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Supplemental Text 
 
Model and results: mathematical details 
 
1. Nucleation and polymerization kinetics and transport of actin. 
 
The model combines detailed kinetics of actin nucleation and polymerization (Berro et al., 2010) 
and mechanics of actin filament meshwork approximated as a visco-active gel (Kruse et al., 
2005). It is formulated in a continuous approximation that does not resolve individual filaments,  
but rather describes a distribution of actin in the patch by a continuous density of polymerized 
subunits   as a function of spatial location r  and time t , ),( tr . The actin density   is 
determined by concentrations of all of the species of actin in an actin patch including the newly 
polymerized ATP-bound subunits (FATP), the subunits aged by ATP hydrolysis and phosphate 
dissociation (FADP), the subunits bound by cofilin (FCOF), the filaments barbed-ends, both 
active and capped (BEa and BEc, respectively), and the slowly depolymerizing pointed ends 
(PE): 

XA Xn ][ , where X stands for FATP, FADP, FCOF, BEa, BEc, and PE; ][X  is the 

concentration of molecule X  in M; the prefactor An  converts the concentration in M into the 

density expressed in molecules per m3 ( 602An  m-3/M).  
 
The concentrations ][X  are governed by transport-reaction equations of the following type,  
 
                                                         Xt RXX  ])[(][ v .    (S1) 

 
The first term in Eq (S1) is the rate of change of ][X  due to advective flow of actin meshwork 
characterized by the vector field of local time-dependent velocities ),( trvv  . Like ][X  and 
surface densities ][Y of actin-nucleating species (see below), actin velocities ),( trv  are the 
model variables; they are governed by the mechanics of actin filament meshwork described in 
the next section. The second term in Eq (S1) is the sum of rates of all reactions affecting a given 
X . The wiring schematic of reactions involved in nucleation, polymerization,  and severing of 
actin, and capping of the barbed ends of actin filaments is shown in Figure S1. The diagram 
includes two more volume species that do not directly contribute to ),( tr : the active Arp2/3 
complex (ActiveArp) and the Arp2/3 complex in the filamentous actin network (FArp). While 
the equation governing FArp is of the form of Eq (S1), the equation for ActiveArp has an 
additional diffusion term:  
 

 ]ActiveArp[t   ActiveArp])ActiveArp[]ActiveArp([)( RD  vr ,  (S1*) 

 
where )(rD  is nonzero only in the vicinity of the rings of nucleation promoting factors (NPFs), 
as described in the next section (for reasoning and details, see (Nickaeen et al., 2019)).  
 
Reaction steps leading to formation of ActiveArp occur on the surface of the membrane, where 
they localize to the rings occupied by the nucleation promoting factors WASp (Figure S1). They 
involve dimers of WASp bound to G-actin monomers ( WGD ), Arp2/3 ternary complexes  
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consisting of Arp2/3 complex bound to WGD (ArpTernCompl), and activated Arp2/3 ternary 
complexes (FArpTernCompl), whose surface densities are described by rate equations, 
 

Yt RY  ][ ,      (S1**) 

 
where ][Y  is the surface density of a membrane-bound protein Y in molecules per squared 
micron. Note that while these variables are governed by ordinary differential equations, they also 
depend on spatial coordinates, given that YR  are nonzero at the rings occupied by WASp, and 

plArpTernComR  depends on [FATP] and [FADP] at the plasma membrane. 

