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TOP-LD: A tool to explore linkage disequilibrium
with TOPMed whole-genome sequence data

Le Huang,1,19 Jonathan D. Rosen,2,19 Quan Sun,2,19 Jiawen Chen,2 Marsha M. Wheeler,3 Ying Zhou,4

Yuan-I Min,5 Charles Kooperberg,4 Matthew P. Conomos,6 Adrienne M. Stilp,6 Stephen S. Rich,7

Jerome I. Rotter,8 Ani Manichaikul,7 Ruth J.F. Loos,9,10 Eimear E. Kenny,9 Thomas W. Blackwell,11

Albert V. Smith,11 Goo Jun,12 Fritz J. Sedlazeck,13 Ginger Metcalf,13 Eric Boerwinkle,14 NHLBI Trans-
Omics for Precision Medicine (TOPMed) Consortium, Laura M. Raffield,15 Alex P. Reiner,16,4

Paul L. Auer,17,* and Yun Li2,15,18,*
Summary
Current publicly available tools that allow rapid exploration of linkage disequilibrium (LD) betweenmarkers (e.g., HaploReg and LDlink)

are based on whole-genome sequence (WGS) data from 2,504 individuals in the 1000 Genomes Project. Here, we present TOP-LD, an

online tool to explore LD inferred with high-coverage (�303)WGS data from 15,578 individuals in the NHLBI Trans-Omics for Precision

Medicine (TOPMed) program. TOP-LD provides a significant upgrade compared to current LD tools, as the TOPMedWGS data provide a

more comprehensive representation of genetic variation than the 1000 Genomes data, particularly for rare variants and in the specific

populations that we analyzed. For example, TOP-LD encompasses LD information for 150.3, 62.2, and 36.7 million variants for Euro-

pean, African, and East Asian ancestral samples, respectively, offering 2.6- to 9.1-fold increase in variant coverage compared to

HaploReg 4.0 or LDlink. In addition, TOP-LD includes tens of thousands of structural variants (SVs). We demonstrate the value of

TOP-LD in fine-mapping at the GGT1 locus associated with gamma glutamyltransferase in the African ancestry participants in UK Bio-

bank. Beyond fine-mapping, TOP-LD can facilitate a wide range of applications that are based on summary statistics and estimates of LD.

TOP-LD is freely available online.
Linkage disequilibrium (LD), i.e., the non-random associa-

tion of alleles at different variant sites in a given popula-

tion, is an important genetic phenomenon. Patterns of

LD between genetic markers can be leveraged to gain in-

sights in a variety of different applications, from popula-

tion genetic research to disease association studies.1,2

With the growth of whole-genome sequencing (WGS)

and high-throughput array and genotype imputation tech-

nologies, resources for calculating LD across populations

have expanded to encompass multiple populations at

variant sites with increasingly rare frequencies.3-6 Due to

the centrality of LD in a host of applications, multiple tools

exist for querying LD between genetic markers in different

populations. The current most widely used LD lookup

tools, HaploReg7 and LDlink,8 base their LD estimates on

the 1000 Genomes data. Specifically, HaploReg uses phase
1Curriculum in Bioinformatics and Computational Biology, University of No

Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 2759

tle, WA 98105, USA; 4Division of Public Health Sciences, Fred Hutchinson Ca

University ofMississippiMedical Center, Jackson,MS 39216, USA; 6Departmen

for Public Health Genomics, Department of Public Health Sciences, University

tute for Translational Genomics and Population Sciences, Department of Pedi

Medical Center, Torrance, CA 90502, USA; 9The Charles Bronfman Institute

York City, NY 10029, USA; 10Novo Nordisk Foundation Center for Basic Metab

hagen, 2200 Copenhagen, Denmark; 11TOPMed Informatics Research Center,

USA; 12Human Genetics Center, School of Public Health, The University of Te

Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030,

netics, and Environmental Sciences, School of Public Health, The Universit
15Department of Genetics, University of North Carolina at Chapel Hill, Chape

ington, Seattle, WA 98195, USA; 17Division of Biostatistics, Institute for Health

WI 53226, USA; 18Department of Computer Science, University of North Caro
19These authors contributed equally

*Correspondence: pauer@mcw.edu (P.L.A.), yunli@med.unc.edu (Y.L.)

https://doi.org/10.1016/j.ajhg.2022.04.006.

