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1 Explanation of the Build-in Models for Global Lifetime Analysis

In KiMoPack the following three models are in-built:

exponential | In this model all components (N) are taken to decay independent to each other in par-
allel. Hence, this model approximates the data by N independent exponential decays, namely
Cac = exp(−kc × ta). This exponential decay is convoluted for each component with a symmet-
ric Gaussian-shape response function. The extracted spectra are the pre-factors of the single
exponential decays (Scb = acb) and are commonly referred as decay associated spectra (DAS).
For more details see section Parallel Model (exponential).

consecutive, full_consecutive | Those models assume that initially one excited state is popu-
lated, which decays unbranched and unidirectional (A → B → · · · → N). Thus, the decay of the
initial component causes the population of a next component that turns to the following and so
on. That is why this kinetic model is often referred as sequential. As a result, the concentration
matrix is composed of both single exponential decays (describing the concentration profile of
the initial state X) and weighted sum of exponential functions for the other N− 1 components
that account for the population caused from the preceding component. The full_consecutive

model is formed by this step-wise integrated differential equation. The consecutive model
uses the exponential model to determine the lifetimes and the full_consecutive model to
calculate the species associated spectra (SAS). For more details see section Sequential Model
(full_consecutive).

Details about the estimation of the errors of the fit parameters can be found in section Error Analysis
.

1.1 Parallel Model (exponential)

A typical time-resolved dataset is composed of intensities/signals collected at a set of n probe wave-
lengths {λ1, λ2, ..., λn} and at m times relative to the instant of excitation {t1, t2, ..., tm}.

Example: Parallel Model

A B C

k0 k1 k2

d[A]

dt
= −k0 · [A]

d[B]

dt
= −k1 · [B]

d[C]

dt
= −k2 · [C]

 ta.mod=’exponential’
 par=lmfit.Parameters()
 par.add(’k0’,value=1/2.5,vary=True)
 par.add(’k1’,value=1/150,vary=True)
 par.add(’k2’,value=1/250000,vary=True)

Figure S1: Left: Schematic sketch of the parallel model describing the independent decay of the three
initially excited states A, B and C with k0, k1 and k2, respectively, populating the final states (A', B'
and C') and the corresponding rate equations of the parallel occurring elementary reactions. Right:
Minimal python code example for using such a parallel model from the internal kinetic models.

The parallel model description is based on a number of initially photoexcited states N, that are taken
to decay independently from each other following first order kinetics. Hence, the concentration ma-
trix (C) for each single compartment {p1, p2, . . . , pN} reads

dpc

dt
= −kc · pc with c ∈ [N] . (1)
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Initially (t = 0), all compartments start decaying and thus it is required, that the starting concentra-
tions of all compartments equal 1 (p0

1 = p0
2 = · · · = p0

N = 1). Hence, the solution of the first order
rate equations (1) yield an exponential decay with a characteristic rate-constant (kc) for each com-
partment. Those exponential functions represent the elements of the concentration matrix within the
parallel model, which reads as

C∥
ac = exp (−kc · ta) with c ∈ [N], a ∈ [m] (2)

If the width of the instrument-response function (IRF) is negligible, the parallel model for the ∆Abs
transient absorption signals reads

∆Aab =
N

∑
c=1

C∥
ac · S∥

cb with a ∈ [m], b ∈ [n] . (3)

If the IRF is not negligible the exponential decay is convoluted with a Gaussian function (gauss),
which reads as

IRF =
1

σ ·
√

2 · π
· exp

(
−0.5 · (t − µ)2

σ2

)
with µ ∈ [m] (4)

and describes the IRF via a parameter for the location (time-zero, µ) and the width (σ). When employ-
ing the parallel fitting model (exponential), such a symmetric response function is formed for each
compartment (N). The S∥

cb in equation (3) represent the estimated amplitudes a∥cb of the exponential
decays defined in equation (2) for each probe wavelength {λ1, λ2, . . . , λn}, and thus, the so-called
decay associated spectra (DAS) and read as

S∥
cb = a∥cb with c ∈ [N], b ∈ [n] . (5)

In connection with equation (2), negative contributions (a∥cb < 0) describe the rise and positive con-

tributions (a∥cb > 0) the decay of ∆Abs signals.

1.2 Sequential Model (full_consecutive)

The sequential model assumes that initially a single excited state is populated, which in turn decays
unbranched and unidirectional. In general, the rate equations for that model can be solved by

C↑
ac =

d

∑
c=1

bcd · exp (−kc · ta) with d ∈ [N], a ∈ [m] , (6)

where kc is the decay rate of compartment c and bcd are the amplitudes of the exponential decay,
which are defined by Eq. (7). Thus, each compartment concentration is a linear combination of the
exponential decays and the amplitudes bcd.

bcd =
d−1

∏
e=1

ke ·
(

d

∏
f=1, f ̸=c

(
k f − kc

))−1

with c, d ∈ [N] , b11 = 1, c ≤ d. (7)

With that, the sequential model for the time-resolved spectra (e.g., transient absorption data) reads as

∆Aad =
N

∑
c=1

C↑
ad · S↑

db with a ∈ [m], d ∈ [n] . (8)
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The species associated spectra (SAS) within the model S↑ are defined as

S↑
db = a↑db with d ∈ [N] .b ∈ [n] (9)

In a three component example, the first compartment (component A) is initially excited and irre-
versibly decays with the decay-rate k0 to form component B, which is represented by the second
compartment. This component B also decays irreversibly but with rate-constant k1 thereby forming
C, which decays with k3 back to the ground state (A → B → C → GS). This kinetic scheme is de-
picted in Figure S2. The corresponding rate equation for the first compartment (initially excited state
A) reads as

d[A]

dt
= −k0 · [A] . (10)

Example: Sequential Model

A

B

C

k0 k1

k2

d[A]

dt
= −k0 · [A]

d[B]

dt
= k0 · [A]− k1 · [B]

d[C]

dt
= k1 · [B]− k2 · [C]

 ta.mod=’consecutive’
 par=lmfit.Parameters()
 par.add(’k0’,value=1/2.5,vary=True)
 par.add(’k1’,value=1/150,vary=True)
 par.add(’k2’,value=1/250000,vary=True)

Figure S2: Left: Schematic sketch of a sequential model, in which the first compartment (A) is initially
excited and irreversibly decays with the decay rate k0 to form component B (second compartment).
This component B also decays irreversibly but with the rate-constant k1, thereby forming C, which
decays with k2, and the corresponding rate equations for the concentrations of A, B and C. Right:
Minimal python code example for using such a parallel model from the internal kinetic models.