 
Reaction rates structure in XR  and YR  are as in (Berro et al., 2010). The on (+) and off (-) rate 
constants of polymerization, capping, cofilin binding, and cofilin-dependent severing from 

(Berro et al., 2010) were modified by the factor 2
1

)/),(1(),( max tt rr , to reflect the effect 

of molecular crowding; and the rates of polymerization and capping were modified by an 
additional factor  ),( tr max/),(1  tr , to take into account that polymerization and capping 

slow down under load, where 13
max )3/4(   (  is the length of actin subunit; for derivation 

details, see (Nickaeen et al., 2019)). The expressions of XR  and YR  used in computations are 
shown below: 
 

Figure S1. Reaction diagram of nucleation and polymerization of patch actin proposed in (Berro et al., 2010), 
with added partitioning of species between membrane and cytosol (adapted from (Nickaeen et al., 2019)). 
Directions of arrows towards or from reaction nodes (yellow squares) determine roles of molecular species 
(green circles) in a particular reaction as reactants or products, and reactions without products describe 
disappearance of reactants from the patch. Species connected to reactions by dashed curves act as ‘catalysts’, 
i.e. they are not consumed in those reactions. 
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BEa]}[FCOF])[C(-BEc][ActiveArp][G{ Chop0CapCap0tionPolymerizaBEa   kkkkR  

BEc]}[])[PE]/[FFCOF][(-BEc][{ tot
-

zationDepolymeriChopCapCapBEc   kkkkR  

PE]}[])[BEc]/[FFCOF][-({ tot
-

zationDepolymeriChopPE  kkR  

FADP][])[PE]/[FFCOF][COF(-             

FCOF][FATP][

tot
-

zationDepolymeriChop0COFBinding

COFBindingHydrolysisFADP








kkk

kkR
 

FCOF]}[])[PE]/[FFCOF][(- ]FADP[COF{ tot
-

zationDepolymeriChopCOFBinding0COFBindingFCOF   kkkkR

 
ActiveArp][G0tionPolymerizaActiveArp

 kR   

FArp]}[FCOF])[ActiveArp][G{ Chop0tionPolymerizaFArp   kkR  

 
]plArpTernCom[)/)exp((WASpG rmationArpComplFo

2
peak00ngWASpGBindiWGD

  kttkR  

              ]WGD)[Arp( 0rmationArpComplFongWASpGBindi
  kk  

]plArpTernCom]))[FADP[]FATP([(-WGDArp ngArpGWBindirmationArpComplFo0rmationArpComplFoplArpTernCom   kkkR

 
FATP][])[PE]/[FFCOF][(-BEa][ tot

-
zationDepolymeriChopHydrolysistionPolymerizaFATP   kkkkR  

]mplFArpTernCo[-pl]ArpTernCom])[FADP[]FATP([ ionArpActivatngArpGWBindiplArpTernCom
  kkR  

        
In the expressions above, ]PE[]BEc[]BEa[]FCOF[]FADP[]FATP[/Ftot  An  and 

the zero subscript denotes constant concentrations and surface density. Table S1 summarizes the 
values of constants used in the reaction rate expressions and initial conditions for Eqs (1) and for 
the rate equations describing actin nucleation. For their sources, see Tables 1 and 2 of (Berro et 
al., 2010). Table S1 also includes the constants involved in actin mechanics: the actin subunit 
length    and the constants active  and viscous  setting the scales of active and viscous stress and 

of actin velocities; for derivation of active  and viscous , see (Nickaeen et al., 2019). 

 
2. Mechanics of actin meshwork. 
 
We interpret mechanics of actin meshwork as that of a compressible visco-active fluid (Kruse et 
al., 2005; Prost et al., 2015). In a viscosity-dominated environment of the actin patch, actin 
velocities ),( trv  are governed by the balance of local active and viscous forces (per unit 

volume), activef  and viscousf  (Kruse et al., 2005): 

 
0ˆˆ

),(

active

),(

viscous

activeviscous




tt rfrf

σσ ,     (S2) 

 

where ))()(,(ˆ viscous
TL vvσ   and Iσ ˆ)(ˆ active  a  are the viscous and active stress 

tensors, respectively ( Î is the unit tensor). In the expression for the viscous stress tensor, T)( v  
is the transpose of the velocity gradient tensor v , and ),( tLL r  is the local average length of 
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actin filaments, computed as N , with the number of subunits in a filament  ),( tNN r