The America

� 2022 The Authors. This is an open access article under the CC BY license (h
1 and LDlink uses phase 3 1000 Genomes data. Although

the 1000 Genomes data contains LD information on

>99% of genetic markers with minor allele frequency

(MAF) > 1% in a variety of populations,4 there remains a

dearth of publicly available information on LD between

markers withMAF< 1%.We have created a new LD lookup

tool (called ‘‘TOP-LD’’), in the spirit of HaploReg and

LDlink, that is based on deep (303) WGS data from the

NHLBI Trans-Omics for Precision Medicine (TOPMed) Pro-

gram. Because the TOPMed data contain much larger sam-

ple sizes with greater depth of sequencing than the 1000

Genomes project, TOP-LD provides a significant upgrade

in LD information availability, specifically by including

single-nucleotide variants and small indels (referred to

hereafter simply as ‘‘SNVs’’) with MAF < 1% as well as

structural variants (SVs). Here, we describe the data and
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Figure 1. Number of variants included in TOP-LD
(A) Comparison of autosomal variants with HaploReg 4.0 by population. Blue bars on the left show total number of autosomal variants
in HaploReg4.0. Green and red indicate common (MAF R 1%) and uncommon (MAF < 1%) autosomal variants in TOP-LD. Note that
HaploReg4.0 provides LD for ASN (Asian) with no separate information for EAS and SAS. Therefore, we used the same 13.7 million ASN
variants for comparison in both EAS and SAS.
(B) Number of autosomal variants in TOP-LD breaking down by LD R2 threshold. Themajority of the variants have at least one LD proxy
with R2 R 0.8.
(C) Number of chrX variants in TOP-LD breaking down by LD R2 threshold.
(Note: LD information downloaded from HaploReg4.0 does not contain chromosome X. Therefore, we compared TOP-LD with Hap-
loReg4.0 only for autosomal variants).
methods that went into creating TOP-LD along with spe-

cific examples of how TOP-LD can provide essential infor-

mation that is missed by HaploReg and LDlink.

We used TOPMedWGS data6 from the following four co-

horts: BioMe Biobank (BioMe), the Multi-Ethnic Study of

Atherosclerosis (MESA), the Jackson Heart Study (JHS),

and the Women’s Health Initiative (WHI). We aimed to

provide LD estimates for genetically homogeneous groups

of individuals from one of the following four ancestral

populations: European (EUR), African (AFR), East Asian

(EAS), and South Asian (SAS). To select appropriate sam-

ples, we first inferred local and global ancestry for all partic-

ipants in these four cohorts by using RFMix,9 with refer-

ence populations including five ancestral groups, namely

African, Native American, East Asian, European, and South

Asian. After local ancestry inference, we then retained only

TOPMed samples with >90% estimated ancestry from a

single population, as estimated via RFMix. We further

removed related individuals by using a stringent kinship
1176 The American Journal of Human Genetics 109, 1175–1181, Jun
coefficient threshold of 2�5.5 obtained via PC-Relate.10

This threshold of 2�5.5 removes pairs within as far as fifth

degree relationship. The final dataset included 1,335 unre-

lated individuals of African, 844 of East Asian, 13,160 of

European, and 239 of South Asian ancestry for pairwise

LD inference. Regarding variants, we started with all

TOPMed freeze 8 polymorphic variants that passed quality

control and retained multi-allelic variants or multiple

entries at the same position, resulting in a total of

23.0–153.0 million SNVs in each of the ancestral groups

(Figure 1A, Table S1).

We inferredLDseparatelywithin eachof the four ancestral

groups, for all pairs ofvariantswithin1Mbof eachother, and

retained LD pairs meeting a minimum R2 threshold of 0.2.