Since only the first compartment is initially excited, the initial conditions (t0) for this case are [A]0 = 1
and [B]0 = [C]0 = 0. Hence, the decrease of [A] yields a first order rate equation (see Eq. 2). The
concentrations of B and C are decaying as described by the following rate equations.

d[B]

dt
= k0 · [A]− k1 · [B] = k0 · exp (−k0 · t)− k1 · [B] (11)

d[C]

dt
= k1 · [B]− k2 · [C] (12)

Integration of 11 gives

[B] =
k0

(k1 − k0)
· [exp (−k0 · t)− exp (−k1 · t)] . (13)

Substituting [B] in formula 12 with the expression 13 allows to solve the differential equation for [C]
yielding

[C] =
k0 · k1

(k1 − k0)(k2 − k0)(k2 − k1)
· [−(k2 − k1) exp(−k0 · t)

+ (k2 − k1)(k2 − k0) exp(−k1 · t) + (k1 − k0) exp(−k2 · t)] . (14)
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Therefore, the concentration matrix of the sequential model (C↑
ad) reads ase−k1·t1 b12 · e−k1·t1 + b22 · e−k2·t1 b13 · e−k1·t1 + b23 · e−k2·t1 + b33 · e−k3·t1

...
...

...
e−k1·tm b12 · e−k1·tm + b22 · e−k2·tm b13 · e−k1·tm + b23 · e−k2·tm + b33 · e−k3·tm

 . (15)

The respective concentrations in the sequential model (see Eq. 15) are a linear combination of mono-
exponential, first-order decays. As a consequence, the C↑ (cf. Eq. 15) can be expressed in terms of C∥

(cf. Eq. 2) via
C↑ = C∥ · Φ . (16)

Within the three-compartment example, Φ reads as1 b12 b13
0 b22 b23
0 0 b33

 (17)

where the upper triangular matrix of A contains the elements bcd as defined in equation (7). Com-
bining equations (3), (8), (16) gives the relation between the DAS and SAS matrices:

C∥ · S∥ = C∥ · Φ · S↑

↔ S∥ = S↑ · AT (18a)

↔ S↑ = S∥ ·
(

A−1
)T

(18b)

Thus, the DAS are a linear combination of the SAS and vice versa: The j-th SAS is a linear combination
of the j-th and the following DAS. For instance, the first SAS (at t = 0) is the sum of all DAS, and the
final SAS is proportional (factor b−1

33 ) to the final DAS.
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2 Error Analysis

Estimating errors correctly is based on estimating the validity of the full set of optimized parameter.
For this we use the F-statistics of a single or multiple combined datasets to define a cutoff value of the
χ2 at which we have to assume that the 0-Hypothesis (the two models with the parameters are the
same) has to be rejected in favor of the alternative hypothesis (the models with the parameters are
different). Into the F-statistics go all parameter that influence the quality of the modelling. These are
all free parameters of the model (e.g., the kinetic parameter) plus for each spectral component that
is extracted one parameter for each wavelength that is fitted. So the number of parameters is most
strongly influenced by the number of spectral species that are to be extracted.

number of fitted parameter=
number of species · number of spectral points + number of (kinetic) parameters

The F-statistics defines a value that is called free points that is calculated as

number of free points =
total measured points – fitted parameters

The total spectral points are all the points that we after pre-treatment of the data still have in the
dataset:

total measured points =
number of spectral points · number of time points (for each dataset included)

At the cutoff value the χ2 of the parameter set is then so much larger than the minimum χ2 that
this cannot be explained statistically anymore. We can now define a target quality, meaning, what
fraction of the data lays inside and outside of the confidence environment in the definition 100% ·
target_quality. For each (varied) kinetic parameter we now perform a separate optimization, that
attempts to find the upper and lower bound at which the total error of the re-optimized globally fit-
ted results reaches this cutoff value. All other (varied) parameters, including the spectral intensities
are re-optimized for each step of this test. This means that the error calculation calls the global opti-
mization routine (with one parameter less) many times and might run for long time, typically 50–100
times longer than a single optimization. The width of the extracted confidence interval is however a
very good estimation for the quality of the model vs. the measured data quality. Practically the error
estimation is triggered by adding the confidence_interval option in the Fit_Global function. The
fit results will then contain the confidence intervals.

Plotting the confidence intervals into the kinetics is challenging, as a large number of combina-
tions might need to be plotted. The user might however choose the limits from the parameter that
are representative, select the vary=False option for all parameter and create such a plot using the
Compare_at_wave or Compare_at_time functions (see section Tutorials ).
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3 Data Export

When the data is exported using the Save_data function with the settings save_RAW=True and
save_Fit=True the following twelve files are written to the specified folder.

file-endings and description of saved files containing pre-processed/raw data:

*_chirp_corrected_raw_matrix.dat chirp corrected 2D-matrix at all studied delay times and probe
wavelengths

*_matrix used as fit input.dat 2D-matrix at probe wavelengths and delay times as set by bordercut

and timelimits

*_chirp_corrected_RAW_Spectra.dat transient spectra at selected delay times (rel_time)

*_measured_spectra.dat transient spectra at all studied delay times

*_chirp_corrected_RAW_kinetics.dat kinetic traces at selected probe wavelengths (rel_wave)

*_measured_kinetics.dat kinetic traces at all studied probe wavelengths

File-endings and description of saved files containing fitted data:

*_matrix calculated during fit.dat fitted 2D-matrix at probe avelengths and delay times as set by
bordercut and timelimits

*_error_matrix calculated during fit.dat difference of fitted and pre-processed 2D-matrix

*_fitted_spectra.dat fitted transient spectra at selected delay times (rel_time)

*_fitted_kinetics.dat fitted kinetic traces at selected probe wavelengths (rel_wave)

*_fit_results_parameter.par summary of starting and optimized fit paramaters

*_DAS-SAS.dat decay-(mod='exponential') or species associated spectra (mod='consecutive')
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4 Tutorials

4.0.1 The Model Substance - Ru-dppz

Several spectroscopic studies revealed, that this reminiscent property originates from the two accep-
tor orbitals of the dppz ligand, namely the phenanthroline (phen) and phenazine (phz) moiety.[1, 2]
This yields the existence of two low-lying MLCT states in the excited state manifold, i.e., a bright
(emissive) 3MLCTphen and a dark (non-emissive) 3MLCTphz state.[3, 4, 5, 6, 7] The population ratio
between those two states can be altered by changing the solvent. The population of the dark state is
reduced, e.g. in organic solvents, but increased in aqueous solution as the energy of the phz-centered
state is sufficiently lowered by the interaction with surrounding water molecules.[3, 4, 6, 8, 9, 10]

For example, in ACN solution it is known that the light-induced dynamics occurs exclusively
in the proximal ligand sphere like in the structurally closely-related complexes [Ru(tbbpy)3]2+ or
[(tbbpy)2Ru(phen)]2+ (phen = 1,10-phenanthroline).[11, 12, 13] The corresponding dynamics is typi-
cally described quantitatively by two components (characteristic time-constants), namely the popu-
lation of a long-lived state via intersystem crossing, vibrational cooling and inter-ligand hopping (k0),
which radiatively decays back to the ground state on the sub-µs timescale (k1).[14, 11, 12, 13] There-
fore, two rate constants are defined and added to the lmfit parameter object via par.add('k0',

value=1/2, vary=True) and par.add('k1', value=1/180000, vary=False) (see section 4.1).

