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1 Pearson

In most settings where Pearson correlation with hypothesis testing is applied, the aim is
to determine whether the estimated value of correlation is generated from an
uncorrelated bivariate normal distribution. Here we are interested to investigate the
more complicated null hypothesis that the data generating correlation lives in an
interval around 0. Hence the first step is to determine the distribution of sampled
Pearson correlations r given true correlation ρ in a correlated bivariate normal
distribution. According to [1] that distribution is:
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where Γ is the gamma function and 2F1 is the Gaussian hypergeometric function. In the
special case of ρ = 0 we get student a reparametrized version of student t-distribution.
However we are interested in the null distribution of correlations with magnitude below
a threshold γprs. The get it, we integrate f(r, ρ) over that range [−γprs, γprs].
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f(r, ρ)dρ (2)

Where Z =
∫ 1

−1

∫ γprs
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f(r, ρ)dρdr. Integrating f(r, ρ) over ρ is not trivial as there is not

closed form solution. Hence we resort to numerical integration using Matlab’s/Python’s
built in function. The p-value under the null hypothesis for a Pearson correlation
estimate pcor is
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To simplify this integral and get the simplified expression of the right hand side, we use
that f(r, ρ) = f(−r,−ρ). Type I error is controlled with standard FDR [2] as in the
case of γprs = 0.
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2 SCRaPL

The aim of SCRaPL is to identify genomic regions with strong correlation across
molecular layers using feature specific posterior correlation. Mathematically this is done
by estimating the probability of correlation’s magnitude (ie. |ρj |) being above a
threshold γ.

pj(γ) = P(|ρj |≥ γ) (4)

If pj(γ) is larger than a threshold a then correlation on genomic region j is labeled
statistically significant. To estimate γ we have a data driven approach in place. More
precisely, we look various quantiles in negative control data. Using γ we calibrate α
such that EFDR is below 10%. Since pj(γ) is a cumulative density function, under the
null hypothesis it is uniformly distributed. Hence we apply the same procedure in the
original and negative control data and compare detection rates. This test becomes
problematic in case γ = 0 as pj(γ) = 1 for every j. In this case we apply the rule from
[3] based on the maximum posterior probabilities associated to the one-sided hypothesis
ρj > 0 and ρj < 0, mathematically summarized as follows:

2max(πj , 1− πj)− 1 > a, with πj = P(ρj ≥ 0) (5)

Parameter a is calibrated such that EFDR is below 10%. The max-rule in equation 5 is
uniformly distributed under the null hypothesis. This limitation of this rule is that
results are correct for the case of symmetric around 0 posterior correlation distributions.
Therefore, we use it here as an approximation.
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