The reported R2 between two variants is the squared Pearson

correlation coefficient between their phased haplotypes,

wherephasingwas performedwithEagle 2.4 for all polymor-

phic variants, similar to phasing of the freeze 5 data.6 No

minimum minor allele count thresholding was used, that
e 2, 2022



Table 1. Summary of SVs by population

Population Number of SVs Number of SVs in LD w/SNVsa Number of SVs with MAF < 0.01

EUR 79,004 16,301 69,011

AFR 44,859 15,151 27,978

SAS 16,511 10,392 7,292

EAS 20,789 7,498 12,902

aNumber of SVs having at least one SNV LD tag with R2 R 0.8.
is, even singletons in our sample were included in LD calcu-

lations. We also report the direction of each association as

either positive (þ) or negative (�) on the basis of the sign

of the Pearson correlation coefficient between the corre-

sponding pair of reference (REF) alleles. In addition to R2,

we also report D-prime statistics for each pair of variants

meeting the R2 of 0.2.

We filtered chromosome X to exclude the pseudo-auto-

somal regions: PAR1 (bp 10,001–2,781,479, GRCh38) and

PAR2 (bp 155,701,383–156,030,895, GRCh38). Variants

that were not coded as homozygous in the males were

excluded from the LD calculations. We inferred LD for

the remaining variants by using a total of 2F þ M haplo-

types, where F and M are the numbers of females and

males, respectively.

The TOPMed structural variant (SV) call-set freeze 1 was

merged with a reduced TOPMed SNV call-set where SNVs

with MAF < 0.1% were filtered out before merging, and

then the merged SV-SNV dataset was phased with Eagle2.11

SVs with>10%missingness were removed prior to phasing.

For each ancestry group, we included 16.5–79K SVs (dele-

tions, duplications, and inversion) with the majority being

lower frequency (e.g., 7–69K with MAF < 1%) (Table 1). LD

values were subsequently estimated as the squared Pearson

correlation coefficient between the corresponding pair of

phased alleles.

TOPMed LD information was then loaded into the TOP-

LDwebsite, which is powered by a combination ofMySQL,
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PHP, Javascript, and Apache2 under the CloudSQL and

Compute Engine of Google Cloud Platform. The web inter-

face provides access to all precomputed LD estimates. Users

have the option to either paste or upload a file containing

variant(s) of interest. Users can specify the population (East

Asian, European, African, or South Asian) in which LD was

estimated. In TOP-LD, markers are identified by rsID, or

chr:position, or chr:position:REF:ALT for SNVs, or

TOPMed variant names for SVs (in the format of DEL/

DUP/INV_chr:startPosition-endPosition, for example,

DEL_10:85001–97300). TOP-LD returns all variants within

a pre-specified LD threshold (ranging from R2 values of 0.2

to 1.0) with the query variant. TOP-LD supports fast batch

queries (Figure 2); querying a single variant takes �0.5 s,

while a batch query of 500 variants takes �2.3 seconds.

TOP-LD currently allows a maximum of 500 variants in

one query.

After submitting the query, the website auto-directs to a

result page that contains two parts: LD information on the

top panel and variant information on the bottom panel.

The latter provides basic information for the queried vari-

ants, including position, marker name, alleles (REF and

ALT), and minor allele frequency (MAF). Markers not in

the database will have ‘‘none’’ for all fields except marker

names. The LD panel displays related LD metrics, one

pair of variants on each line, including both R2, D0, and
the sign of LD (measured between REF alleles of the two