4.0.2 Working with Jupyter Notebooks

KiMoPack is written in python and can be installed by the common package managers conda[15]
or pypi[16]. We recommend to use Jupyter notebooks for the analysis, allowing a suitable interface
for working on the data using interactive plots and various parameters and functions. To open the
notebook, you first need to install python and Jupyter notebook on your computer. The easiest way to
do this, is to download and install the Anaconda package or to install only Jupyter. After installation,
you need to install some extra packages, namely qt (for active plots) and lmfit (for fitting):

conda install -c anaconda qt
conda install -c conda-forge lmfit

Tutorials on working with Jupyter Notebooks can be found elsewhere, e.g., the Jupyter website.
Briefly, to use the program, open Jupyter Notebook, either directly from a terminal or from the
Anaconda Navigator. This should open a new tab in your browser. The way the notebooks work is
that you have cells with blocks of code. If you click on a cell and hit Run at the top (or Shift+Enter), it
will execute the code in this cell. If you keep hitting Run, it will run the following cell, so to run the
whole script, just keep hitting run, you do not have to select every cell manually.

Over the last decades a step-wise approach to transient data analysis has been established,
through which the user is guided with the Jupyter worksheets that accompany KiMoPack. The
Jupyter notebooks contain the typical parameters that are adjusted during a representative analysis
session, so that new users can easily change (and comment) the values and experienced users have
a customizeable and reproducible workflow. Typically, a new Jupyter notebook is created from the
templates for each new analysis which then documents the procedures, parameters and results in a
visible way, but also enables very fast data processing. If e.g. two similar data sets are to be analyzed,
the time from importing the second file to the adjusted and saved results is despite being only a few
seconds very reliable, provide meaningful results and can be used to compare the two datasets or
create e.g. an experimental logfile. To learn their usage we recommend our tutorial notebooks that

S 9

https://docs.anaconda.com/anaconda/install/index.html
https://jupyter.org/install
https://jupyter.org/documentation


contain two extensively commented analysis sessions. Typically a new Jupyter notebook is created
from the templates for each new analysis which then documents the procedures, parameters and
results in a visible way, but also enables very fast data processing.

4.1 Tutorial 01_KiMoPack_Fitting-1.ipynb

[1]: import os,sys

import pandas as pd

import numpy as np

import matplotlib,lmfit

import matplotlib.pyplot as plt

try:

import KiMoPack.plot_func as pf

except:

print("General installation did not work, try to import from the same folder as 

↪→a workaround")

import plot_func as pf

Plot_func version 6.2.8

was imported from path: (path)

The current working folder is: (path)

4.1.1 Load Data

In the first step, the raw data must be passed to the TA object. Herein, it is demonstrated how
to load a single measurement file. For learning how to load and average multiple scans see the
KiMoPack_Rudppz-tutorial_ScanHandling.ipynb

In this example, the transient absorption data of a Ru-complex, namely [(tbbpy)2Ru(dppz)]2+, col-
lected upon 400 nm excitation in three different solvents, namely dichloromethane (DCM), acetoni-
trile (ACN) and water (H2O) is analysed. The tutorial is structured in such a way that only the data
recorded in one solvent can be imported and analysed. To change the solvent, the solvent must be
adjusted by the solvent parameter in the following cell and all subsequent steps must be repeated.

[2]: solvent = 'ACN' #'DCM' or 'H2O'

filename = 'TA_Ru-dppz_400nm_'+str(solvent) # set name of the file to fit

# set path to file to fit

filepath = os.path.join(os.getcwd(), 'Data', 'Fitting-1')

The data is loaded by specifying the filename (string) and path of the TA-data file (string, path-
variable).

[3]: ta=pf.TA(filename=filename+'.SIA', # title of the measurement file

path=filepath) # path to measuremnt file

Hint: if the work with folders and filenames is cumbersome, by replacing the filename with "gui" a
window pops up and a file can be selected with the mouse. »ta=pf.TA(’gui’)«
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4.1.2 Background correction and filtering

• Filter_data: remove artificial data points |∆OD| > 20
• Background: substract background before time_zero

[4]: ta.Filter_data(value=20) # remove artificial values

ta.Background(uplimit=-0.5) # subtract background before time zero

4.1.3 Arrival time correction

Correct for different arrival times of different probe wavelength (sometimes called chirp) using
Man_chirp or Cor_Chirp (checks for existing chirp data). The funtion opens an interactive 2D-contour
plot of the TA data in a specified delay-time window. A desired colour map can be chosen to enable
a good correction (see https://matplotlib.org/stable/tutorials/colors/colormaps.html).

• Firstly, the intensity range can be altered by clicking (left-click) on the scale on top of the plot.
Once a suitable range is found it needs to be accepted on the lower left button.

• Secondly, user selects (left-click) a number of points along the dispersion curve, which are
passed to a 4th order polynomial approximation by a middle-click.

• Thirdly, the point that is declared as time zero can be selected (right-click) and confirmed
(accept-button).

In all of the selections a left click selects, a right click removes the last point and a middle click
(sometimes abbreviated by clicking left and right together) finishes the selection. If no middle click
exists, the process automatically ends after max_points (default: 40).

Try ta.Man_Chirp(shown_window=[-2.3,1.8]) to follow the chirp correction on your own

[5]: %matplotlib qt

# choose time-window used in the active plot

ta.Cor_Chirp(shown_window=[-2.3,1.8])

Note, "shown_window" is a special option chosen here because the arrival time correction needs to
be performed over an extended range. Without this option -1ps to 1ps is the Default range.

4.1.4 Plot the standard corrected data

In this example the pre-processed data is visualized in three plots (as indicated in the titles), namely
as kinetic traces (x: ∆t, y: ∆Absorbance), transient spectra (x: λprobe, y: ∆Absorbance) and 2D-contour
plot (x: λprobe, y: ∆t, z: ∆Absorbance). Several features can be sused to alter the appearance of those
plots (see Documentation or type ta.Plot? in the notebook).

The parameters rel_time and rel_wave are used to pre-select interesting ∆t and λprobe values to
show specific kinetic traces (plotting=[1]) or transient spectra (plotting=[2]) of the dataset. The
scattercut argument takes a probe wavelength interval that is ignored (set to zero) in the plots, to
suppress the plotting of scattered excitation light. Here the scatter region was found to be between
380 and 405 nm (excitation at 400 nm). The time_width_percent variable is set to 5%, meaning that
the transient spectra are shown at the given delay time plus/minus 5% of that value (e.g. 0.522 ps
means 0.5 to 0.55 ps). The respective range is indicated in the legend of the transient spectra. In all
plots the unfitted data is plotted as dots, interpolated with lines (Savitzky-Golay).
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[6]: %matplotlib qt

# certain delay times for TA spectra plot

ta.rel_time=[0.5,1.5,20,100,500]

# certain probe wavelengths for kinetic traces plot

ta.rel_wave=[350,440,520,600]

# ignored probe wavelength region (set to zero)

ta.scattercut=[380,405]

# number in percent defining a delay time region plotted in the TA spectra

ta.time_width_percent=5

ta.Plot_RAW(title='Kinetic traces at selected probe wavelengths', plotting=[1])

ta.Plot_RAW(title='TA spectra at selected delay-times', plotting=[2])

ta.Plot_RAW(title='2D-Plot', plotting=[0])

Figure S3: Plotting the shaped data (Raw plotting) as 2D matrix (top), spectra at selected times (mid-
dle) and kinetic traces for selected times (bottom)
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4.1.5 Plot Singular Value Decomposition (SVD) Results

To estimate the number of processes that contribute to the overall spectral changes singular value
decomposition can be used. Herein, the SVD component strength plot reveals that circa three com-
ponents need to be used to describe the overall TA data.