])BEc[]BEa/([]F[ tot  ; ),( L  is the dynamic viscosity of the actin filament meshwork, and 

)(a  is the energy (per unit volume) stored in the meshwork during polymerization. By 

analyzing rheological properties of overlapping actin filaments (Gardel et al., 2003; Kasza et al.,  
 
Table S1. Model parameters 

 

* Maximum surface density of free WASp in the rings is the number of WASp molecules, that corresponds to 
concentration 0.23 M in a sphere of radius 0.15 m (Berro et al., 2010), divided by area of two rings, 4𝜋𝑟୬ୣୡ୩𝑤, 
where 𝑤 is the width of one ring. The value is shown for 𝑤 = 5 nm, used in all simulations, and  𝑟୬ୣୡ୩ = 3 nm 
(some simulations were run with neck radii of 6 and 10 nm).  
** Upon offsetting by  -20 s,  𝑡୮ୣୟ୩ ୒୔୊ becomes -2.8 s (Berro et al., 2010). 
 
2010; Tseng and Wirtz, 2004; Mullins et al., 1998), we derived the following constitutive 
relations for ),( L  and )(a : 

  

Parameter Value Units 
𝑘୅୰୮୅ୡ୲୧୴ୟ୲୧୭୬

ା  0.5 sିଵ 
𝑘୅୰୮େ୭୫୮୪୊୭୰୫ୟ୲୧୭୬

ା  0.8 μMିଵsିଵ 
𝑘୅୰୮େ୭୫୮୪୊୭୰୫ୟ୲୧୭୬

ି  0.74 sିଵ 
𝑘୅୰୮ୋ୛୆୧୬ୢ୧୬୥

ା  0.3 μMିଵsିଵ 
𝑘୅୰୮ୋ୛୆୧୬ୢ୧୬୥

ି  0.001 sିଵ 
𝑘େୟ୮

ା  7 μMିଵsିଵ 
𝑘େୟ୮

ି  0.004 sିଵ 
𝑘େ୓୊୆୧୬ୢ୧୬୥

ା  0.0085 μMିଵsିଵ 
𝑘େ୓୊୆୧୬ୢ୧୬୥

ି  0.005 sିଵ 
𝑘୔୭୪୷୫ୣ୰୧୸ୟ୲୧୭୬

ା  11.6 μMିଵsିଵ 

𝑘ୈୣ୮୭୪୷୫ୣ୰୧୸ୟ୲୧୭୬
ି  0.25 sିଵ 

𝑘୛୅ୗ୮ୋ୛୆୧୬ୢ୧୬୥
ା  42.9 μMିଵsିଵ 

𝑘୛୅ୗ୮ୋ୛୆୧୬ୢ୧୬୥
ି  25.7 sିଵ 

𝑘େ୦୭୮ 0.003 μMିଵsିଵ 

𝑘ୌ୷ୢ୰୭୪୷ୱ୧ୱ 0.3 sିଵ 

Arp଴ 1.3 μM 

C଴ 0.8 μM 

COF଴ 40 μM 

G଴ 21.6 μM 

WASp଴ 5192* molecules/μmଶ 

𝑡୮ୣୟ୩ ୒୔୊ 17.2** s 

σ 33.5 sଶ 

𝜅ୟୡ୲୧୴ୣ 3.69 × 10ିଷ𝑛஺
ିଶ Pa/(μM)ଶ 

𝜅୴୧ୱୡ୭୳ୱ 3.93𝑛஺
ିଶ Pa ∙ s/μM 

𝛿 2.7 nm 
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2
active

2
viscous

 )(

)/1( ),(





a

LNL
;    (S3) 

 
note that under the filament overlapping condition 1)( 3/12 N  (Doi and Edwards, 1998), the 
equations (S3) describing actin viscosity crosses from a linear dependence on   over to 

L2  (Nickaeen et al., 2019). 
 