variants), along with marker name, marker position,
1000

Figure 2. Elapsed time (in seconds) for
queries
The x axis represents the number of variants
queried, and the y axis represents the
elapsed time.
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Figure 3. An example query result
The result contains two parts. The top part ‘‘LD information from AFR’’ shows the LD information where each line provides information
between a query variant (rsID1) and one of its corresponding LD proxies (rsID2). The bottom part ‘‘variant information from AFR’’ pro-
vides variant information, which shows basic information for each query variant. From the bottom part, we know that the user’s query
includes four variants: rs334, rs8008208820, rs2462498, and rs12219304. Variants not included in LD calculation will have ‘‘none’’ re-
cords. For instance, rs8008208820 in this example query is not involved in LD inference and therefore will not have any LD proxies in
the top part simply because of no data. Records from SV inference are in blue and those from SNV data are in orange. Some variants may
appear twice because they are included in both SNV LD calculation and SV calculation. For example, in this example, rs12219304 ap-
peared twice with MAF 0.0558 from the SNV source (second last record in orange) and MAF 0.0543 from the SV source (last record in
blue).
alleles, and frequency for both variants in the pair

(Figure 3). In addition, we provide the following pieces of

information for SNVs from WGSA annotation12: CADD

score (phred-scaled), fathmm_XF_coding_or_noncoding

classification, FANTOM5 enhancer annotations, gene

name, and relative location to gene as well as a link to

GWAS catalog query results.13 For SVs, we provide a variety

of annotations including gene(s) overlapping the SV, the

SV’s location relative to gene, the gene’s pLI score, overlap-

ping candidate cis-regulatory regions (cCREs) from

ENCODE SCREEN.14,15 The query results can be sorted,

searched, copied, exported, and printed for further

analyses.

The TOP-LD tool leverages TOPMed WGS data, whose

much larger sample size and high depth sequencing lead

to LD information for a much larger number of variants

compared to the 1000 Genomes Project. As shown in

Figure 1A and Table S1, TOP-LD offers 2.6- to 9.1-fold in-

crease in variant coverage compared to the other state-of-

the-art resources such as HaploReg 4.0 or LDlink. For

example, for the European population, TOP-LD includes

146.5 million autosomal SNVs, while HaploReg 4.0 or

LDlink contains 16.1 million variants. Not surprisingly,
1178 The American Journal of Human Genetics 109, 1175–1181, Jun
the vast majority of the variants in TOP-LD that are not

in 1000 Genomes, contributing to the up to 9.13 increase,

are low frequency or rare. For example, out of the 146.5

million autosomal SNVs cataloged in the TOP-LD Euro-

pean population, 137.8 million have MAF < 0.01

(Figure 1A, Table S1). Most of the variants have LD proxies.

For example, 115.1 out of the 146.5 (78.6%) million auto-

somal variants have at least one LD tag with R2R 0.8 and if

we further relax the R2 threshold to 0.5 and 0.2, the num-

ber increases to 135.3 (92.4%) and 143.5 (98.0%), respec-

tively (Figure 1B).

For chromosome X, we have included 6.5 million, 2.4

million, 1.3 million, and 760,000 variants for the Euro-

pean, African, East Asian, and South Asian populations,

respectively (Table S1). Similar to the autosomal variants,

the majority of these variants have at least one LD proxy

with R2 R 0.8: 5.1 million, European; 2.1 million, African;

1.2 million East Asian; 690,000, South Asian (Figure 1C,

Table S2).

To evaluate the consistency between TOP-LD estimates

and those from Haploreg v4.1, we collected the set of over-

lapping variants based on rsID with MAF R 0.05 for Euro-

peans and Africans. This set of variants was further filtered
e 2, 2022



Table 2. Summary statistics of distinct working truth at GGT1 locus associated with gamma glutamyltransferase

Signal Variant Position (hg38) Effect allele Unconditional p value p value conditional on previous signalsa Effect allele frequency

