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ARTICLE

Meta-imputation: An efficient method
to combine genotype data after imputation
with multiple reference panels

Ketian Yu,1,* Sayantan Das,1,2 Jonathon LeFaive,1 Alan Kwong,1 Jacob Pleiness,1 Lukas Forer,3

Sebastian Schönherr,3 Christian Fuchsberger,1,3,4 Albert Vernon Smith,1 and Gonçalo Rocha Abecasis1,5
Summary
Genotype imputation is an integral tool in genome-wide association studies, in which it facilitates meta-analysis, increases power, and

enables fine-mapping. With the increasing availability of whole-genome-sequence datasets, investigators have access to a multitude of

reference-panel choices for genotype imputation. In principle, combining all sequenced whole genomes into a single large panel would

provide the best imputation performance, but this is often cumbersome or impossible due to privacy restrictions. Here, we describemeta-

imputation, a method that allows imputation results generated using different reference panels to be combined into a consensus

imputed dataset. Our meta-imputation method requires small changes to the output of existing imputation tools to produce necessary

inputs, which are then combined using dynamically estimated weights that are tailored to each individual and genome segment. In the

scenarios we examined, the method consistently outperforms imputation using a single reference panel and achieves accuracy compa-

rable to imputation using a combined reference panel.
Introduction

Genotype imputation, which uses a reference panel of

sequenced genomes to estimate unobserved genotypes

for samples with sparse microarray data, has been widely

used to infer genotypes in genome-wide association

studies (GWASs).1–3 Genotype imputation helps improve

power for detecting association signals, facilitates meta-an-

alyses, and enables fine-mapping.4,5

Over the last decade, large-scale whole-genome-

sequencing projects such as 1000 Genomes (1000G),6

Haplotype Reference Consortium (HRC),7 and the Trans-

Omics for Precision Medicine (TOPMed) Program8 have

produced reference panels that include progressively

larger numbers of samples. The successive increase in

reference-sample size captures more rare variants and pro-

vides higher-resolution mapping in association studies.

Although these widely used panels have been steadily

increasing in resolution and accuracy, particularly in Euro-

pean-ancestry samples, the optimal choice of panel is often

challenging for other ancestries (for example, the smaller

1000G reference panel sometimes outperforms the larger

HRC panel in samples of South Asian ancestry5,8). Further-

more, when imputing samples within a specific study pop-

ulation, smaller customized reference panels exist as alter-

natives to these widely used public panels and might yield

even better imputation quality.9,10 Examples in which us-

ing these customized reference panels can often provide

higher accuracy include ongoing studies in Sardinia,11

Finland,12 Norway,13 and Iceland,14 among many others.
1Department of Biostatistics, University of Michigan, Ann Arbor, MI 48105, U

ology, Department of Genetics and Pharmacology, Medical University of Inns

39100 Bolzano/Bozen, Italy; 5Regeneron Pharmaceuticals Inc., Tarrytown, NY

*Correspondence: yukt@umich.edu

https://doi.org/10.1016/j.ajhg.2022.04.002.

The America

� 2022 American Society of Human Genetics.
Unfortunately, these customized reference panels may

miss rare variants and haplotypes that could be covered

by larger panels and may perform poorly for individuals

with unique ancestry. Therefore, it is desirable to utilize ge-

netic information from both customized panels and large-

scale panels.15

An ideal solution is to construct a combined reference

panel. However, different studies tend to use different

variant-calling and filtering strategies, which can make it

challenging to merge sequencing data.8,16 It is desirable

to consider the union set of variants across studies to use

as much of the available information as possible. The

gold-standard method to address such discrepancies be-

tween multiple datasets is to jointly call variants from all

samples using their original sequence alignment files,

which is a highly computationally intensive task. A rela-

tively simple substitute for joint variant calling is cross-

imputation, in which datasets are used as reference panels

for each other and reciprocally imputed up to the union set

of variants.17 Furthermore, another important concern is

data-sharing restrictions. For example, individual-level ge-

notype data in many reference panels are not publicly

available; it may thus be impossible to directly merge

them with other sequencing datasets.

In this paper, we introduce the idea of meta-imputation.