[7]: ta.Plot_RAW(title='SVD', plotting=[3], savetype='pdf')

Figure S4: Plot of Single Value Decomposition showing the single value (component strength) top
left, the temporal evolution of the vector in the top right and the spectrum of the main vectors in the
bottom

4.1.6 Fitting of the Data

4.1.6.1 Define fitting parameters Upon photoexcitation of [(tbbpy)2Ru(dppz)]2+ (Ru-dppz) at 400
nm an ensemble of metal-to-ligand charge-transfer (MLCT) states localized in both ligand spheres,
i.e., 1MLCTtbbpy and 1MLCTdppz is populated. Extensive photophysical studies revealed that the sub-
sequent excited state dynamics is determined by the polarity and hydrogen bond donor ability of the
surrounding solvent molecules. It was found that long-lived emissive states are populated in polar
aprotic solvents. However, this emission switches off when the molecules interact with water. This
interesting property is based on a solvent sensitive excited state equilibrium between a non-emissive
and an emissive state localized on the phenazine (phz) and phenanthroline (phen) moiety of the dppz
ligand.

Parameter for Dichloromethane Several studies in dichloromethane solution reveal that primarily
the bright phen-centered state (3MLCTphen) is populated by intersystem crossing, vibrational cooling
and inter ligand hopping. This bright state radiatively decays within circa 180 ns. Hence, the photoin-
duced dynamics in dichloromethane is herein described by two characteristic time constants, namely
k0 and k1. The value for k1 is fixed to 180 ns as obtained from nanosecond time-resolved studies.
Additionally, a parameter for time zero (t0) and the pump-pulse width (resolution) are passed to
the parameter object. For each parameter it can be specified whether it is optimized (vary=True) or
kept constant (vary=False) in the fit.
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[8]: ta.par=lmfit.Parameters()

# rate constants

ta.par.add('k0',value=1/2.0, min=1/10.0, max=1/0.25, vary=True)

ta.par.add('k1',value=180e3, vary=False)

# time-zero parameter fixed during fit

ta.par.add('t0',value=0.0, min=-0.1, max=0.1, vary=False)

# pump-pulse width parameter fixed during fit

ta.par.add('resolution', value=0.12, min=0.04, max=0.20, vary=False)

Parameter for Water The composition of the initially excited states is only minorly affected by the
solvent. However, the phz-centered states are stabilized in aqueous environment due to a hydrogen
bond interaction of the phz-nitrogen atoms with surrounding water molecules. Therefore, it was
found that rapidly a phz-centered excited state is formed in water that non-radiatively decays back
to the ground state within circa 2 ns. It is first a fast process with excited states with excess electron
density on both, the phen and phz sphere of the dppz ligand are populated by intersystem crossing,
vibrational cooling and inter ligand hopping. The dark phz-centered state is formed upon intraligand
charge-transfer in a second step. Thus, also the excited state dynamics of Ru-dppz in H2O can be
described with three kinetic parameters (k0, k1 and k2), that are added to the parameters object. In
contrast to the initial guesses in ACN solution, k3 is optimized during the fit and initially set to 2.1
ns.

[9]: ta.par=lmfit.Parameters()

# rate constants

ta.par.add('k0',value=1/0.5, vary=True) # optimized during fit

ta.par.add('k1',value=1/100, vary=True) # optimized during fit

ta.par.add('k2',value=1/1500, vary=True) # optimized during fit

# time-zero parameter fixed during fit

ta.par.add('t0',value=0.0, min=-0.5, max=0.5, vary=True)

# pump-pulse width parameterfixed during fit

ta.par.add('resolution', value=0.12, min=0.04, max=0.20, vary=False)

Parameter for Acetonitrile Extensive photophysical studies in acetonitrile revealed that due to the
stabiization of the charge-transfer excited states, the dark phz-centered state is formed from the bright
3MLCTphen state and decays back to the ground state on the sub-ns timescale. This formation of a
long-lived long-lived 3MLCTphen state is manifested, i.e., in the spectral changes at 340 and 580 nm,
which can be quantitatively described by two characteristic time-constants: the first one associated
with intersystem crossing, vibrational cooling and interligand hopping and a second one attributed
to the non-radiative decay of a subset of 3MLCT states with excess electron density on the phenazine
sphere of the dppz ligand (3MLCTphz), ultimately populating the long-lived 3MLCTphen state. Hence,
the three kinetic parameters k0, k1 and k2 are added to the the parameter object. The value for k2 is
fixed to 180 ns as obtained from nanosecond time-resolved studies.

[10]: ta.par=lmfit.Parameters()

# rate constants

ta.par.add('k0',value=1/2, min=1/10.0, vary=True)

ta.par.add('k1',value=1/150, min=1/200.0, vary=True)

ta.par.add('infinite') # or: ta.par.add('k2',value=180e3, vary=False)

# time-zero parameter fixed during fit
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ta.par.add('t0',value=0.0, min=-0.1, max=0.1, vary=True)

# pump-pulse width parameter fixed during fit

ta.par.add('resolution', value=0.12, min=0.04, max=0.20, vary=False)

4.1.6.2 Kinetic Modeling (Parallel Model) In the parallel model a number of initially photoex-
cited states (herein N=3) are taken to decay independently from each other following first order ki-
netics. Thus the concentration profile for each component (Cac) is decribed by an exponential decay
(exp (−kc · ∆ta)). If the width of the instrument-response function is negligible, the parallel model
for the TA signals reads

∆Aab =
N

∑
c=1

Cab · Scb with a ∈ {∆t1, ∆t1, . . . , ∆tm}, b ∈ {λ1, λ2, . . . , λn}

The Scb matrix represents the amplitudes of the exponential decays at each probe wavelength, namely
the decay associated spectra. Negative contributions describe the build-up and positive contributions
the decay of ∆Aab signals.