1 rs4049904 24609759 G 2.82e�61 N/A 10.27%

2 rs73404962 24598530 G 4.46e�29 2.00e�36 5.63%

3 rs743369 24588099 A 9.94e�36 7.51e�27 11.94%

4 rs6004193 24598329 C 4.23e�41 3.25e�19 18.27%

5 rs57719575 24609020 C 3.97e�38 1.98e�24 14.86%

6 rs3876101 24607291 A 2.66e�15 1.17e�13 35.45%

7 rs116161010 24585912 T 5.69e�17 7.70e�9 7.13%

aThe p values are reported from the sequential conditional analysis. For example, we report the p value for rs73404962 conditional on rs4049904, the p value of
rs743369 conditional on both rs4049904 and rs73404962, and so forth.
such that the MAF values were within 10% of each other

because large MAF differences would induce large LD dif-

ferences. Figures S1 and S2 show high level of agreement

between TOP-LD and Haploreg v4.1 LD estimates (e.g.,

Pearson correlation ¼ 0.972 and 0.962 for European and

African chromosome 1, respectively). Similarly, compari-

son of the chromosome X TOP-LD estimates for females

and males again show high level of consistency (Pearson

correlation ¼ 0.992 and 0.975 for European and African

population, respectively) (Figures S3 and S4).

To demonstrate the utility of TOP-LD, we performed

fine-mapping at the GGT1 locus on chromosome 22,

which is known to be associated with gamma glutamyl-

transferase.16 We performed sequential conditional anal-

ysis with EPACTS17 by using individual-level data among

8,768 UK Biobank participants of African ancestry

following the same strategy in our previous work18 adjust-

ing for the same covariates as in Sun et al.19 The sequential

conditional analyses with individual-level data identified

seven distinct signals at the GGT1 locus associated with

gamma glutamyltransferase (Table 2). Because we used in-

dividual-level data for this conditional analysis, we consid-

ered these seven distinct signals to be the ‘‘working truth.’’

We then carried out fine-mapping analysis with the

FINEMAP method20 by using only GWAS summary statis-

tics from Sun et al.19 We applied FINEMAP with an LD

reference either from TOP-LD or from the 1000 Genomes

Project and assessed the performance by comparing the re-

sults with ‘‘working truth’’ established from the sequential

conditional analysis of the individual-level data.
Table 3. FINEMAP credible-set variants

Variant 1 Variant 2

1000G reference credible-set variant rs4049904 rs147866692

LD with working
truth

1 (w/rs4049904
itself)

0.464 (w/
rs4049904)

TOP-LD
reference

credible-set variant rs4049904 rs743369

LD with working
truth

1 (w/rs4049904
itself)

1 (w/rs743369
itself)

The two five-variant credible sets provided by FINEMAP with either 1000G or TOP
(and the LD Rsq) from the working truth that has the highest LD.

The America
FINEMAP produced 95% credible sets containing five

variants when using either the 1000 Genomes (1000G)

Project LD panel or the TOP-LD panel (see Table 3). How-

ever, the 1000G-based credible set contained only one of

the seven signals from the ‘‘working truth’’ set. In contrast,

the TOP-LD-based credible set contained three of the seven

signals from the ‘‘working truth’’ set. In addition, because

the lead variant from each conditional analysis (corre-

sponding to each distinct signal) is selected somewhat arbi-

trarily, we also considered their LD proxies. When we

considered any LD proxy (using a lenient R2 threshold of

0.2) of a variant in the working truth set, the 1000G-based

results still only identified a single signal from the working

truth, whereas the TOP-LD-based results identified four of

the seven signals (Table 3).

We also used TOP-LD to aid in the identification and pri-

oritization of potentially causal structural variants at

GWAS loci. For example, our recent association analysis21

with TOPMed data identified an African-specific (MAF ¼
0.129) variant rs28450540 associated with lowermonocyte

count (p¼ 3.653 10�17). Query for LD tags via TOP-LD re-

vealed a�600 bp deletion near S1PR3 in perfect LD (R2¼ 1)

with rs28450540 in the African population. We performed

genome editing in monocytic and primary human HSPCs

followed by xenotransplantation, which provides evi-

dence that the deletion disrupts an S1PR3 monocyte

enhancer leading to decreased S1PR3 expression. These

preliminary data from functional experiments suggest

that the 600 bp deletion is most likely casual but would

have been missed in standard association analysis with
Variant 3 Variant 4 Variant 5

rs570263050 rs115231893 22:24649848:G:A
(hg38)

0.606 (w/rs4049904) 0.275 (w/
rs4049904)

0.434 (w/rs4049904)

rs57719575 rs2073397 rs5751902

1 (w/rs57719575
itself)

0.83 (w/rs6004193) 0.51 (w/rs6004193)

-LD as reference. For each credible-set variant, we list the corresponding variant

n Journal of Human Genetics 109, 1175–1181, June 2, 2022 1179



only SNVs.22 TOP-LD offers a simple and efficient

approach to rescue such putative causal structural variants.