3. Computation domain, boundary and initial conditions. 
 
Equations (S1), (S1*), and (S2)  are to be solved in a section of the cell embedding a head-neck 
invagination, see the diagram of a 3D computational domain   in Figure S2A (drawn not to 
scale). The domain is bounded  by the plasma membrane membrane , which includes the 

invagination, and two additional surfaces that define its vertical cylindrical sides and the 
horizontal floor. In order for the conditions at the outer limits of the domain, which are arbitrary, 
to not have significant effect on the results, we solved the model in a sufficiently large, 0.5 m in 
each coordinate direction, neighborhood of the invagination. Note that because the invaginated 
portion of the domain boundary can move, the shape of the computational domain generally 
changes with time.  
 

 
Because the model geometry, localization of membrane-bound species, and corresponding fluxes 
remain axisymmetric throughout the elongation process, solutions of the model are also 
axisymmetric. This reduces the problem to solving an equivalent 2D model in cylindrical 

Figure S2. Computational domain. (A) 3D diagram of the fragments of cell, , and  plasma membrane, including 
invagination, , comprising computational domain (not to scale). Two rings of NPFs are shown in dark red. 

When invagination elongates, both  and  change with time. (B) Computational domain of the equivalent 

2D problem in ( ) coordinates (not to scale). The domain boundary  includes: fragment of cell membrane 

, invagination , fragment of axis of symmetry, , and horizontal (  ) and 

vertical (  ) outer boundaries; . 
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coordinates ),( zr  in the domain   depicted Figure S2B (not to scale). The full 3D geometry is 
then restored for any time by revolving the 2D domain   around the axis of symmetry 0r .  
 
The equations (S1) for all volume variables, except for [ActiveArp], are of the hyperbolic type 
and subject to zero-flux boundary conditions at symm_axisoninvaginaticell_membr  (Figure 

S2B). For implementation details, see Supplemental Text of (Nickaeen et al., 2019). 
 
Eq (S1*), governing [ActiveArp], is of the parabolic type, because it includes a diffusion term. 
Therefore, boundary conditions for this equation must be specified at all boundaries in Figure 
S2B. At oninvaginati , it must satisfy the Rankine-Hugoniot boundary condition (Novak and 

Slepchenko, 2014), 
 

0|]mplFArpTernCo[]ActiveArp[),(
ringsionArpActivat  

kzrD r , 

 
where rings  are the locations on oninvaginati  occupied by the rings of the NPFs. Recall that in the 

equation above, [ActiveArp] is measured in M, whereas [FArpTernCompl] is in molecules per 
squared micron. Note also the disappearance of the advection term from the boundary condition, 
which is due to the no-slip boundary condition for Eq (S2) that we describe later in this section.  
 
The diffusion coefficient of [ActiveArp] ),( zrD  is defined as follows:  
 



 


otherwise  0,

),( if ),/||exp(
),( oninvaginatineckneck zrrrD

zrD AA ,  

 
with AAD  0.001 m2/s and   3 nm. The value of   is on the order of mesh sizes used in the 
computations; this parameter has little effect on the solution, because ActiveArp quickly 
converts to BEa. Because ),( zrD  is nonzero only in the tight space near the invagination, 

varying AAD  by several orders of magnitude did not change the simulation outcome in any 
significant way.  
 
The boundary conditions for [ActiveArp] at symm_axiscell_membr   were zero-flux. At the 

remaining two boundaries, boundary_1  and 2sboundary_ , we applied outflow boundary conditions.  

For reasons explained in Supplemental Text of (Nickaeen et al., 2019), we specified the outflow 
boundary conditions at boundary_2boundary_1   for all volume variables.  