Instead of combining the reference panels before imputa-

tion, we first impute using different reference panels sepa-

rately and then combine the imputed results into a

consensus dataset. By doing so, we can avoid accessing

individual-level genotype data of the reference-panel
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Figure 1. An illustration of leave-one-out
imputation
(A–C) LOO imputation on a small chunk of
six genotype markers using reference panel
#1 and reference panel #2 is illustrated in
(A) and (B), respectively. The target haplo-
type is genotyped at three markers (1, 3,
6). During the LOO imputation procedure,
one marker was masked at a time, denoted
as ‘‘?’’ The figure simplifies the HMM pro-
cedure to estimating LOO results based on
exact matching according to the unmasked
markers (an HMM is used in the actual algo-
rithm). For example, when performing LOO
imputation using reference panel #1, we
first masked the observed allele ‘‘A’’ at
marker 1 and found five haplotype matches
(shaded in blue) based on marker 3 and
marker 6. The alleles from the five matches
atmarker 1 were AAAAC, which suggested a
result of ‘‘A’’ with probability 0.8. Thus we
determined that the probabilities of
observing the true allele at markers 1, 3,
and 6 were, respectively, 0.8, 1.0, and 0.8
from panel #1 and 0.3, 0.2, and 0.3
from panel #2. These were compared in
(C) along with LOO results at other geno-
typed markers. Panel #1 was more accurate
than panel #2 at the beginning but less ac-
curate at the end, so ideally the weight on
panel #1 should be high at the beginning
and low at the end.
samples and achieve the goal of improving imputation ac-

curacy by incorporating genetic information from multi-

ple sources.
Material and methods

Meta-imputation consists of two separate steps (Figure S1). First,

we impute our target samples against two or more different refer-

ence panels. Then, we combine the imputation results using

weights that are guided by the empirical performance of each of

the panels in stretches of each individual genome. The meta-

imputed result at each marker is then a weighted average of the
1008 The American Journal of Human Genetics 109, 1007–1015, June 2, 2022
estimated allele counts from imputation

against each panel. The weights are indi-

vidual and region specific and reflect that

the optimal choice of reference panel

varies along the genome. Weights for

each region and individual are estimated

through a hidden Markov model (HMM).

Leave-one-out imputation
To determine the optimal weights for each

reference panel along the genome, we need

to evaluate the performance of each panel

along each imputed haplotype. Theoreti-

cally, if we knew the true genotype of the

target haplotype at a marker, we could

quantify the imputation accuracy at that

marker by comparing the true genotype
with the imputed haploid dosage. In practice, we mimic this

approach by leave-one-out (LOO) imputation, in which each gen-

otyped marker is masked and imputed in turn.

Our innovation is to use the genotypedmarkers in each genome

to estimate these local weights for each individual. We do this by

masking each observed genotype in turn and then trying to

impute it based on information at flanking markers. We call the

imputed results from this procedure LOO dosages. We evaluate

local imputation performance for each reference panel by

comparing the LOO dosages and the original genotypes at the

masked sites, and we assign local weights accordingly.

Figures 1A and 1B illustrate a simplified version of the LOO

imputation algorithm using two reference panels. For easier



understanding, we simplified HMM to estimation based on exact

matching haplotypes. The target haplotype is genotyped at three

markers (1, 3, and 6). First, wemasked the observed allele at marker

1 and searched for matching haplotypes based on marker 3 and

marker 6. According to thematching reference haplotypes (shaded

in blue), the probability of observing ‘‘A’’ was 0.8 from panel #1

and 0.3 from panel #2. Similarly, we could obtain the LOO results

at other genotyped markers. Figure 1C compares the LOO results

from the two reference panels along the genome: panel #1 was

more accurate at the beginning and panel #2 was more accurate

at the end of the chunk, so in the weight-estimation process, we

would assign panel #1 high weights at the beginning and low

weights at the end of the chunk. Our expectation is that such

weights will improve imputation at ungenotyped markers.

In practice, the LOO imputation utilizes the sameMarkov chain

as the regular imputation, and the only difference in the model

lies in the genotype-emission probability at the masked marker.

Let Am denote the observed allele at marker m in the target haplo-

type, Hm denote the reference haplotype template at marker m,

andM denote the number of markers. In the HMM for the regular

imputation, the probability of the underlying template at marker

m is given in Equation 1.

PðHmjA1;.;AMÞfPðAmjHmÞLmðHmÞRmðHmÞ; (Equation 1)

where Lmð ,Þ and Rmð ,Þ denote the left probability and right prob-

ability for the haplotype template at markerm, as defined in Equa-

tions 2 and 3, respectively.
LmðHmÞ ¼

(
1 ; m ¼ 1X
Hm�1

Lm� 1ðHm�1ÞPðAm� 1jHm�1ÞPðHm�1jHmÞ; 1 < m%M (Equation 2)

RmðHmÞ ¼
� X

Hmþ1

Rmþ1ðHmþ1ÞPðAmþ1jHmþ1ÞPðHmþ1jHmÞ; 1%m < M

1 ; m ¼ M

(Equation 3)
Assume that the genotype at markerm is observed. When calcu-

lating the LOO dosage for marker m, the observed genotype is

masked and handled as if it were unknown. Hence, the corre-

sponding genotype emission probability PðAmjHmÞ is set to 1,

whereas other components in Equation 1 remain the same as in

the regular imputation, which yields the LOO posterior probabil-

ity ~PðHmjA1;.;AMÞfLmðHmÞRmðHmÞ. Let Y1;.;YN denote all the

haplotypes in the reference panel and Yn;m denote the alternative

allele count at marker m of reference haplotype Yn, then the LOO

dosage at marker m is represented as:

dm ¼
XN

n¼1
Yn;m 3 ~PðHm ¼ YnjA1;.;AMÞ: (Equation 4)

The LOO imputation is a built-in feature in the latest version of

ourMinimac4 imputation software,18 which runs at the same time

of regular imputation with minimal additional computational

cost. The time costs of imputation using Minimac4 with and

without the LOO imputation feature are displayed in Table S1.