LD information, reflecting recombination, natural selec-

tion, and demographic history, has always been of intense

interest in population genetics and complex trait associa-

tion studies. LD information is also indispensable for a

wide range of other applications, including GWAS

follow-up and many summary-statistics-based inferences

including fine-mapping, imputation of association sum-

mary statistics, construction of polygenic risk scores

(PRSs), and interpretation and prioritization of GWAS re-

sults for further functional and clinical studies. TOP-LD

significantly boosts the coverage of lower frequency vari-

ants by harnessing the power of high-coverage (�303)

WGS data of over 15,000 individuals primarily of a single

continental ancestry. We demonstrate the utility of TOP-

LD in fine-mapping at the GGT1 locus and variant prioriti-

zation at the S1PR3 locus. The LD information provided by

TOP-LD will facilitate a range of essential inferences for

common and rare variation across a diverse range of

populations.
Data and code availability

Data generated for this study can be accessed via the TOP-LD web

portal: http://topld.genetics.unc.edu.
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Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2022.04.006.
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Supplementary Figures 
 
 

 
 
Figure S1: Smooth scatter plot of LD R-squared values from TOP-LD (x-axis) and Haploreg (y-
axis) for pairs of variants with MAF>5% on chromosome 1 in European populations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S2: Smooth scatter plot of LD R-squared values from TOP-LD (x-axis) and Haploreg (y-
axis) for pairs of variants with MAF>5% on chromosome 1 in African populations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

 
 
Figure S3: Hexbin plot of LD R-squared values between males (x-axis) and females (y-axis) 
between pairs of variants with MAF>5%, not in PAR1 or PAR2, on chromosome X in European 
populations.  
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S4: Hexbin plot of LD R-squared values between males (x-axis) and females (y-axis) 
between pairs of variants with MAF>5%, not in PAR1 or PAR2, on chromosome X in African 
populations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Tables 

 

Table S1: Summary of SNVs and small indels by population by MAF. 

Population 
#TOP-LD variantsa (MAF 

>0) in millions (chrXb) 
#TOP-LD variantsa (MAF <1%) 

in millions (chrXb) 
#autosomalc variants in HaploReg4.0 

in millions 

EUR 153.0 (6.5) 144.0 (6.2) 16.1 

AFR 62.2 (2.4) 46.2 (1.8) 25.4 

SAS 23.0 (0.8) 13.3 (0.5) 
13.7d 

EAS 36.7 (1.3) 28.6 (1.1) 

a: number of unique variants, genome-wide (including autosomes and chromosome X)  
b: number of unique variants on chromosome X 
c: based on HaploReg LD information downloaded from 
https://pubs.broadinstitute.org/mammals/haploreg/data/, which does not contain chromosome X.  
d: HaploReg4.0 provides LD for ASN (Asian), with no separate information for SAS and EAS.  
 

Table S2. Summary of SNVs and small indels by population by varying LD R2 thresholds 

Population 
#variantsa (R2≥0.2), 
in millions (chrXb) 

#variantsa (R2≥0.5), 
in millions (chrXb) 

#variantsa (R2≥0.8) in 
millions (chrXb) 

EUR 149.8 (6.3) 141.2 (5.9) 120.2 (5.1) 

AFR 62.2 (2.4) 60.0 (2.3) 53.7 (2.1) 

SAS 23.0 (0.8) 21.7 (0.7) 20.4 (0.7) 
EAS 36.6 (1.3) 35.0 (1.3) 31.8 (1.2) 

a: number of unique variants, genome-wide (including autosomes and chromosome X) from LD 
pairs with R2 ≥ a certain threshold 
b: number of unique variants on chromosome X 