Figure S5: Schematic sketch of the parallel model

[11]: # model selection (independent parallel decay)

ta.mod='exponential'

ta.timelimits=[0.3,2000] # set maximum and minimum time for fit

# ta.ignore_time_region=[-0.2,0.3] # alternative to blind out the region around 

↪→time=0

# to avoid the artifacts but allow the use of 

↪→pre-zero data

ta.Fit_Global() # global lifetime analysis (kinetic modeling)

we use adaptive mode for nelder

Fit Results:

Model Used: exponential

The minimum error is:1.91656427e-02

The minimum R2-value is:9.99222331e-01

In Rates

value init_value vary min max expr
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k0 0.270371 2 True 0 inf None

k1 0.0105779 0.01 True 0 inf None

k2 2.4758e-13 0.000666667 True 0 inf None

t0 -0.00202596 0 True -0.5 0.5 None

resolution 0.12 0.12 False 0.04 0.2 None

The rates converted to times with unit ps

value init_value vary min max expr

k0 3.69862 0.5 True 0 inf None

k1 94.5365 100 True 0 inf None

k2 4.0391e+12 1500 True 0 inf None

t0 -0.00202596 0 True -0.5 0.5 None

resolution 0.12 0.12 False 0.04 0.2 None

4.1.7 Plot Fit Results

[12]: plt.close('all') # as many plots will be generated this is a good habit.

ta.intensity_range=[-70e-3,30e-3]

# We choose a slightly different intensity range to make the dynamics visible

ta.Plot_fit_output(title='2D-Plots', plotting=[4])

Figure S6: Plotting of the Measured (top), Modelled (middle) and difference matrix (bottom). Note
the different intensity scales.
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[13]: ta.Plot_fit_output(title='TA spectra', plotting=[3])

ta.Plot_fit_output(title='kinetic traces', plotting=[2])

ta.Plot_fit_output(title='summed TA signals', plotting=[1])

Figure S7: Plotting the fitted measured and fitted spectra (top), kinetics of selected wavelength (mid-
dle) and all wavelength summed (bottom). The selection of wavelength and time-points to plot is
using the same parameter as for the RAW plotting above.
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[14]: ta.Plot_fit_output(title='Decay Associated Spectra', plotting=[0])

ta.Plot_fit_output(title='concentration profiles', plotting=[5])

Figure S8: Plotting the extracted DAS/SAS (top) and the temporal evolution of the
species/concentrations (bottom)

4.1.8 Save Results

The whole project, including e.g. the fit parameters, settings for the plots and fit results can be saved
by the Save_project function. Thereby a hdf5 file is written to the specified output folder. The pre-
processed data (save_RAW=True) as well as the fitted data and fit results (save_Fit=True) can be saved
as ascii files to a specified folder by Save_data. Details of the exported files are given in Section Data
Export

Additionally the graphs can be saved by the Save_Plots function. Thereby, temporarily the
save_plots_to_folderoption is set to true whereby the pre-processed (e.g. *_RAW_SPEK.pdf,
_RAW_SEL.pdf) and fitted (e.g.* _DAC.pdf, _concentrations.pdf*) data are replotted.

If just the standard filenames should be used then an empty call to the saving functions is sufficient.

[15]: ta.Save_project()

ta.Save_data()

ta.Save_Powepoint()

In the example, the files are saved to the folder of the raw data in a subfolder named ‘results_solvent’.
Additionally some other options are chosen to select only specific files.
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[16]: ta.Save_project(filename=filename+'_paral', # set save name

path='results_'+str(solvent)) # set name of save folder

ta.Save_data(save_RAW=False, # do not save the pre-processed data

save_Fit=True, # save the fitted data

filename=filename+'_paral', # set save name

path='results_'+str(solvent)) # set name of save folder

#ta.Save_Plots(path='results_'+str(solvent), # set name of save folder

# title='Ru-dppz, 400nm, '+str(solvent), # set plot titles

# filename=filename+'_paral', # set save name

# savetype='pdf', # set save type

# cmap=pf.cm.PiYG) # define colormap

ta.Save_Powerpoint(save_RAW=False, # do not save pre-processed data

save_Fit=True, # save fitted data

filename=filename+'_paral', # set save name

path='result_summary', # set name of save folder

savetype='pdf') # set savetype (pdf, svg or pptx)

The project was saved to (path to files)

4.1.8.1 Kinetic Modeling (Sequential Model) In the sequential model initially one component
is excited and irreversibly decays forming a second component. Subsequently this component irre-
versibly decays populating a second component. this consecutive decay repeats over multiple states
(in this example three states). Like in the parallel model, the TA signals are described by the product
of a concentration matrix of three species and their respective spectral weights. The latter are called
species associated spectra. Each j-th SAS is a combination of the j-th and the following decay asso-
ciated spectrum. Thus, the final species associated spectrum is direct proportional to the final decay
associated spectrum.

Figure S9: Schematic sketch of the sequential model

To fit the data within own-defined models, i.e., other models than,

'exponential' , 'consecutive', 'full_consecutive'

see the 02_KiMoPack_Fitting-2.ipynb tutorial.
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[17]: # model selection (independent parallel decay)

ta.mod='consecutive'

# global lifetime analysis (kinetic modelling)

ta.Fit_Global()

# plot results (summed kinetics)

ta.Plot_fit_output(plotting=[1])

Fit Results:

Model Used: consecutive

The minimum error is:1.92131332e-02

The minimum R2-value is:9.99220404e-01

In Rates

value init_value vary min max expr

k0 0.27035 0.5 True 0.1 inf None

k1 0.0105748 0.00666667 True 0.005 inf None

infinite 1 1 False -inf inf None

t0 0.000126229 0 True -0.1 0.1 None

resolution 0.12 0.12 False 0.04 0.2 None

The rates converted to times with unit ps

value init_value vary min max expr

k0 3.69891 2 True 0 10 None

k1 94.5642 150 True 0 200 None

infinite 1 1 False -inf inf None

t0 0.000126229 0 True -0.1 0.1 None

resolution 0.12 0.12 False 0.04 0.2 None

Figure S10: Plotting the integrated spectra intensities of this new model

S 20



Save Results
[22]: ta.Save_project(filename=filename+'_seq', # set save name

path='results_'+str(solvent)) # set name of save folder

The project was saved to (path)
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4.2 Tutorial 02_KiMoPack_Fitting-2.ipynb

[1]: import os,sys

import pandas as pd

import numpy as np

import matplotlib,lmfit

import matplotlib.pyplot as plt

try:

import KiMoPack.plot_func as pf

except:

print("General installation did not work, import from the same folder as a 

↪→workaround")

import plot_func as pf

Plot_func version 6.20

was imported from path:

(path)

The current working folder is:

(path)

4.2.1 Import data

[2]: solvent = 'ACN' #'DCM' or 'H2O'

filename = 'TA_Ru-dppz_400nm_'+str(solvent) # set name of the file to fit

filepath = os.path.join(os.getcwd(), 'Data', 'Fitting-2') # set path

ta=pf.TA(filename=filename+'.SIA', # title of the measurement file

path=filepath) # path to measuremnt file

#Alternative:

# ta=pf.TA('gui') #and navigate to the corresponding file

4.2.2 Standard corrections

[3]: %matplotlib qt

ta.Filter_data(value=20) # remove artificial values

ta.Background(uplimit=-0.5) # subtract background before time zero

ta.Cor_Chirp(shown_window=[-2.3,1.8]) # choose time-window for active plot

4.2.3 Plot pre-processed data

In this example the pre-processed data is visualized in three plots (as indicated in the titles),

1. as kinetic traces (x: ∆t, y: ∆Absorbance)
2. transient spectra (x: λprobe, y: ∆Absorbance)
3. 2D-contour plot (x: λprobe, y: ∆t, z: ∆Absorbance).

