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To assess the estimation performance of SCRaPL, we experimented on synthetic
datasets covering scenarios with different numbers of cells and a range of values in
terms of methylation coverage, ZI for the expression data along with different latent
mean and covariance structures. In this section we focus on estimation accuracy for a
series of latent state parameters of potential interest.

We start by considering a situation of perfect model specification (Experiments
1-3), in order to assess the identifiability of our model. In this case, we observe that
posterior estimates of correlation tend to be unbiased, with an accuracy which increases
with the number of cells in the data set (Fig AE). As expected, the performance
degrades with increasing levels of ZI (Fig BE). However, we did not observe significant
differences across different levels of coverage (Fig CE). Performance for the remaining
parameters could be found in Figs A- C. To probe the importance of prior specification,
we generated data where the underlying correlation values ρj were in an area with low
prior mass (Experiments 4-6). In this case, we did observe some bias in our estimates
(Fig DE ), but the latter diminished with increasing sample sizes. Similarly, performance
diminishes with increasing ZI levels (Fig EE) and slightly improves upon increasing
coverage levels (Fig FE). Performance for the remaining parameters could be found in
Figs D- F. As a final test of more severe model mismatch, we evaluated predictive
performance in a scenario where we retained the same noise model, but replaced the
latent multivariate Gaussian distribution by expression rates inferred using a variational
auto-encoder similar to the one described in [scVI; 1] that was trained on the scRNAseq
data from [2] (Experiments 7-9). Despite the model mismatch, we observed good
estimating performance for all latent parameters across a range of simulations (Figs
G-I). In all cases, latent means and standard deviations were set as µj1 = 4, µj2 = 1,
σj1 = 3 and σj2 = 2. Unless otherwise stated, our simulations were based on: I = 60
cells, J = 300 features, 20% ZI rate on average for the expression data (πj = 0.20) and
an average methylation coverage (nij) equal to 275 ([50, 500]) across cells and genes.

The first set of data were generated using SCRaPL’s generative model. We designed
three types of experiments to asses estimation performance as a function of the number
of cells, ZI for the expression data and methylation coverage.

• Experiment 1: varying numbers of cells
(I ∈ {5, 10, 25, 50, 100, 200, 400, 800, 1600}) and correlation values sampled from a
Beta distribution (ρj ∼ Beta(15, 15)).

• Experiment 2: varying ZI rate (πj ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8}) and
correlation values sampled from a Beta distribution (ρj ∼ Beta(15, 15)).
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• Experiment 3: varying methylation coverage (nij sampled from Uniform
distributions with ranges given by [5, 10], [10, 20], [20, 50], [50, 250], [500, 1000])
and correlation values sampled from a Beta distribution (ρj ∼ Beta(15, 15)).
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Fig A. Violin plots summarizing difference of posterior mean from data
generating parameters for Experiment 1. Differences of posterior estimates from
data generating parameters as functions of the number of cells: (AA) methylation mean;
(AB) expression mean; (AC) methylation standard deviation; (AD) expression standard
deviation; (AE) correlation between expression and methylation.
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Fig B. Violin plots summarizing difference of posterior mean from data
generating parameters for Experiment 2. Differences of posterior estimates from
data generating parameters as functions of average expression inflation: (BA)
methylation mean; (BB) expression mean; (BC) methylation standard deviation; (BD)
expression standard deviation; (BE) correlation between expression and methylation.
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Fig C. Violin plots summarizing difference of posterior mean from data
generating parameters for Experiment 3. Differences of posterior estimates from
data generating parameters as functions of average methylation coverage: (CA)
methylation mean; (CB) expression mean; (CC) methylation standard deviation; (CD)
expression standard deviation; (CE) correlation between expression and methylation.

The second set of data were generated using SCRaPL’s generative model where the
Beta(15, 15) for correlation ρj got replaced by a U[−0.8,−0.6]. We designed three types of
experiments to asses estimation performance as a function of the number of cells, ZI for
the expression data and methylation coverage.

• Experiment 4: varying numbers of cells
(I ∈ {5, 10, 25, 50, 100, 200, 400, 800, 1600}) and correlation values sampled from a
Uniform distribution (ρj ∼ U[−0.8,−0.6]).

