### Supplementary Information

## Functional cargos of exosomes derived from Flk-1<sup>+</sup> vascular progenitors enable neurulation and ameliorate embryonic anomalies in diabetic pregnancy

Songying Cao, Yanqing Wu, E. Albert Reece, Cheng Xu, Wei-Bin Shen, Sunjay Kaushal, Peixin

#### Yang

#### **Supplementary Figures and Tables:**

Supplementary Figure 1. The transgene *Fgf2* is specifically expressed in endoderm cells in the FGF2 Tg embryos.

**Supplementary Figure 2**. FGF2 transgenic overexpression restores key vascular signaling adversely impacted by maternal diabetes.

Supplementary Figure 3. FGF2 overexpression abrogates maternal diabetes-induced cellular stress.

**Supplementary Figure 4**. The transgene *Survivin* is specifically expressed in Flk-1<sup>+</sup> progenitors in the Survivin Tg embryos.

Supplementary Figure 5. Survivin overexpression abrogates maternal diabetes-induced ER stress.

Supplementary Figure 6. Neuroepithelial cells up-take Survivin-contained exosomes derived from Flk-1<sup>+</sup> progenitors

**Supplementary Figure 7**. Exosomes from Flk-1<sup>+</sup> cells but not from C17.2 neural stem cells abrogates maternal diabetes-induced ER stress.

Supplementary Figure 8. GW4869 mimics maternal diabetes-induced ER stress and apoptosis.

Supplementary Figure 9. Uncropped Western

**Supplementary Table 1**. FGF2 overexpression during vasculogenesis ameliorates maternal diabetes-induced NTDs.

**Supplementary Table 2**. Survivin overexpression during vasculogenesis ameliorates maternal diabetes-induced NTDs.

Supplementary Table 3. Microinjecting exosomes to embryos reduce maternal diabetes-induced NTDs.

Supplementary Table 4. An exosome inhibitor induces NTDs.

Supplementary Table 5. Antibody information and other resource information.

Supplementary Table 6. PCR Primers.

# Supplementary Figure 1. The transgene Fgf2 is specifically expressed in endoderm cells in the FGF2 Tg embryos.



(a) GFP was overlapped with endoderm marker FOXA2 in the yolk sac of E8.5 FGF2 transgenic embryo. Representative sections through Heart (H), Neural fold (N) and York Sac (Y) were displayed. (b) The white squared areas in (a) were enlarged to show detail. Bars in a = 0.25 mm; Bars in b = 0.05 mm.





(a to d) Protein levels of (p)-AKT (a), BMP4 (b), VEGFR1 (c) and (p)-VEGFR2 (d) in E8.5 embryos. (e to g) mRNA levels of VEGFR1 (e), VEGFR2 (f) and BMP4 (g) in E8.5 embryos. Experiments were performed using three embryos from three different dams per group (n = 3). \* indicates significant difference compared to other groups (P < 0.05). ND: nondiabetic; DM: diabetes mellitus; WT: Wild-Type; FGF2: FGF2 transgenic mice.

# Supplementary Figure 3. FGF2 overexpression abrogates maternal diabetes-induced cellular stress.



(a) Representative images of DHE staining. Red signals of DHE staining were observed in the V-shaped neuroepithelia of E8.5 embryos exposed to diabetes mellitus (DM). All cell nuclei were stained with DAPI (blue). Bars = 30  $\mu$ m. (b) Levels of lipid hydroperoxide (LPO) in E8.5 embryos. (c to f) Protein levels of (p)-PERK (c), (p)-eIF2 $\alpha$  (d), (p)-IRE1 $\alpha$  (e) and CHOP (f) in E8.5 embryos. (g) XBP1 mRNA splicing in E8.5 embryos. Arrows point to the actual size of the bands. (h) mRNA levels of Calnexin, GRP94, PDIA, BiP, IRE1 $\alpha$  and CHOP. Experiments were performed using three embryos from three different dams per group (n = 3). \* indicates significant difference compared to other groups (*P* < 0.05). ND: nondiabetic; DM: diabetes mellitus; WT: Wild-Type; FGF2: FGF2 transgenic mice.