The LOO imputation is computationally inexpensive because it

does not require rerunning the forward and backward chains of
The America
the HMM that underlie genotype imputation and because it re-

quires limited extra calculations at genotyped markers only.
Model description
We assume that the target genotypes are pre-phased prior to impu-

tation, so that imputation is conducted on the same set of haplo-

types using each reference panel in turn. The keymeta-imputation

problem is thus combining haploid allele dosages estimated using

each of the available panels.

Assume that we have K reference panels, containing a union set

of M markers, labeled in a chromosome order with indices 1;2; :::;

M. For a target haplotype, we denote the imputed haploid dosages

at marker m from panel k as Xk;m, and the meta-imputed haploid

dosage at that marker is represented as their weighted average:

Xm ¼
XK

k¼1
wk;mXk;m m ¼ 1;2;.;M; (Equation 5)

wherewk;m represents the weight on panel k atmarkerm, satisfying

0%wk;m %1 and
PK

k¼1wk;m ¼ 1. For each target haplotype,

weights are estimated through an HMM that we will describe

next. The weights are tailored to each haplotype and vary along

the genome. This integration step is implemented in the Cþþ
package MetaMinimac2.
Weight estimation
As inspired by the Li and Stephens model,19 we use an HMM to es-

timate reference-panel weights using the LOO dosages and the
observed alleles to guide our decisions about which panel is

preferred along the genome. In this HMM, the hidden state Sm rep-

resents the underlying choice of reference panel at marker m, and

the emission state Am represents the observed allele (0, reference

allele; 1, alternate allele).

The emission probability PðAmjSmÞ is defined in Equation 6,

where dk;m denotes the LOO dosage from panel k at marker m.

An ideal choice of reference panel will maximize the probability

of the genotypes that are actually observed.

PðAm ¼ 1jSm ¼ kÞ ¼ dk;m
PðAm ¼ 0jSm ¼ kÞ ¼ 1 � dk;m

(Equation 6)

The transition probability PðSmjSm�1Þ is defined in Equation 7,

where lm represents the probability of a change in optimal

reference panel between markers m � 1 and m. We have

found that our model is not very sensitive to reasonable

choices of lm, and we typically set lm ¼ 1 � e� c,distm ; where

distm is the base-pair distance between the two markers and

c ¼ 23 10�7.
n Journal of Human Genetics 109, 1007–1015, June 2, 2022 1009



PðSmjSm�1Þ ¼

8>><
>>:

lm

K
; SmsSm�1

1 � lm þ lm

K
; Sm ¼ Sm�1

(Equation 7)

Finally, these quantities allow us to define the weight for

panel k at marker m as the posterior probability wk;m ¼ PðSm ¼
kjA1;.; AMÞ using the forward and backward algorithm.20

After obtaining the weights at genotyped markers, weights at

intervening markers are interpolated from flanking genotyped

markers. When calculating the meta-imputed dosage at a specific

marker (Equation 5), only reference panels including that marker

are considered, and their weights are scaled so they sum to 1.0. An

alternative strategy would be to assume a dosage of 0.0 where the

marker is absent, avoiding rescaling. The optimal choice of strat-

egy depends on whethermarkers are generally absent from a panel

due to differences in allele frequency between populations and

samples or, instead, due to differences in variant calling and

filtering protocols.

Empirical assessment #1: African American samples

from 1000G
To evaluate the ability of our method to accurately impute the ge-

nomes of admixed individuals, we selected a set of 1000G samples

with admixed ancestry and created two panels for imputation—

one with individuals with mostly European ancestry, and the

other with individuals with mostly African ancestry. This setting

is challenging because the optimal choice of panel will vary be-

tween individuals (depending on their degree of admixture) and

also along the genome of each individual (depending on the

ancestral origin of each chromosome segment).

Then we focused on 61 African American individuals in the

Southwest United States (ASW) and extracted their genotypes for

the Illumina Human1M-Duo BeadChip (19,883 out of 1,803,869

variants on chromosome 20) to mimic a typical GWAS dataset.

