S7 Text: Gene Set Enrichment Analysis.

SCRaPL: A Bayesian hierarchical framework for detecting technical associates in single cell multiomics data.

Christos Maniatis^{1*}, Catalina A. Vallejos^{2,3*}, Guido Sanguinetti^{4,1*}

 School of Informatics, The University of Edinburgh, Edinburgh, UK
The Alan Turing Institute, London,UK
MRC Human Genetics Unit, Institute of Genetics and Cancer, Western General Hospital, The University of Edinburgh, , Edinburgh, UK

4 International School for Advanced Studies (SISSA-ISA), Trieste, Italy

* s1315538@sms.ed.ac.uk(CM);* catalina.vallejos@ed.ac.uk(CAV);* gsanguin@sissa.it(GS)

To get a round understanding of the genes with strong regulatory action identified by alternative approaches, we carry our Gene Set Enrichment Analysis (GSEA) analysis using DAVID [1]. This process helps us to identify important biological processes by looking at over-represented genes in a starting pool of genetic markers. Using SCRaPL correlation outcomes we can determine a lists of biological outcomes that practitioners would discover. The γ threshold for SCRaPL was set to 0.205 or 90% quantile of the folded distribution constructed by correlation samples of the permuted dataset.

Fu	nctional Annot	ation Chart								Help and Manual
	rent Gene List: List_ rent Background: Ba									<u>Help and Manual</u>
	DAVID IDs									
	ptions									
	esholds: Count 7		EASE 0.3							
Disp	olay: 🗹 Fold Enrichme	nt 🗌 Bonferroni 🗌 Ben	jamini 🗌 FDR 🗍 F	Fisher Exact 🗌	LT,PH,PT	# of R	lecords	1000		
		te Sublist								
5 ch	art records									<mark>f Download F</mark> i
Sublist	Category	¢ <u>Term</u>			¢ RT	Genes	Count	¢ <u>%</u> ⇒	P-Value	Fold Enrichment
	GOTERM_BP_DIRECT	angiogenesis			RT		7	3.3	5.4E-2	2.6
	GOTERM_BP_DIRECT	proteolysis			RT	-	13	6.1	1.4E-2	2.2
	GOTERM_BP_DIRECT	in utero embryonic developmen	<u>l</u>		RT		10	4.7	5.4E-2	2.1
	GOTERM_BP_DIRECT	ion transport			RT	—	8	3.7	1.3E-1	1.9
	GOTERM_BP_DIRECT	spermatogenesis			RT		8	3.7	1.6E-1	1.8
	GOTERM_BP_DIRECT	response to drug			RT	=	7	3.3	2.1E-1	1.7
	GOTERM_BP_DIRECT	cell adhesion			RT		7	3.3	2.3E-1	1.7
	GOTERM_BP_DIRECT	negative regulation of transcript	ion, DNA-templated		RT		13	6.1	8.0E-2	1.7
	GOTERM_BP_DIRECT	lipid metabolic process			RT		10	4.7	1.5E-1	1.7
	GOTERM_BP_DIRECT	metabolic process			RT	=	10	4.7	1.8E-1	1.6
	GOTERM_BP_DIRECT	RNA splicing			RT		8	3.7	2.5E-1	1.6
	GOTERM_BP_DIRECT	positive regulation of transcripti	on from RNA polymerase II	promoter	RT		20	9.3	5.9E-2	1.5
	GOTERM_BP_DIRECT	oxidation-reduction process			RT		13	6.1	2.1E-1	1.4
					DT	=	10	4.7	2.8E-1	1.4
	GOTERM_BP_DIRECT	negative regulation of apoptotic	process		RT	-	10	4.7	2.0E-1	1.4

89 gene(s) from your list are not in the output.

(A)

Fig A. GO analysis with features detected by SCRaPL.

Functional Annotation Chart

								Help and Manual
Curr	ent Gene List: imp_g	Jene_sp						
Curr	ent Background: all	gene						
85 D	AVID IDs							
🗉 Ор	otions							
Three	sholds: Count 7	EASE 0.3						
Displ	lav: 🔽 Fold Enrichmer	nt 🗌 Bonferroni 🔲 Benjamini 🗌 FDR 🔤 Fisher Exact	LT.PH.PT	# of R	ecords	1000		
		· · · · ·						
		2 1 1 1						
	51	e Sublist						
chart	t records							Comparison of the second secon
Sublist	Category	⇔ <u>Term</u>	¢ RT	Genes	Count	\$% ≎	¢ <u>P-Value</u>	Fold Enrichment
	GOTERM_BP_DIRECT	meiotic cell cycle	RT		10	11.8	1.5E-8	15.0
	GOTERM_BP_DIRECT	spermatid development	RT		7	8.2	2.4E-5	11.8
	GOTERM_BP_DIRECT GOTERM_BP_DIRECT	spermatid development negative regulation of transcription, DNA-templated	RT RT		7 8	8.2 9.4	2.4E-5 4.8E-2	11.8 2.4
					7 8 9			
	GOTERM_BP_DIRECT	negative regulation of transcription, DNA-templated	RT		-	9.4	4.8E-2	2.4
_	GOTERM_BP_DIRECT GOTERM_BP_DIRECT	negative regulation of transcription, DNA-templated multicellular organism development	RI RI		9	9.4 10.6 10.6	4.8E-2 6.8E-2	2.4 2.0
	GOTERM_BP_DIRECT GOTERM_BP_DIRECT GOTERM_BP_DIRECT	negative regulation of transcription, DNA-templated multicellular organism development negative regulation of transcription from RNA golymerase II promoter	RT RT RT		9 9	9.4 10.6 10.6	4.8E-2 6.8E-2 1.3E-1	2.4 2.0 1.8

49 gene(s) from your list are not in the output.

(A)

Fig B. GO analysis with features detected by Spearman correlation.

The detected biological presented in Figs A,B have at 7 or more genes associated with them and maximum p-value 0.3. Then processes were sorted based on their enrichment score (ie. how many times larger is the detected set compared to a random subset of the pool of genes linked to a particular biological process). SCRaPL has detected many processes directly linked to regulation of transcription and regulation of transcription in promoter regions (something expected as we are looking at promoters of a methylation-expression pair at early development where methylation plays a crucial role). Apart from them there are also biological processes linked to development, like in utero embryonic development and angiogenesis with high enrichment score. Spearman also detects processes linked to transcription regulation of transcription of meiotic cell cycle as seen in Fig B. However no process with immediate links to development appears. For the exact same filtering parameter and genes detected with Pearson correlation, the enrichment would link genes to "regulation of transcription" with enrichment score 1.5.

References

1. Sherman BT, Lempicki RA, et al. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols. 2009;4(1):44.