 for BMI, obesity (BMI>=30 kg/m?) and severe obesity
(BMI>=40 kg/m?) observed when adding IOGC to a regression model controlling for PRS, age, sex,
principal components of ancestry 1-10, and genotyping array in UKB validation cohort. P-values obtained
from ANOVA tests. B. Odds ratios for obesity (BMI>=30 kg/m?), diagnostic history of obesity (ICD-10
code E66), and severe obesity (BMI>=40 kg/m?) comparing individuals in top and bottom 10% of IOGC
score. P-values obtained from Fisher’'s Exact Test. C. IOGC regression coefficients across more extreme
gene expression outlier Z-scores. P-values obtained from linear regression. D. IOGC regression
coefficients for under-expression and over-expression outlier-associated variants. P-values obtained from
linear regression. E. Regression coefficients across two distinct ancestry groups in UKB, directly modeling
the effect of IOGC on BMI in UKB individuals with self-reported African ancestry (N=6,459) (AFR, red)
compared with a matched number of randomly sampled UKB non-British White individuals (EUR, blue).
P-values obtained from linear regression. F. Odds ratios for obesity (BMI>=30 kg/m?) comparing
individuals in top and bottom 10% of IOGC score for same cohorts described in (E.). P-values obtained
from Fisher's Exact Test. G. Age at bariatric surgery for top and bottom 25% of IOGC score among AFR
cohort individuals described in (E.). Crossbars indicate median, error bars indicate 90% of data range. P-
value obtained from T-test.
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Supplemental Figure 6. Age at time pulmonary embolism (left) or stroke (right) was diagnosed for
individuals classified as severely obese (BMI>=40 kg/m?) and in the top or bottom 10% of IOGC score.
Crossbars indicate median, error bars indicate 90% of data range.
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Supplementary Figure 7. A. Mean Incremental R? (%) resulting from adding IOGC to a regression model
predicting BMI and controlling for PRS, age, sex, principal components of ancestry 1-10, and genotyping
array. |IOGC was calculated using outlier-associated (blue) or non-outlier (gray) variants across
permutations of progressively larger gene sets. B. Following the same procedure as in (A.) for missense
variants or PTVs matched on minor allele frequency of outlier-associated variants in intersecting genes.
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Supplementary Figure 8. Mean Incremental R? (%) resulting from adding IOGC to a regression model
predicting BMI and controlling for PRS, age, sex, principal components of ancestry 1-10, and genotyping
array. |IOGC was calculated separately for outlier-associated variants (blue) and PTVs (yellow) across

permutations in the intersecting gene set containing at least one variant from both categories. P-value
obtained from Wilcoxon test.



Table 1. Area under receiver operator curve (AUROC) and area under prediction recall curve (AUPRC)
across covariates-only, covariates+PRS and covariates+PRS+IOGC logistic regression models predicting
obesity, severe obesity and age of onset for bariatric surgery

AUROC AUPRC
Phenotype
Baseline' +PRS +PRS+IOGC | Baseline' +PRS +PRS+IOGC
Obesity 0.5423 0.6575 0.6581 0.2717 0.3769 0.3781
(BMI>=30 kg/m?) (NA) (+21.2%) (+0.09%) (NA) (+38.7%) (+0.28%)
Severe Obesity 0.5870 0.7340 0.7356 0.0269 0.0603 0.0610
(BMI>=40 kg/m?) (NA) (+25.1%) (+0.09%) (NA) (+224.0%) (+1.06%)
Early onset 0.6937 0.6951 0.7415 0.6976 0.7002 0.7135
bariatric surgery? (NA) (+0.21%) (+6.68%) (NA) (+0.37%) (+1.90%)

' Baseline model: obesity = age + sex + PC1...PC10 + genotyping array; bariatric surgery = sex +
PC1...PC10 + genotyping array
2 Binary outcome: age at bariatric surgery <= cohort mean
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