 
Similar to the Stokes equation for a Newtonian fluid, Eq (S2) is elliptic in nature and hence 
requires that boundary conditions be specified at all boundaries of  . At cell_membr  and

oninvaginati , we applied the no-slip boundary condition,  

 
),(),( tt rurv   ( membraner ),  
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where the membrane velocity ),( tru  may be nonzero only for the points of oninvaginati . In the 

model, these points move with the same velocity,  ))(),(()( tutut zru ))(,0( tu , where )(tu  is 

governed by Eq (1) of the main text. At symm_axis , velocities ),( trv  were set to zero, and at 

boundary_2boundary_1  , the velocities satisfied the zero-stress boundary condition: 

0)ˆ)())()(,((  nIvv a
TL .  

 
The initial actin velocities and concentrations of all molecular species, except for  [FADP], 
[BEa], and [PE], were set to zero. Small initial values assigned to [FADP], [BEa], and [PE] 
reflected a small number of seed filaments (Chen and Pollard, 2013).  
 
4. Computation of the driving force. 
 
The elongation rate is determined in our model by the interplay of the driving force )(drive tf  

produced by the stresses in the assembling actin patch, and the resistive force )(resist tf  due to 

turgor pressure (the latter is defined by Eqs (2) and (2*) of the main text). From fluid mechanics, 
the driving force is found by integrating the viscous and active stress tensors projected on the 
outward normal (Landau and Lifshitz, 1989), 
 

dstf
tz nσσe    )( viscousactivedrive

oninvaginati

)ˆˆ()( ,    (S4) 

 
where the integral is carried over the time-dependent invaginated membrane )(oninvaginati t , 

T
zr nn ),(n is the outward unit normal vector to the membrane (directed towards the interior of 

 ), ze  is the unit vector parallel to the axis of symmetry, and ds is the area of an infenitesimal 
element of the invaginated membrane.  
 
5. Numerical solution of the model. 
 
5.1 Numerical methods 
 
We solved the equivalent 2D model numerically using a moving-mesh solver of COMSOL® 
Multiphysics (COMSOL Multiphysics, 2015). The solver utilizes Arbitrary Lagrangian Eulerian 
(ALE) methods based on finite-element (FE) discretization. The ALE methods are described in 
numerous publications, see e.g. (Donea et al., 2004). 
 
In an ALE simulation, the computational grid points move with the velocities defined as follows. 
At the moving interfaces, they coincide with the velocities of the points of the interface. In the 
interior of the domain, the velocities of the grid are arbitrary, so long as they comprise the 
smooth vector field that would maintain mesh quality throughout the simulation, while 
preserving mesh connectivity.  Correspondingly, the governing equations formulated with 
respect to a fixed (Eulerian) coordinate system should be reformulated based on the ALE 
methodology. For the implementation of our model in the ALE framework and details of its FE 
formulation, see the supplemental material of (Nickaeen et al., 2019). 
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5.2 Nonlinear solver, time stepper, and computational mesh 
 
The coupled nonlinear system of equations describing the cytoplasmic species, Eqs (S1, S*), the 
membrane-bound species, Eqs (S1**), the ring’s position, Eq (1) of the main text, and the actin 
velocities, Eqs (S2), the mesh update equations, along with the corresponding boundary 
conditions, were discretized using FE mesh and solved in a segregated manner in COMSOL. 
Details of such a segregated approach can be found elsewhere (Nickaeen et al., 2017; Ferziger 
and Perić. 2002). Briefly, the solution of the coupled nonlinear system of equations at each time 
step is broken into 4 consecutive steps: the Mesh update, the cytoplasmic concentrations update, 
the membrane ODEs update, and the actin velocity update. At each segregated solver’s step, we 
solve equations for a group of variables while treating the coupling terms consisting of 
other variables using a fixed-point iteration. Each step of the segregated solver may require 
additional linearization to account for nonlinearities related to the variables that are solved 
during that step. In these cases, Newton’s method with a constant damping factor of 1 was used 
and the system’s Jacobian was updated at each nonlinear iteration. The resulting linearized 
system was solved monolithically using a direct MUMPS solver with default solver parameters. 
Once all steps (one cycle) of the segregated solver is completed, the errors are checked and the 
iterations for additional, if necessary, cycles are performed to achieve the desired convergence 
criteria. 
 