**Supplementary Figure 4.** The transgene Survivin is specifically expressed in Flk-1<sup>+</sup> progenitors in the Survivin Tg embryos.



(a) GFP was overlapped with Flk1 in the yolk sac of E8.5 survivin transgenic embryo. Representative sections through the Heart (H), Neural tube (N) and Yolk sac (Y) were displayed. (b) The white square areas in (a) were enlarged to show detail. Bars in a = 0.25 mm; Bars in b = 0.05 mm.

# Supplementary Figure 5. Survivin overexpression abrogates maternal diabetes-induced ER stress.



(a to d) Protein levels of (p)-PERK (a), (p)-eIF2 $\alpha$  (b), (p)-IRE1 $\alpha$  (c) and CHOP (d) in E8.5 embryos. Experiments were performed using three embryos from three different dams per group (n = 3). \* indicates a significant difference (*P* < 0.05) compared to the other groups. ND: nondiabetic; DM: diabetes mellitus; WT: Wild-Type; Survivin: Survivin transgenic mice.

Supplementary Figure 6. Neuroepithelial cells up-take Survivin-contained exosomes derived from Flk-1+ progenitors.



(a) Representative imaging of Flk-1 or Nestin (the neural stem cell marker) or CD63 (the exosome marker) (red fluoresce) with myc staining (green) for myc-tagged Survivin the yolk sacs (the top panel) and the neuroepithelia (the middle and the bottom panels) of E8.5 embryos. All cell nuclei were stained with DAPI (Blue). Bars = 30  $\mu$ m and 10  $\mu$ m, for the top panel and the low two panels, respectively. (b) Representative imaging of electron microscopy with CD63 (small-size silver grains) and myc (large-size silver grains) staining in E8.5 embryonic sections. Bars = 1  $\mu$ m. Experiments were performed using three embryos from three different dams per group (n = 3). \* indicates significant difference compared to other groups (P < 0.05). ND: nondiabetic; DM: diabetes mellitus; WT: Wild-Type; Survivin: Survivin transgenic mice.

**Supplementary Figure 7.** Exosomes from Flk-1<sup>+</sup> cells but not from C17.2 neural stem cells abrogates maternal diabetes-induced ER stress.



(a to d) Protein levels of (p)-PERK (a), (p)-IRE1 $\alpha$  (b), (p)-eIF2 $\alpha$  (c) and CHOP (d) in E8.5 embryos after intra-ammonic injections of exosomes in E8.0 embryos of diabetic dams. The group that did not receive any exosomes were mock injections of vehicle (PBS). Experiments were repeated three times (n = 3). \* indicates significant difference compared to other groups (P < 0.05).

# **Supplementary Figure 8.** GW4869 mimics maternal diabetes-induced ER stress and apoptosis.



(a to d) Protein levels of (p)-PERK (a), (p)-IRE1 $\alpha$  (b), (p)-eIF2 $\alpha$  (c) and CHOP (d) in E8.5 embryos after GW4869 injections. (e) Protein levels of cleaved caspase 3 after GW4869 injections in E8.5 embryos. (f). Protein levels of cleaved caspase 8 after GW4869 injections in E8.5 embryos. Experiments were performed using three embryos from three different dams per group (n = 3). \* indicates significant difference compared to other groups (P < 0.05). Veh: vehicle (saline) injections.