 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Methods 
 
TOPMed samples  
 
NHLBI’s TOPMed program is comprised of many parent studies, including four ancestrally 
diverse studies that contributed to our analyses including BioMe Biobank (BioMe)[1], Jackson 
Heart Study (JHS)[2, 3], Multi-Ethnic Study of Atherosclerosis (MESA)[4], and Women’s Health 
Initiative (WHI) [5]. Additional information about the design of each study and the sampling of 
individuals within each cohort for WGS is available in the Cohort Descriptions section below. All 
studies were approved by the appropriate institutional review boards (IRBs), and informed 
consent was obtained from all participants.  
 
TOPMed whole genome sequencing and quality control 
 
WGS was performed at an average depth of 38X by six sequencing centers (Broad Genomics, 
Northwest Genome Institute, Illumina, New York Genome Center, Baylor, and McDonnell 
Genome Institute) using Illumina X10 technology and DNA from blood. Here we report analyses 
from the ‘Freeze 8’ dataset where reads were aligned to human-genome build GRCh38 using a 
common pipeline across all sequencing centers. To perform variant quality control (QC) within 
the ‘Freeze 8’ dataset, a support vector machine (SVM) classifier was trained on known variant 
sites (positive labels) and Mendelian inconsistent variants (negative labels). Further variant 
filtering was done for variants with excess heterozygosity and Mendelian discordance. Sample 
QC measures included: concordance between annotated and inferred genetic sex, concordance 
between prior array genotype data and TOPMed WGS data, and pedigree checks. Details 
regarding the genotype ‘freezes,’ laboratory methods, data processing, and quality control are 
described on the TOPMed website and in a common document accompanying each study’s 
dbGaP accession. 
 
TOPMed structural variant calling and quality control 
 
TOPMed structural variation (SV) callset release 1 was generated by Parliament2-muCNV 
pipeline across 138,134 multi-ethnic TOPMed WGS samples. The sample list overlaps largely 
with ‘Freeze 8’ callset except for the samples removed due to SV specific quality control issues. 
Parliament2 [6] is a multi-tool SV discovery pipeline that employs SV callers that have strengths 
in different SV types and sizes to maximize the detection sensitivity and accuracy. SVs detected 
by individual tools are then merged first across the callers and then across the samples using 
SURVIVOR [7] to generate a ‘discovery’ SV callset. The ‘discovery’ set is then genotyped and 
filtered by muCNV, a multi-sample SV genotyping software that performs joint genotyping based 
on multi-sample statistics across >100,000 samples [8]. Joint genotyping removes false 
discoveries by evaluating cluster separations using multi-sample distribution of read pair, split 
read, soft clips, and GC-corrected sequencing depth distributions. Parliament2, SURVIVOR, 
and muCNV are available for public access on GitHub:  
https://github.com/slzarate/parliament2 
https://github.com/fritzsedlazeck/SURVIVOR  



https://github.com/gjun/muCNV   
 
Analysis of Admixture  
 
For RFMix inference, we combined samples with Native American ancestry in the  Human 
Genome Diversity Project (HGDP) [9] and samples with African, East Asian, European and 
South Asian ancestries in the 1000 Genomes Project (1000G) [10]. We first retained variants 
that are available both in HGDP and in 1000G, then performed LD pruning using PLINK [11] 
with R2 threshold of 0.01. ADMIXTURE [12] global ancestry analysis for HGDP samples 
identified 92 Native American samples with ≥90% Native American ancestry. To attain balanced 
sample size recommended for RFMix inference, we randomly selected 92 samples from each 
ancestry in the 1000G dataset.  
 