Several features can be used to alter the appearance of those plots (see Documentation or type
ta.Plot? in the notebook).

• The parameters rel_time and rel_wave are used to pre-select interesting ∆t and λprobe values
to show specific kinetic traces (plotting=1) or transient spectra (plotting=2) of the dataset.
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• The parameters timelimits, bordercut and intensity_range are specified to control the dis-
played region, by specifying upper and lower limits of delay times, probe wavelengths and TA
signal intensities, respectively.

• The scale of the TA signals can be changed to a logarithmic scaling using log_scale=True.

• The scattercut argument takes a probe wavelength interval that is ignored (set to zero) in the
plots, to suppress the plotting of scattered excitation light. Here the scatter region was found
to be between 380 and 405 nm (excitation at 400 nm).

• The time_width_percent variable is set to 5%, meaning that the transient spectra are shown
at the given delay time plus/minus 5% of that value (e.g. 0.522 ps means 0.5 to 0.55 ps). The
respective range is indicated in the legend of the transient spectra. In all plots the unfitted data
is plotted as dots, interpolated with lines (Savitzky-Golay).
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[4]: %matplotlib qt

ta.rel_time=[0.5,1.5,20,100,1000] # delay times for TA spectra plot

ta.rel_wave=[350,440,520,600] # probe wavelengths for kinetics plot

ta.timelimits=[-1,1400] # plotted delay time range

ta.bordercut=[320,770] # plotted probe wavelength range

ta.intensity_range=[-55e-3,55e-3] # plotted intensity range

ta.scattercut=[378,407] # ignored probe wavelength region

ta.time_width_percent=5 # number in percent defining a delay time region

ta.Plot_RAW(title='Kinetic traces at selected probe wavelengths', plotting=1)

ta.Plot_RAW(title='TA spectra at selected delay-times', plotting=2)

ta.Plot_RAW(title='2D-Plot', plotting=0)

Figure S11: Separate plotting of the as-measured selected Kinetic traces (top), selected spectra (mid-
dle) and the as-measured matrix (bottom)
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4.2.4 Fitting of the data

4.2.4.1 Global analysis - parallel Model Upon photoexcitation of [(tbbpy)2Ru(dppz)]2+ (Ru-
dppz) at 400 nm an ensemble of metal-to-ligand charge-transfer (MLCT) states localized in both
ligand spheres, i.e., 1MLCTtbbpy and 1MLCTdppz is populated. Extensive photophysical studies re-
vealed that the subsequent excited state dynamics is determined by the polarity and hydrogen bond
donor ability of the surrounding solvent molecules. It was found that long-lived emissive states are
populated in polar aprotic solvents. However, this emission switches off when the molecules inter-
act with water. This interesting property is based on a solvent sensitive excited state equilibrium
between a non-emissive and an emissive state localized on the phenazine (phz) and phenanthroline
(phen) moiety of the dppz ligand.

Extensive photophysical studies in acetonitrile revealed that due to the stabiization of the charge-
transfer excited states, the dark phz-centered state is formed from the bright 3MLCTphen state and
decays back to the ground state on the sub-ns timescale. This formation of a long-lived long-lived
3MLCTphen state is manifested, i.e., in the spectral changes at 340 and 580 nm, which can be quantita-
tively described by two characteristic time-constants: the first one associated with intersystem cross-
ing, vibrational cooling and interligand hopping and a second one attributed to the non-radiative
decay of a subset of 3MLCT states with excess electron density on the phenazine sphere of the dppz
ligand (3MLCTphz), ultimately populating the long-lived 3MLCTphen state. Hence, the three kinetic
parameters k0, k1 and k2 are added to the the parameter object. The value for k2 is fixed to 180 ns as
obtained from nanosecond time-resolved studies.

Figure S12: Schematic sketch of the parallel model

[5]: # Define fit parameters

ta.par=lmfit.Parameters()

# rate constants

ta.par.add('k0',value=1/2, min=1/10.0, max=1/0.25, vary=True)

ta.par.add('k1',value=1/150, min=1/200.0, max=1/10.0, vary=True)

ta.par.add('k2',value=1/100000, vary=False)

# time-zero parameter fixed during fit

ta.par.add('t0',value=0.0, min=-0.1, max=0.1, vary=False)

# pump-pulse width parameter fixed during fit

ta.par.add('resolution', value=0.12, min=0.04, max=0.20, vary=False)

# Select a in-build model (here: independent parallel decay)

ta.mod='exponential'

# set delay-time range for fit

ta.timelimits=[0.35,2000]

# global lifetime analysis (kinetic modeling)
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ta.Fit_Global()

Fit Results:

Model Used: exponential

The minimum error is:2.69778430e-02

The minimum R2-value is:9.98959269e-01

In Rates

value init_value vary min max expr

k0 0.268506 0.5 True 0.1 4 None

k1 0.0175803 0.00666667 True 0.005 0.1 None

k2 1e-05 1e-05 False 0 inf None

t0 0 0 False -0.1 0.1 None

resolution 0.12 0.12 False 0.04 0.2 None

The rates converted to times with unit ps

value init_value vary min max expr

k0 3.72432 2 True 0.25 10 None

k1 56.8818 150 True 10 200 None

k2 100000 100000 False 0 inf None

t0 0 0 False -0.1 0.1 None

resolution 0.12 0.12 False 0.04 0.2 None

4.2.5 Repeat the global analysis to estimate the errors

[6]: # fit-error estimation in a confidence interval of 95%

ta.Fit_Global(confidence_level=0.95)

Trying to find k0, lower confidence limit

Trying to find k0, upper confidence limit

Trying to find k1, lower confidence limit

Trying to find k1, upper confidence limit

it took 169 optimisations to get the confidence

Fit Results:

Model Used: exponential

The minimum error is:2.69778430e-02

The minimum R2-value is:9.98959269e-01

In Rates with confidence interval to level of 95.0

value lower_limit upper_limit init_value vary min max expr

k0 0.268506 0.157326 0.497447 0.5 True 0.1 4 None

k1 0.0175803 0.00412181 0.111088 0.00666667 True 0.005 0.1 None

k2 1e-05 None None 1e-05 False 0 inf None

t0 0 None None 0 False -0.1 0.1 None

resolution 0.12 None None 0.12 False 0.04 0.2 None

The rates converted to times with unit ps with confidence interval to

level of 95.0

value lower_limit upper_limit init_value vary min max expr

k0 3.72432 2.01026 6.35622 2 True 0.25 10 None

k1 56.8818 9.00186 242.612 150 True 10 200 None

k2 100000 None None 100000 False 0 inf None

t0 0 None None 0 False -0.1 0.1 None
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resolution 0.12 None None 0.12 False 0.04 0.2 None

4.2.6 Plotting of error Analysis (advanced handling)

Plotting the results of the error analysis is challenging and due to the potential large amount of
combinations not possible to perform automatic. However here is an example on a single parameter

[7]: ta_listen=[ta.Copy(),ta.Copy()] #create a list for comparision

#the Filename can be manipulated to use the automatic naming

ta_listen[0].filename="upper confidence limit"

ta_listen[1].filename="lower confidence limit"

for i in range(2):