Note that even though the force-balance equation does not involve time derivatives, the coupled 
system constitutes an initial-value problem, so that initial conditions must be specified for all 
variables (initial values of the actin velocities were set to zero). The time-dependent system was 
solved using a backward-differentiation time-stepping method of order 1-2. Relative and 
absolute tolerances of the time-stepper were set to 1 × 10ିହ and 1 × 10ି଺, respectively. Other 
default solver parameters were used without modification. We verified, by solving the problem 
with varying solver parameters (including the tolerances of the time-stepper), that the solutions 
did not depend on specific choices of parameters of the solver. 

 

Figure S3. Computational mesh: full view (A), and a zoomed-in view near the boundaries (B). 
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The computational domain was discretized using hybrid quadrilateral and triangular finite 
elements (Figure 3A) to accommodate large curvature changes and to allow for sufficient mesh 
refinement in regions near the invagination in the new head-neck geometry (Figure 3B). 
 
Full details of the numerical implementation of the model can be found in the attached 
COMSOL Multiphysics file (Figure2.mph). This simulation file corresponds to the head-neck 
geometry and is set up with parameters corresponding to Figure 2 of the main text.   
 
6. Effects of the timing of resistance reduction on beginning of elongation and maximum driving 
force. 
 
The timing of the resistance descent 0t  affects the time begint , at which the invagination begins to 

elongate, and the magnitude of the driving force at begintt  . Indeed, begint  satisfies the equaiton 

)()( resistdrive tftf  , so that begint  and )( begindrivel tf  are the coordinates of a point where the graphs 

  

 
of )(drive tf  and )(resist tf  intersect (Figure S4). As 0t  increases, the point of intersection ‘slides’  

up along the graph of )(drive tf , yielding higher begint  and )( begindrive tf . However, the effect 

saturates, once the point of intersection approaches the upper plateau of )(resist tf , as the ‘sliding’ 

Figure S4. Effects of 𝒕𝟎 on 𝒕𝐛𝐞𝐠𝐢𝐧 and 𝒇𝐝𝐫𝐢𝐯𝐞(𝒕𝐛𝐞𝐠𝐢𝐧). As 𝑡଴ increases, the graph of 𝑓୰ୣୱ୧ୱ୲(𝑡) (dashed 
curve) shifts to the right (Eq (2) of the main text), and the coordinates of its intersection with the graph 
of 𝑓 ୰୧୴ୣ(𝑡) (solid curve), 𝑡ୠୣ୥୧୬ and 𝑓 ୰୧୴ୣ൫𝑡ୠୣ୥୧୬൯, also go up. However, this effect saturates, once the 
point of intersection reaches the upper plateau of 𝑓୰ୣୱ୧ୱ୲(𝑡), as is the case with 𝑡଴

ᇱᇱᇱ; 𝑡଴
ᇱᇱ is an example of a 

a ‘near-saturation’ value of 𝑡଴. 
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along )(drive tf  slows down and eventually comes to a stop. Thus, the highest )( begindrive tf  is 

PR 2
head  and )()max( 2

head
-1

drivebegin PRft  , where -1
drivef  denotes the inverse function of )(drive tf . 

Both limits are controlled by turgor pressure. 
 
The effect of 0t on begint  and )( begindrive tf  begins to saturate when begint  approaches an inflection 

point of the rate of change of )(resist tf , as illustrated by begint  in Figure S4. From Eq (2) of the 

main text, the respective root *t  of 0)(resist
3  tf  is the solution of  )/)exp(( 0* tt 32  , 

and  )()( *resist*drive tftf )33/(2
head  PR . Then the ‘near-saturation’ values of 0t are 0t

 )32ln(*t )32ln())33/(( 2
head

-1
drive  PRf . 
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