Two reference panels were constructed, one of 503 European

(from the 1000G CEU, FIN, GBR, IBS, and TSI samples) individuals

and the other including 600 African (from the 1000G ACB, ESN,

GWD, LWD, MSL, and YRI samples) individuals. The detailed dis-

tribution of reference populations is listed in Table S2. All geno-

type data and ancestry information are from the 1000G phase 3

release.6

We conducted meta-imputation on ASW samples using the

European panel and African panel and evaluated the imputation

accuracy by calculating aggregated r2 between the imputed results

and the masked genotype data. To obtain the aggregated r2, we

grouped the markers by the minor allele frequency (MAF) in the

entire 1000G dataset. The aggregated r2 for each group is calcu-

lated as the squared Pearson correlation between the imputed dos-

ages and the true minor allele counts across the markers in the

group.

Empirical assessment #2: Evaluation in South Asian

samples from UK Biobank
To illustrate the capability of our method to improve imputation

when used together with large reference panels, we tested it on in-

dividuals with South Asian ancestry in UK Biobank.21 Genomes

for these individuals are hard to impute using reference panels

such as HRC7 and TOPMed8 that include relatively few Asian-

ancestry individuals despite their size. HRC7 and TOPMed8 are

typically outstanding at imputing missing genotypes in the bulk

of the UK Biobank samples, which are of European origin.
1010 The American Journal of Human Genetics 109, 1007–1015, Jun
The UK Biobank released a whole-exome-sequencing dataset for

approximately 50,000 individuals in March 2019.21 We imputed

the UK Biobank array data across the autosomes and used the

exome data as a truth set to evaluate the accuracy of imputed var-

iants.We assigned ancestry to UK Biobank participants by running

a supervised ADMIXTURE22 analysis with the HumanGenomeDi-

versity Project (HGDP) data23 as a reference. Using a threshold of

70% genome content to classify an individual into a population,

we identified 762 individuals as South Asian.

We meta-imputed genotypes for these 762 South Asian samples

(pre-phased using Eagle v2.3.524 without a reference panel) across

the autosomes using the TOPMed release 2 panel, which includes

97,256 individuals,8 and the 1000G phase 3 (GRCh38) panel,

which includes 2,504 individuals.6 We evaluated the imputation

accuracy by comparing the imputed results with the exome-

sequencing data. For comparison, we repeated the experiment us-

ing several individuals with other ancestries and also after adding

half of the exome variants to the array dataset, enabling us to eval-

uate whether the inclusion of rare and low-frequency variants in

the scaffold used for imputation might improve results.

Finally, we constructed a combined panel for chromosome 20

by jointly calling the variants in 2,504 1000G samples and

86,594 TOPMed samples from their sequence alignment files, split

it into two subpanels with singletons excluded, and compared the

performance of meta-imputation and imputation using the com-

bined panel.
Results

Meta-imputation in African American Samples

We first evaluated our method in the context of the 1000G

ASW samples, using reference panels consisting of other

1000G samples of mainly African ancestry (the AFR panel),

mainly European ancestry (the EUR panel), or the combi-

nation of all these individuals (the AFR þ EUR panel). As

shown in Figure 2, meta-imputation achieved the same ac-

curacy as imputation using the combined AFR þ EUR

panel, which suggests that meta-imputation can serve as

an efficient alternative when a combined reference panel

is unavailable or impractical. Importantly, our results also

show that the accuracy from meta-imputation was sub-

stantially greater than that from imputation using a single

reference panel. For variants with MAF of 0.05%�0.1%,

meta-imputation achieved higher accuracy (r2 ¼ 0:427

between imputed dosages and actual genotypes) than

imputation using the AFR panel alone (r2 ¼ 0:313) or us-

ing the EUR panel alone (r2 ¼ 0.009), and the accuracy of

meta-imputation was comparable to that using the AFR

þ EUR panel (r2 ¼ 0:425). Overall, we observed the largest

advantages of meta-imputation, compared to using one of

the smaller panels, for rare variants.
Meta-imputation in South Asian Samples

Next, we examined whether the benefits of meta-imputa-

tion would extend to settings where very large reference

panels are available. Generally, these larger reference

panels yield better imputation quality, but there are some

exceptions. For example, it has been pointed out that the
e 2, 2022



Figure 2. Comparison of imputation ac-
curacy in African American samples
Imputation accuracy for the pseudo-GWAS
ASW dataset was compared among (1)
meta-imputation, (2) imputation using
the combined AFR þ EUR panel including
both African and European ancestry ge-
nomes, (3) imputation using the homoge-
neous African (AFR) panel, and (4) imputa-
tion using the homogeneous European
(EUR) panel. Variants were grouped accord-
ing to minor allele frequency, which was
estimated from the genotype data of
2,504 samples in the 1000 Genomes Proj-
ect. Aggregated r2 values were calculated
for each variant group.
TOPMed panel sometimes underperforms compared with

the much smaller 1000G panel, particularly for ancestries

(such as South Asian) that are poorly represented in

TOPMed.8 For this assessment, we used UK Biobank sam-

ples that have been exome sequenced and compared the

results of imputation and meta-imputation with those of

exome sequencing.