#short name for the calculated results for reduced writing

par=ta.re['fit_results_rates'].copy()

if i == 0:

#overwrite the value with the limits

par.loc['k0','value']=par.loc['k0','upper_limit']

else:

par.loc['k0','value']=par.loc['k0','lower_limit']

# Write the fit results as input parameter

ta_listen[i].par=pf.pardf_to_par(par)

for key in ta_listen[i].par.keys():

# Lock the parameter so that only the spectra are calculated

ta_listen[i].par[key].vary=False

# Run the global fit to calculate the new spectra

ta_listen[i].Fit_Global()

ATTENTION: we have not optimized anything but just returned the parameters

Fit Results:

Model Used: exponential

The minimum error is:2.78784275e-02

The minimum R2-value is:9.98924527e-01

In Rates

value init_value vary min max expr

k0 0.497447 0.497447 False 0.1 4 None

k1 0.0175803 0.0175803 False 0.005 0.1 None

k2 1e-05 1e-05 False 0 inf None

t0 0 0 False -0.1 0.1 None

resolution 0.12 0.12 False 0.04 0.2 None

The rates converted to times with unit ps

value init_value vary min max expr

k0 2.01026 2.01026 False 0.25 10 None

k1 56.8818 56.8818 False 10 200 None

k2 100000 100000 False 0 inf None

t0 0 0 False -0.1 0.1 None

resolution 0.12 0.12 False 0.04 0.2 None

ATTENTION: we have not optimized anything but just returned the parameters

Fit Results:

Model Used: exponential
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The minimum error is:2.76709800e-02

The minimum R2-value is:9.98932530e-01

In Rates

value init_value vary min max expr

k0 0.157326 0.157326 False 0.1 4 None

k1 0.0175803 0.0175803 False 0.005 0.1 None

k2 1e-05 1e-05 False 0 inf None

t0 0 0 False -0.1 0.1 None

resolution 0.12 0.12 False 0.04 0.2 None

The rates converted to times with unit ps

value init_value vary min max expr

k0 6.35622 6.35622 False 0.25 10 None

k1 56.8818 56.8818 False 10 200 None

k2 100000 100000 False 0 inf None

t0 0 0 False -0.1 0.1 None

resolution 0.12 0.12 False 0.04 0.2 None

4.2.6.1 Plotting and Shaping of the plot The plot could be re-shaped using the plotting GUI. Here
we need to use a trick to achieve this automatically. Firstly, we get a handle to the drawn axis, so that
we can directly manipulate the plot. Secondly, we set the ylimit of the plot.

[15]: %matplotlib qt

ta.Compare_at_wave(fitted=True,

other=ta_listen,

rel_wave=[450,590],

width=50,

linewidth=3)

ax=plt.gca() # get a handle to the drawn axis

ax.set_ylim(-50e-3,20e-3) # set the ylimit of the plot

[15]: (-0.05, 0.02)

4.2.7 Plotting of error Analysis (advanced handling)

Plotting of the results of the error analysis is challenging and due to the potential large amount of
combinations not possible to perform automatic. However here is an example on a single parameter

[7]: ta_listen=[ta.Copy(),ta.Copy()] #create a list for comparision

#the Filename can be manipulated to use the automatic naming

ta_listen[0].filename="upper confidence limit"

ta_listen[1].filename="lower confidence limit"

for i in range(2):

#short name for the calculated results for reduced writing

par=ta.re['fit_results_rates'].copy()

if i == 0:

#overwrite the value with the limits

par.loc['k0','value']=par.loc['k0','upper_limit']

else:
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par.loc['k0','value']=par.loc['k0','lower_limit']

# Write the fit results as input parameter

ta_listen[i].par=pf.pardf_to_par(par)

for key in ta_listen[i].par.keys():

# Lock the parameter so that only the spectra are calculated

ta_listen[i].par[key].vary=False

# Run the global fit to calculate the new spectra

ta_listen[i].Fit_Global()

ATTENTION: we have not optimized anything but just returned the parameters

Fit Results:

Model Used: exponential

The minimum error is:1.92539718e-02

The minimum R2-value is:9.99202429e-01

In Rates

value init_value vary min max expr

k0 0.54532 0.54532 False 0.1 4 None

k1 0.0142909 0.0142909 False 0.005 0.1 None

k2 1e-05 1e-05 False 0 inf None

t0 0 0 False -0.1 0.1 None

resolution 0.12 0.12 False 0.04 0.2 None

The rates converted to times with unit ps

value init_value vary min max expr

k0 1.83378 1.83378 False 0.25 10 None

k1 69.9745 69.9745 False 10 200 None

k2 100000 100000 False 0 inf None

t0 0 0 False -0.1 0.1 None

resolution 0.12 0.12 False 0.04 0.2 None

ATTENTION: we have not optimized anything but just returned the parameters

Fit Results:

Model Used: exponential

The minimum error is:1.84388291e-02

The minimum R2-value is:9.99236195e-01

In Rates

value init_value vary min max expr

k0 0.156036 0.156036 False 0.1 4 None

k1 0.0142909 0.0142909 False 0.005 0.1 None

k2 1e-05 1e-05 False 0 inf None

t0 0 0 False -0.1 0.1 None
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resolution 0.12 0.12 False 0.04 0.2 None

The rates converted to times with unit ps

value init_value vary min max expr

k0 6.40878 6.40878 False 0.25 10 None

k1 69.9745 69.9745 False 10 200 None

k2 100000 100000 False 0 inf None

t0 0 0 False -0.1 0.1 None

resolution 0.12 0.12 False 0.04 0.2 None

4.2.8 Shaping of the plot

The plot could be re-shaped using the plotting GUI. Here we need to use a trick to achieve this
automatically. Firstly, we get a handle to the drawn axis, so that we can directly manipulate the plot.
Secondly, we set the ylimit of the plot.

[13]: ta.Compare_at_wave(fitted=True,

other=ta_listen,

rel_wave=[450,590],

width=50,

linewidth=3)

ax=plt.gca() # get a handle to the drawn axis

ax.set_ylim(-50e-3,20e-3) # set the ylimit of the plot

Figure S13: Comparison plot between the kinetics at two selected wavelength and how the kinetics
would be at the confidence limits of the fit.