• Experiment 5: varying ZI rate (πj ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8}) and
correlation values sampled from a Uniform distribution (ρj ∼ U[−0.8,−0.6]).
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• Experiment 6: varying methylation coverage (nij sampled from Uniform
distributions with ranges given by [5, 10], [10, 20], [20, 50], [50, 250], [500, 1000])
and correlation values sampled from a Uniform distribution (ρj ∼ U[−0.8,−0.6]).

5 10 25 50 100 200 400 800 1600

Number of cells
1.0

0.5

0.0

0.5

1.0

1.5

2.0

Di
ffe

re
nc

e 
fro

m
 tr

ut
h

(A)

5 10 25 50 100 200 400 800 1600

Number of cells
1.0

0.5

0.0

0.5

1.0

1.5

2.0

Di
ffe

re
nc

e 
fro

m
 tr

ut
h

(B)

5 10 25 50 100 200 400 800 1600

Number of cells
1.0

0.5

0.0

0.5

1.0

1.5

2.0

Di
ffe

re
nc

e 
fro

m
 tr

ut
h

(C)

5 10 25 50 100 200 400 800 1600

Number of cells
1.0

0.5

0.0

0.5

1.0

1.5

2.0

Di
ffe

re
nc

e 
fro

m
 tr

ut
h

(D)

5 10 25 50 100 200 400 800 1600

Number of cells
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Di
ffe

re
nc

e 
fro

m
 tr

ut
h

SCRaPL
Spearman
Pearson

(E)

Fig D. Violin plots summarizing difference of posterior mean from data
generating parameters for Experiment 4. Differences of posterior estimates from
data generating parameters as functions of the number of cells: (DA) methylation mean;
(DB) expression mean; (DC) methylation standard deviation; (DD) expression standard
deviation; (DE) correlation between expression and methylation.
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Fig E. Violin plots summarizing difference of posterior mean from data
generating parameters for Experiment 5. Differences of posterior estimates from
data generating parameters as functions of average expression inflation: (EA)
methylation mean; (EB) expression mean; (EC) methylation standard deviation; (ED)
expression standard deviation; (EE) correlation between expression and methylation.
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Fig F. Violin plots summarizing difference of posterior mean from data
generating parameters for Experiment 6. Differences of posterior estimates from
data generating parameters as functions of average methylation coverage: (FA)
methylation mean; (FB) expression mean; (FC) methylation standard deviation; (FD)
expression standard deviation; (FE) correlation between expression and methylation.

For the third set of experiments data were partly sampled from a deep generative
model similar to the one described in [1] and partly from the model. More precisely the
deep generative model was used to generate latent expression and cell specific
normalization constants. The rest of the parameters were sampled from the model
conditioned on latent expression. We designed three types of experiments to asses
estimation performance as a function of the number of cells, ZI for the expression data
and methylation coverage.

• Experiment 7: varying numbers of cells (I ∈ {5, 10, 25, 50, 100, 200, 400, 800})
and correlation values sampled from a Beta distribution (ρj ∼ Beta(15, 15)).
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• Experiment 8: varying ZI rate (πj ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8}) and
correlation values sampled from a Beta distribution (ρj ∼ Beta(15, 15)).

• Experiment 9: varying methylation coverage (nij sampled from Uniform
distributions with ranges given by [5, 10], [10, 20], [20, 50], [50, 250], [500, 1000])
and correlation values sampled from a Beta distribution (ρj ∼ Beta(15, 15)).
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Fig G. Violin plots summarizing difference of posterior mean from data
generating parameters for Experiment 7. Differences of posterior estimates from
data generating parameters as functions of the number of cells: (GA) methylation mean;
(GB) methylation standard deviation; (GC) correlation between expression and
methylation.
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Fig H. Violin plots summarizing difference of posterior mean from data
generating parameters for Experiment 8. Differences of posterior estimates from
data generating parameters as functions of average expression inflation: (HA)
methylation mean; (HB) methylation standard deviation; (HC) correlation between
expression and methylation.
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Fig I. Violin plots summarizing difference of posterior mean from data
generating parameters for Experiment 9. Differences of posterior estimates from
data generating parameters as functions of average methylation coverage: (FA)
methylation mean; (IB) methylation standard deviation; (FE) correlation between
expression and methylation.
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