Figure 3 shows that the 1000G panel generally exhibited

slightly better accuracy for imputing South Asian genomes

than the TOPMed panel for variants with MAF > 0.2%.

Our results also suggested that meta-imputation was able

to improve the accuracy even further. For example, the

imputation quality for variants with MAF of 0.05%�
0.1% increased from r2 ¼ 0:231 (using the 1000G panel

alone) and r2 ¼ 0:260 (using the TOPMed panel alone)

to r2 ¼ 0:311 (using meta-imputation with the 1000G

and TOPMed panel imputation results as input). Also,

the number of well-imputed (imputation r2 > 0:3 re-

ported by imputation software) variants on autosomes

increased from 16,480,094 (imputation using 1000G

panel) to 25,713,394 (meta-imputation), which suggests

that 56%more variants would be available for downstream

analyses.

We also evaluated a hypothetical combined panel

including 1000G and TOPMed samples. For this analysis,

we constructed a combined panel including the 1000G

samples and most TOPMed samples and repeated the

experiment on chromosome 20. The result (Figure S2)

shows that meta-imputation achieves accuracy compara-

ble to imputation using the combined panel even in this

challenging setting where the reference panels differ

greatly in size.

As part of meta-imputation, weights for each reference

panel were estimated along each chromosome for each

haplotype, reflecting the optimal choice of reference panel

at each marker. Figure 4A illustrates the pattern of weights
The American Journal of Human Ge
along the genome for a typical sample

of South Asian ancestry, where red

indicates a preference for TOPMed

and blue indicates a preference for

1000G. In the example, both the
1000G panel and the TOPMed panel are favored in sub-

stantial portions of the genome. By contrast, meta-imputa-

tion generally places a much heavier weight on the

TOPMed panel when tackling a European ancestry sample,

as shown in Figure 4B.

Computational time

In principle, meta-imputation is relatively inexpensive

(computationally), but there are challenging details in im-

plementation, particularly because input and output files

can be extremely large. To achieve computational effi-

ciency, in terms of both memory and CPU usage, we first

calculate meta-imputation weights for each haplotype at

genotyped markers only. The resulting weight matrices

can then be used to scan through imputation results one

marker at a time, reading panel-specific imputation results,

interpolating weights, and outputting weighted meta-

imputation dosages. Because meta-imputation combines

imputed dosages, the cost of the meta-imputation step de-

pends on the number of genotyped and imputed markers

and on the number of individuals being processed, but

not on the sizes of the reference-panel samples.

We tested meta-imputation performance on different

numbers of individuals (Table 1). For this analysis, we

used the 1000G phase 3 and TOPMed release 2 reference

panels, which include 6,771,422 markers on chromosome

20 (1000G contains 1,052,215 markers; TOPMed contains

6,631,674 markers; 912,467 markers overlap). The single-

core computational times of meta-imputation for 1,000,

2,000, 5,000, and 10,000 target samples are reported in

Table 1. Generally, the computational requirements for

our implementation of meta-imputation are linear with

respect to thenumber of samples being imputed (earlier im-

plementationswere performed in quadratic time because of

less-efficient memory and input/output usage). The per-

sample time for the imputation step with the 1000G and
netics 109, 1007–1015, June 2, 2022 1011



Figure 3. Comparison of imputation ac-
curacy in South Asian samples
Imputation accuracy for 762 South Asian
samples in UK Biobank data was compared
among (1) meta-imputation, (2) imputa-
tion using 1000G phase 3 (GRCh38) panel,
and (3) imputation using the TOPMed
release 2 panel. Aggregated r2 value was
computed based on 918,144 variants
shared by the 1000G panel, the TOPMed
panel, and UK Biobank whole-exome-
sequencing data. Variants were binned ac-
cording to minor allele frequency, which
was estimated from exome-sequencing
data for the 762 samples.
TOPMed reference panels using Minimac4 was about 20 s

and was about 2 s for the meta-imputation using

MetaMinimac2. As chromosome 20 accounts for about

2% of the genome, these estimates translate to about

17 min per genome for imputation and 2 min for meta-

imputation.
Discussion

We have presented a convenient and efficient meta-impu-

tation framework that enables researchers to merge

imputed data generated using multiple reference panels.

The meta-imputation procedure consists of two separate

steps, imputation and integration, allowing investigators

to incrementally consider new reference panels without

repeating imputation steps using prior panels. As each

panel is added, investigators need only impute the target

samples against the new panel and can then combine

the results with previously computed imputed result data-

sets. Our method does not require access to individual-

level data from the reference panels and should perform

gracefully even when the optimal choice of reference panel

varies between individuals or along the genome of each in-

dividual. In principle, we expect our method to perform

well even when reference panels have partial overlap.