#### Figure 4



Figure 5



#### Figure 6





CD63 (50KD)











| NTDs |                          |                  |          |         |             |
|------|--------------------------|------------------|----------|---------|-------------|
|      | Experimental group       | Glucose level    | Genotype | Embryos | NTD Embryos |
|      |                          | (mg/dl)          |          |         | (NTD rate)  |
| ND   | FGF2-Tg male x WT female | $136.7 \pm 30.3$ | WT       | 56      | 0(0.0%)     |
|      | (17 litters)             | -                | FGF2-Tg  | 58      | 1(1.7%)     |
| DM   | FGF2-Tg male x WT female | 388.4±21.4       | WT       | 52      | 12(23.1%) * |
|      | (17 litters)             | -                | FGF2-Tg  | 53      | 3(5.7%)     |

Supplementary Table 1. FGF2 overexpression during vasculogenesis ameliorates maternal diabetes- induced

NTD, neural tube defect; ND: nondiabetic; DM: diabetes mellitus; WT: Wild-Type; Tg: transgenic. \* indicates significant difference compared to other groups (P < 0.05) analyzed by the Fisher's Exact test.

### Supplementary Table 2. Survivin overexpression during vasculogenesis ameliorates maternal diabetes-

|    | Experimental group           | Glucose level    | Genotype    | Embryos | NTD Embryos  |
|----|------------------------------|------------------|-------------|---------|--------------|
|    |                              | (mg/dl)          |             |         | (NTD rate)   |
| ND | Survivin-Tg male x WT female | $123.9 \pm 28.5$ | WT          | 47      | 0(0.0%)      |
|    | (11 litters)                 |                  | Survivin-Tg | 42      | 0(0.0%)      |
| DM | Survivin-Tg male x WT female | 426.8±26.7       | WT          | 63      | 17(26.98%) * |
|    | (17 litters)                 |                  | Survivin-Tg | 61      | 7(11.48%)    |

induced NTDs

NTD, neural tube defect; ND: nondiabetic; DM: diabetes mellitus; WT: Wild-Type; Tg: transgenic. \* indicates significant difference compared to other groups (P < 0.05) analyzed by the Fisher's Exact test.

### Supplementary Table 3. Microinjecting exosomes to embryos reduce maternal diabetes-induced NTDs

|    | Experimental group  | Glucose level | Genotype      | Embryos | NTD Embryos |
|----|---------------------|---------------|---------------|---------|-------------|
|    |                     | (mg/dl)       |               |         | (NTD rate)  |
| DM | WT male x WT female | 416.15±53.1   | Non-injection | 73      | 17(23.29%)  |
|    | (20 litters)        | -             | injection     | 26      | 1(3.85%) *  |
|    |                     | -             | Con-injection | 37      | 7(18.92%)   |

NTD, neural tube defect; DM: diabetes mellitus; WT: Wild-Type. \* Indicates significant difference (P < 0.05) when compared to other groups analyzed by the Fisher's Exact test. 7 embryos absorbed after injection, 3 embryos absorbed with non-injection.

|    | Experimental group  | Glucose level     | Genotype | Embryos | NTD Embryos |
|----|---------------------|-------------------|----------|---------|-------------|
|    |                     |                   |          |         |             |
|    |                     | (mg/dl)           |          |         | (NTD rate)  |
|    |                     |                   |          |         |             |
|    | WT male x WT female | $128.6 \pm 31.6$  | GW4869   | 96      | 7(7.29%) *  |
|    |                     |                   |          |         |             |
| ND | (15 litters)        |                   |          |         |             |
| _  |                     |                   |          |         |             |
|    | WT male x WT female | $121.38 \pm 8.78$ | vehicle  | 62      | 0(0.0%)     |
|    |                     |                   |          |         |             |
|    | (8 litters)         |                   |          |         |             |
|    |                     |                   |          |         |             |

### Supplementary Table 4. An exosome inhibitor induces NTDs

NTD, neural tube defect; ND: nondiabetic; WT: Wild-Type. \* Indicates significant difference (P < 0.05) when compared to other groups analyzed by the Fisher's Exact test.