Cohort Descriptions 
 
BioMe 
 
The Charles Bronfman Institute for Personalized Medicine at Mount Sinai Medical Center 
(MSMC), BioMe Biobank, founded in September 2007, is an ongoing, broadly-consented 
electronic health record-linked clinical care biobank that enrolls participants non-selectively from 
the Mount Sinai Medical Center patient population. The MSMC serves diverse local 
communities of upper Manhattan, including Central Harlem (86% African American), East 
Harlem (88% Hispanic/Latino), and Upper East Side (88% Caucasian/White) with broad health 
disparities.  
 
JHS 
 
The Jackson Heart Study (JHS, https://www.jacksonheartstudy.org/jhsinfo/) is a large, 
community-based, observational study whose participants were recruited from urban and rural 
areas of the three counties (Hinds, Madison and Rankin) that make up the Jackson, MS 
metropolitan statistical area (MSA).  Participants were enrolled from each of 4 recruitment pools: 
random, 17%; volunteer, 30%; currently enrolled in the Atherosclerosis Risk in Communities 
(ARIC) Study, 31% and secondary family members, 22%.  Recruitment was limited to non-
institutionalized adult African Americans 35-84 years old, except in a nested family cohort where 
those 21 to 34 years of age were also eligible. The final cohort of 5,306 participants included 
6.59% of all African American Jackson MSA residents aged 35-84 during the baseline exam (N-
76,426, US Census 2000). Among these, approximately 3,700 gave consent that allows genetic 
research and deposition of data into dbGaP. Major components of three clinic examinations 
(Exam 1 – 2000-2004; Exam 2 – 2005-2008; Exam 3 – 2009-2013) include medical history, 
physical examination, blood/urine analytes and interview questions on areas such as: physical 
activity; stress, coping and spirituality; racism and discrimination; socioeconomic position; and 
access to health care. A fourth exam is ongoing. Extensive clinical phenotyping includes 
anthropometrics, electrocardiography, carotid ultrasound, ankle-brachial blood pressure index, 
echocardiography, CT chest and abdomen for coronary and aortic calcification, liver fat, and 



subcutaneous and visceral fat measurement, and cardiac MRI. At 12-month intervals after the 
baseline clinic visit (Exam 1), participants have been contacted by telephone to: update 
information; confirm vital statistics; document interim medical events, hospitalizations, and 
functional status; and obtain additional sociocultural information. Questions about medical 
events, symptoms of cardiovascular disease and functional status are repeated annually. 
Ongoing cohort surveillance includes abstraction of medical records and death certificates for 
relevant International Classification of Diseases (ICD) codes and adjudication of nonfatal events 
and deaths. CMS data are currently being incorporated into the dataset. 
 
MESA 
 
The MESA study is a study of the characteristics of subclinical cardiovascular disease (disease 
detected non-invasively before it has produced clinical signs and symptoms) and the risk factors 
that predict progression to clinically overt cardiovascular disease or progression of subclinical 
disease. MESA researchers study a diverse, population-based sample of 6,814 asymptomatic 
men and women aged 45-84. Thirty-eight percent of the recruited participants are white, 28 
percent African-American, 22 percent Hispanic, and 12 percent Asian, predominantly of 
Chinese descent. Participants were recruited from six field centers across the United States: 
Wake Forest University, Columbia University, Johns Hopkins University, University of 
Minnesota, Northwestern University and the University of California - Los Angeles.  
 
WHI 
 
The Women’s Health Initiative (WHI) is a long-term, prospective, multi-center cohort study that 
investigates post-menopausal women’s health 8. WHI was funded by the National Institutes of 
Health and the National Heart, Lung, and Blood Institute to study strategies to prevent heart 
disease, breast cancer, colon cancer, and osteoporotic fractures in women 50-79 years of age. 
WHI involves 161,808 women recruited between 1993 and 1998 at 40 centers across the US. 
The study consists of two parts: the WHI Clinical Trial which was a randomized clinical trial of 
hormone therapy, dietary modification, and calcium/Vitamin D supplementation, and the WHI 
Observational Study, which focused on many of the inequities in women’s health research and 
provided practical information about the incidence, risk factors, and interventions related to 
heart disease, cancer, and osteoporotic fractures.  
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