We first illustrated the performance of our method for

meta-imputation in samples of African American ancestry

using reference panels consisting mainly of European hap-

lotypes, mainly of African haplotypes, or their combina-

tion—a challenging situation for meta-imputation. As

the proportion of African ancestry will vary between indi-

viduals and along the genome of each individual,

achieving accurate meta-imputation requires weights that

are highly customizable—varying between individuals

and along the genome of each individual. We also evalu-
1012 The American Journal of Human Genetics 109, 1007–1015, June 2, 2022
ated our methods in samples of South

Asian ancestry using reference panels

with a large disparity in size. In

these scenarios, meta-imputation not

only outperformed imputation using

either panel alone but also compared
well with imputation against the merged panel in terms

of accuracy. Therefore, we propose that it will be safe to

use our method even when the reference panels used for

the initial imputation step are both sub-optimal, as our

MetaMinimac2 algorithm is able to incorporate the best in-

formation from the different imputation results to yield

much-improved genotype dosages.

Improved imputation accuracy brings greater statistical

power in GWASs. In the scenarios we examined (see sup-

plemental information and Figure S4), the power of

GWASs using meta-imputed dosages is comparable to the

power of a hypothetical GWAS using imputed dosages

from amerged panel. A previous recommendation for con-

ducting GWASs when multiple reference panels are avail-

able was to conduct multiple GWASs (one for each set of

imputation results) and to use the smallest p value at

each marker after imputation, carrying out simulations to

estimate an appropriate multiple-testing correction.15

This approach also approximates the power of analysis

with a combined panel. One of the reasons is that it may

capture some of the features of multiple imputation,25

and we speculate that the power of GWASs using our

approach might be further improved in the multiple-

imputation framework. Although the best p value also per-

forms well, our approach provides important advantages.

First, because it produces a single consensus set of imputed

dosages, the computational effort required to analyze addi-

tional phenotypes is more modest. Additionally, this

consensus set of imputed dosages can serve as input to a

variety of additional analyses—including trait co-localiza-

tion26,27 and fine-mapping.28–30

In the scenarios we examined, meta-imputation consis-

tently produced better accuracy than imputation using

only one of the available reference panels. However, it is

not necessarily the case that every variant would gain

in imputation quality. A challenging question concerns



Figure 4. Genome-wide summary of
weights used in meta-imputation
(A and B) UK Biobank samples were meta-
imputed against the 1000G phase 3 panel
and the TOPMed release 2 panel. The
figures display the local weights on the
TOPMed panel from the weight-estimation
step, where red indicates a preference for
TOPMed and blue indicates a preference
for 1000G. (A) corresponds to the analysis
of a sample haplotype with South Asian
ancestry, where both the 1000G panel and
the TOPMed panel were favored in substan-
tial portions of the genome. (B) corresponds
to the analysis of a sample haplotype with
European ancestry, where the TOPMed
panel was nearly always favored.
handling of variants that are present in only a subset of the

reference panels. If a variant is present in one reference

panel only, we opted to preserve the original imputed re-
Table 1. Computational time of meta-imputation for UK Biobank
samples

Number of
Samples

Time ([hh]:mm:ss)

Step 1: Minimac4
Step 2:
MetaMinimac2 Total1000G TOPMed

1,000 21:57 5:42:37 38:45 6:43:19

2,000 43:34 11:06:08 1:16:57 13:06:39

5,000 1:45:44 26:40:53 3:12:12 31:38:49

10,000 3:34:10 53:15:35 6:14:16 63:04:01

The analysis was conducted on chromosome 20, which involved 17,388
genotyped markers in the target haplotypes and 6,771,422 markers in refer-
ence panels. 1000G phase 3 (GRCh38) panel contains 1,052,215 markers;
TOPMed release 2 panel contains 6,631,674 markers; 912,467 markers over-
lap. All tests were conducted on Intel Xeon Platinum 8268 CPU @ 2.90 GHz us-
ing one core at a time.

The American Journal of Human G
sults for that variant. This is appropriate

if we expect the presence or absence of a

variant to be due to technical reasons,

such as arbitrary differences in filtering

criteria or accessibility of different

parts of the genome using different

sequencing technologies. An alterna-

tive would be to score variants that are

absent from one panel as if they always

match the reference genome in haplo-

types from that panel, assigning them

a dosage of zero. The optimal choice

between these two alternatives will

depend on the details of how panels

were generated and whether panel-spe-

cific variants reflect patterns of natural

variation or technical artifacts due to

variant calling and filtering.