| Antibodies name | Antibody sources          | Identifier |
|-----------------|---------------------------|------------|
| FGF2            | Millipore                 | 05-118     |
| p-FGFR          | Invitrogen                | 44-1140G   |
| FGFR            | Santa Cruz biotechnology  | 9740s      |
| p-AKT           | Cell Signaling Technology | 4060s      |
| AKT             | Cell Signaling Technology | 9272s      |
| BMP4            | Abcam                     | ab39973    |
| VEGFR1          | Invitrogen                | 13687-1-AP |
| p-IRE1a         | Invitrogen                | PA1-16927  |
| IRE1a           | Cell Signaling Technology | 3294       |
| p-PERK          | Cell Signaling Technology | 3179       |
| PERK            | Cell Signaling Technology | 3192       |
| p-eIF2a         | Cell Signaling Technology | 3597       |
| eIF2a           | Cell Signaling Technology | 2103       |
| СНОР            | Cell Signaling Technology | 5554       |
| Caspase8        | Millipore                 | AB1879     |
| Caspase 3       | Millipore                 | AB1899     |
| CD31            | Abcam                     | ab28364    |
| FLK1            | Santa Cruz                | sc6251     |
| nestin          | Invitrogen                | MA1-110    |
| survivin        | Cell Signaling Technology | 2808s      |
| myc             | Cell Signaling Technology | 2272s      |
| CD63            | Santa Cruz Biotechnology  | sc-5275    |
| DAPI            | Invitrogen                | D1306      |

# Supplementary Table 5. Antibody information and other resource information

| nvitrogen | A-21202                                      |
|-----------|----------------------------------------------|
|           |                                              |
| nvitrogen | A-21206                                      |
|           |                                              |
| nvitrogen | A-21203                                      |
|           |                                              |
| nvitrogen | A-21207                                      |
|           |                                              |
| Abcam     | ab8224                                       |
|           | nvitrogen<br>nvitrogen<br>nvitrogen<br>Abcam |

| Primers name | Primer sequences (5'-3') |                         |
|--------------|--------------------------|-------------------------|
| Fgf2         | Forward primer           | GCGACCCACACGTCAAACTA    |
|              | Reverse primer           | TCCCTTGATAGACACAACTCCTC |
| Fgfr         | Forward primer           | ACTCTGCGCTGGTTGAAAAAT   |
|              | Reverse primer           | GGTGGCATAGCGAACCTTGTA   |
| BiP          | Forward primer           | ACTTGGGGACCACCTATTCCT   |
|              | Reverse primer           | ATCGCCAATCAGACGCTCC     |
| СНОР         | Forward primer           | CGGAACCTGAGGAGAGAGTG    |
|              | Reverse primer           | CTGTCAGCCAAGCTAGGGAC    |
| Calnexin     | Forward primer           | ATGGAAGGGAAGTGGTTACTGT  |
|              | Reverse primer           | GCTTTGTAGGTGACCTTTGGAG  |
| IRE1a        | Forward primer           | ACACCGACCACCGTATCTCA    |
|              | Reverse primer           | CTCAGGATAATGGTAGCCATGTC |
| PDIA         | Forward primer           | CGCCTCCGATGTGTTGGA      |
|              | Reverse primer           | CAGTGCAATCCACCTTTGCTAA  |
| GRP94        | Forward primer           | TCGTCAGAGCTGATGATGAAGT  |
|              | Reverse primer           | GCGTTTAACCCATCCAACTGAAT |
| BMP4         | Forward primer           | TTCCTGGTAACCGAATGCTGA   |
|              | Reverse primer           | CCTGAATCTCGGCGACTTTTT   |
| VEGFRI       | Forward primer           | CCACCTCTCTATCCGCTGG     |
|              | Reverse primer           | ACCAATGTGCTAACCGTCTTATT |
| VEGFR2       | Forward primer           | TTTGGCAAATACAACCCTTCAGA |
|              | Reverse primer           | GCAGAAGATACTGTCACCACC   |
| survivin     | Forward primer           | CTACCGAGAACGAGCCTGATT   |

# Supplementary Table 6. PCR Primers

|                | Reverse primer | AGCCTTCCAATTCCTTAAAGCAG |
|----------------|----------------|-------------------------|
| $\beta$ -Actin | Forward primer | GAACCAGGAGTTAAGAACACG   |
|                | Reverse primer | AGGCAACAGTGTCAGAGTCC    |