Becausemeta-imputation works on a

per-haplotype basis, its performance
relies on the quality of pre-phasing. Switch errors in

phasing may result in decreased imputation accuracy and

misleading weights, so meta-imputation should directly

benefit from evolving phasing algorithms.24,31,32 The accu-

racy of meta-imputation could also be affected by factors

including the density of genotype array and choice of var-

iants. We would expect that a denser genotype array may

bring improved accuracy as it could provide more informa-

tion and better reflect the local performance of each refer-

ence panel. In our experiment (see supplemental informa-

tion and Figure S3), supplementing the common variant

array genotypes with the exome variants did not make a

substantial difference in the imputation accuracy. This is

because the weights estimated using common variants

are also close to the ideal weights for imputation of rare

variants.

In the current era, where imputation reference panels are

often shared through convenient imputation servers,7,8,18

which increase user convenience and protect genetic

information in the panel, our approach allows results
enetics 109, 1007–1015, June 2, 2022 1013



from different servers to be combined and also allows re-

searchers who create their own panels to combine results

generated using these panels with results generated from

one or more imputation servers. We hope that these

meta-imputation strategies will continue to extend the

reach of imputation toward rarer and rarer variants and

facilitate studies in diverse populations, where supple-

menting publicly available reference panels with comple-

mentary targeted panels is likely to be especially useful.
Data and code availability

The MetaMinimac2 software is written in Cþþ and can be down-

loaded from https://github.com/yukt/MetaMinimac2. The tool

for calculating aggregated r2 between imputed results and true ge-

notypes is available at https://github.com/yukt/aggRSquare.

Michigan Imputation Server and TOPMed Imputation Server pro-

vide free genotype imputation services using Minimac4 with the

option to generate necessary input files for MetaMinimac2.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2022.04.002.
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Supplemental Figures 

 
Figure S1. Workflow of meta-imputation. First, minimac4 imputes the target samples against 

two or more different reference panels. Then, MetaMinimac2 estimates the weights on each of 

the panels according to the empirical performance in stretches of each individual genome which 

is measured by leave-one-out (LOO) imputation results from minimac4. The weights are individual 

and region specific and reflect that the optimal choice of reference panel varies along the genome. 

The meta-imputation result at each marker is then a weighted average of the estimated allele 

counts from imputation against each panel. 



 

Figure S2. Comparison of accuracy between meta-Imputation and imputation using the 

merged panel for 762 South Asian samples on chromosome 20. We constructed the merged 

panel by jointly calling variants in 2,504 1000G samples and 86,594 TOPMed samples, and 

reconstructed the 1000G* panel and TOPMed* panel accordingly by separating the samples and 

excluding the singletons. The 1000G* panel contains 2,046,899 variants on chromosome 20, and 

the TOPMed* panel contains 8,782,465 variants. 1,768,427 variants overlap. The imputation 

accuracy was evaluated based on 11,268 variants shared by 1000G*, TOPMed* and the exome 

sequencing data on chromosome 20. MAF was calculated based on the exome sequencing data 

of the target samples. 



 

Figure S3. Comparison of imputation accuracy between using the UK Biobank array data 

and using the array variants plus half of exome variants. We conducted meta-imputation on 

762 South Asian samples from UK Biobank 50K exome data set using 1000G panel and TOPMed 

release 2 panel. Imputation accuracy was evaluated by comparing imputed results and the 

remaining exome sequencing data on 151,719 variants across autosomes. MAF was calculated 

from the exome sequence data of the study samples.  

 



 

Figure S4. Comparison of power of association tests among different strategies. The 

evaluation was performed on 9936 European samples from UK Biobank 50K exome dataset, and 

5,000 LD pruned variants with MAF<0.0005 on chromosome 1. The significance thresholds from 

permutation tests are 1.75 × 10−5 (TOPMed 1st half), 1.57 × 10−5 (TOPMed 2nd half), 

1.60 × 10−5 (best rsq), 1.09 × 10−5 (best p-value), 1.98 × 10−5 (meta-imputation), 1.73 × 10−5 (the 

whole TOPMed panel), 2.02 × 10−5 (exome data), respectively. 

 

 

 

  



Supplemental Tables 

 
Number of Samples 

Time ([hh]:mm:ss) 

Minimac4 Minimac4 with Meta-Imputation Option 

1,000 5:27:37 5:42:37 

2,000 10:39:41 11:06:08 

5,000 26:23:14 26:40:53 

10,000 51:55:23 53:15:35 

 

Table S1. Comparison of computational time between imputation using Minimac4 with and 

without the meta-imputation option. The meta-imputation option in Minimac4 triggers the 

leave-one-out imputation (which is carried out with the inner loop used for standard imputation) 

and writes the leave-one-out imputation dosage file which is required for the downstream meta-

imputation analysis in MetaMinimac2. The tests were performed on chromosome 20 for UK 

Biobank samples using the TOPMed panel. All the tests were conducted on Intel Xeon Platinum 

8268 CPU @ 2.90GHz, using one single core at a time. 

 

  



Panel 
Population 

Code 
Population Description 

Number of 
Samples 

African 
(AFR) 

ACB African Caribbean in Barbados 96 

ESN Esan in Nigeria 99 

GWD 
Gambian in Western Division, The Gambia - 

Mandinka 
113 

LWD Luhya in Webuye, Kenya 99 

MSL Mende in Sierra Leone 85 

YRI Yoruba in Ibadan, Nigeria 108 

European 
(EUR) 

CEU 
Utah residents with Northern and Western 

European ancestry 
99 

FIN Finnish in Finland 99 

GBR British in England and Scotland 91 

IBS Iberian populations in Spain 107 

TSI Toscani in Italy 107 

 

Table S2. Distribution of sample populations of the reference panels used for imputing 

the African American individuals in the Southwest US. 

  



Supplemental Materials and Methods 

Meta-Imputation with Denser Array Data 

Typically, genotyping arrays mainly focus on common variants that are selected to tag other 

common variants and haplotypes. It is well established that larger arrays, with larger numbers of 

carefully selected common variants, provide for improved imputation accuracy. Our meta-

imputation approach should also benefit from increased array density. Our model includes an 

additional calibration step, where weights for each region of the genome are estimated using a 

leave-one-out approach where each array genotype is masked and re-imputed in turn. Potentially, 

the results of this calibration step would be different if rare variants were available in the array. To 

assess the value of including rare variants in the array datasets used for meta-imputation, we 

compared the accuracy between meta-imputation using the original UK Biobank1 array data and 

meta-imputation using the original array UK Biobank array data together with half of the available 

UK Biobank exome variants.  

We randomly selected half of the exome variants which have complete data for the 762 

South Asian samples from UK Biobank and combined them with the original UK Biobank array. 

We rephased the merged dataset using Eagle v2.42 and conducted meta-imputation using 

1000G3 and TOPMed4 panel across the autosomes. The Imputation accuracy was evaluated by 

comparing the final meta-imputation results for the remaining exome variants. The results, in 

Figure S3, show that supplementing the common variant array genotypes with the exome variants 

does not make a substantial difference in the quality of the final meta-imputation result. We 

speculate that this is because the weights estimated using the leave-one-out approach using 

common variants are also close to the ideal weights for imputation of rare variants.  



Power Analysis 

To evaluate the improvement brought by meta-imputation to the downstream genome-wide 

association studies (GWAS), we conducted simulations upon 9936 European samples from the 

UK Biobank exome sequencing data1. 

We randomly divided the TOPMed samples into two halves and constructed two subpanels for 

imputation. We imputed the UK Biobank array data on chromosome 1 using the two subpanels 

and the whole panel separately, and meta-imputed using the two subpanels. We then carried out 

a series of analyses: first, using the imputation results from the original combined panel;  next, 

using the imputation results from each of the two subpanels; then, using the meta-imputation 

results; and finally, using two previously suggested approaches for GWAS when multiple 

imputation reference panels are available5: we tested each marker for association after imputation 

with subpanel 1 and subpanel 2, and retained the most significant result among the two, or 

retained the one with higher estimated imputation accuracy.    

The phenotypes for the association tests were simulated based on exome sequencing data. We 

pruned the exome sequencing data based on linkage disequilibrium (pairwise LD 𝑟2 < 0.2), and 

randomly selected 5,000 variants on chromosome 1 with MAF < 0.0005 and estimated imputation 

𝑟2 > 0.3 from at least one subpanel. 

For each selected variant, the phenotype was generated in the following steps so that the power 

of association test using the original exome data could achieve a family-wise type I error rate of 

0.05 and a statistical power of 50% with Bonferroni correction.  

1. Determine the non-centrality parameter (ncp) of the chi-square distribution under the 

alternative hypothesis given the desired power and type I error rate. 



2. The effect size 𝛽 = √
𝑛𝑐𝑝

2𝑛𝑓(1−𝑓)
, where 𝑛 denotes the sample size and 𝑓 denotes the MAF 

of the variant. 

3. The phenotype 𝑦 = 𝐺𝛽 + 𝜖, 𝜖 ∼ 𝑁(0, 1 −
𝑛𝑐𝑝

𝑛
). 

We compared the power among four strategies: 

1. GWAS using meta-imputed dosages.  

2. GWAS using TOPMed-imputed dosages. 

3. best r-square strategy – GWAS using imputed dosages from the subpanel with higher 

estimated imputation 𝑟2 for each variant. 

4. best p-value strategy – GWAS using imputed dosages from the two subpanels separately 

and use the most significant p-value, adjusting for the additional variants tested. 

The significance threshold for each strategy was determined by permutation tests. The BMI 

metrics of the target samples were permuted for 1000 times, followed by association tests on 

each of the 5000 variants using the four strategies separately. For each strategy, the most 

significant p-value from association test on each permuted trait was recorded, and the significance 

threshold was chosen as the 50th smallest one among the 1000 recorded p-values. 
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