4.2.9 Target analysis − propose a model

Several studies in acetonitrile reveal that the dark phz-centered excited state is populated from the
initially excited 3MLCT states. Ultimately, a bright 3MLCTphen is formed from the tbbpy, phen and
phz centered states. Herein, it is shown how to define an own model function based on such a priori
knowledge.
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4.2.10 Define own model function

Based on the literature findings a model is proposed, where initially proximal MLCT (tbbpy and
phen, A) and distal MLCT states (phz, B) are populated. Subsequently those states decay forming
the bright MLCTphen state (C). This in turn decays back to the ground state (C’). The respective kinetic
rate constants can be written as

•
d[A]

dt
= −k0 · [A]

•
d[B]
dt

= −k0 · [B]

•
d[C]
dt

= k0 · ([A] + [B])− k1 · [C],

with brackets indicating the concentration of A, B and C. Those rate equations are defined in the
python function, like:

# state: A, d[A]/dt

dc[0] = -pardf['k0']*dt*c_temp[0] + g[i]*dt

# state: B, d[B]/dt

dc[1] = -pardf['k0']*dt*c_temp[1] + g[i]*dt

# state: C, d[C]/dt

dc[2] = pardf['k0']*dt*c_temp[0] + pardf['k0']*dt*c_temp[1] - pardf['k1']*dt*c_temp[2]

Figure S14: Schematic sketch of the user-defined model

[9]: FWHM=2.35482

def gauss(t,sigma=0.1,mu=0):

y=np.exp(-0.5*((t-mu)**2)/sigma**2)

y/=sigma*np.sqrt(2*np.pi)

return y

def Rudppz(times,pardf):

'''

Define a model where initially A and B are populated and decay

forming C. Subsequently, C decays back to the ground-state

args:

pardf: pandas.DataFrame

times: vector (type:list)

returns:

c: DataFrame with the times as index and in the columns as

an expression of the relative concentrations of A, B and

C (type: dictionary)
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'''

# create an empty concentration matrix

c=np.zeros((len(times),3),dtype='float')

# create IRF

g=gauss(times,sigma=pardf['resolution']/FWHM,mu=pardf['t0'])

# defining step-size (taken between the main time_points)

sub_steps=10

for i in range(1,len(times)):

# initial change for each concentration (3 refers to the number of 

↪→states)

dc=np.zeros((3,1),dtype='float')

# adaption of the time-intervals to the sub_steps

dt=(times[i]-times[i-1])/(sub_steps)

# create a temporary concentration matrix

c_temp=c[i-1,:]

for j in range(int(sub_steps)):

# state: A, d[A]/dt

dc[0] = -pardf['k0']*dt*c_temp[0] + g[i]*dt

# state: B, d[B]/dt

dc[1] = -pardf['k0']*dt*c_temp[1] + g[i]*dt

# state: C, d[C]/dt

dc[2] = pardf['k0']*dt*c_temp[0] + pardf['k0']*dt*c_temp[1] 

↪→- pardf['k1']*dt*c_temp[2]

for b in range(c.shape[1]):

#check that all concentrations are > 0

c_temp[b] =np.nanmax([(c_temp[b]+dc[b]),0.])

# store temporary concentrations into the main matrix

c[i,:] =c_temp

c=pd.DataFrame(c,index=times)

c.index.name='time' # name the delay-times

c.columns=['A','B','C'] # name the species

return c

4.2.11 Define fitting parameters

[10]: ta.par=lmfit.Parameters()

# rate constants

ta.par.add('k0',value=1/2.0, min=1/10.0, max=1/0.1, vary=True)

ta.par.add('k1',value=1/100000, vary=False)

# time-zero parameter fixed during fit

ta.par.add('t0',value=0.0, min=-0.1, max=0.1, vary=False)

# pump-pulse width parameter fixed during fit

ta.par.add('resolution', value=0.07, min=0.04, max=0.20, vary=False)
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4.2.12 Fitting of the Data - Kinetic Modeling (Ru-dppz Model)

[11]: ta.mod=Rudppz # model selection (own model)

ta.timelimits=[0.35,2000] # set delay-time range for fit

ta.log_fit=False # fitting on linear time scale

ta.Fit_Global() # pass parameter object (par) to global fit

0.03287224701630877

0.03104424588743773

0.029708659958358023

0.029080954685478902

0.030363339027524767

0.02932526602258752

0.029056994294598425

0.029056992333062033

0.029056992119748992

Fit Results:

Model Used: External function

The minimum error is:2.90569921e-02

The minimum R2-value is:9.98879062e-01

In Rates

value init_value vary min max expr

k0 0.215485 0.5 True 0.1 10 None

k1 1e-05 1e-05 False 0 inf None

t0 0 0 False -0.1 0.1 None

resolution 0.07 0.07 False 0.04 0.2 None

The rates converted to times with unit ps

value init_value vary min max expr

k0 4.6407 2 True 0.1 10 None

k1 100000 100000 False 0 inf None

t0 0 0 False -0.1 0.1 None

resolution 0.07 0.07 False 0.04 0.2 None

Plot the fit results
[16]: plt.close('all')

%matplotlib qt

ta.Plot_fit_output(title='2D-Plots', plotting=4)

[13]: ta.Plot_fit_output(title='summed TA signals', plotting=1)

ta.Plot_fit_output(title='Decay Associated Spectra', plotting=0)

#ta .Plot_fit_output ( title = ' concentration profiles ' , plotting = 5 )

#or: ta.re['c'].plot()
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Figure S15: Fitted results: Kinetics of the sum of all wavelength (top) and the Decay Associated
Spectra (bottom)

Save results
[14]: savename = filename+'_own'

ta.Save_project(filename=savename, # set save name

path='results') # set name of save folder

ta.Save_data(save_RAW=False, # do not save pre-processed data

save_Fit=True, # save pre-processed and fitted data

filename=savename, # set save name

path='results') # set name of save folder

The project was saved to

(path)/Data/Fitting-2/results
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4.3 Tutorial 03_KiMoPack_CompareFit.ipynb

[1]: import os,sys

import pandas as pd

import numpy as np

import matplotlib,lmfit

import matplotlib.pyplot as plt

try:

import KiMoPack.plot_func as pf

except:

print("General installation did not work, import from the same folder as a 

↪→workaround")

import plot_func as pf

Plot_func version 6.20

was imported from path:

(path)

The current working folder is:

(path)

4.3.1 Saving and Loading of Projects

In this example it is demonstrated how to work with saved hdf5 projects. Upon saving a project all
parameters of the analysis are dumped to the hdf5 file. This includes the standard corrected (back-
ground, arrival time, scattercut, . . . ) TA data as well as the fit results and parameter.

Herein, the TA projects of Ru-dppz collected in three solvents, namely dichloromethane (DCM), ace-
tonitrile (ACN) and water (H2O) at 400 nm excitation are loaded and compared. Firstly, the master
project (here in ACN) is loaded to the ta_ACN object. Secondly all hdf5 projects from a specified
folder (including the data in DCM and H2O) are loaded into the object compare_projects. For
loading the comparison projects the function GUI_open is employed. You can either read all hdf5
projects from a folder (project_list='all') or you can select single projects from the file explorer
(project_list='gui').

[3]: # initialize ta_ACN object including the TA data in ACN

ta_ACN = pf.TA(filename='TA_Ru-dppz_400nm_ACN_paral.hdf5',

path=os.path.join('Data', 'Compare', 'Master'))

# initialize an object including the TA data in DCM and H2O

compare_projects=pf.GUI_open(project_list='all',

path=os.path.join('Data', 'Compare'))

# plot TA spectra of the master project

ta_ACN.Plot_fit_output(title='Master project, ACN, 400 nm', plotting=[3])
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Figure S16: Initially fitted spectra of the master project

Upon loading the TA data of several projects, the user can compare the transient spectra by plotting
multiple spectra into the same figure at given delay times (rel_time). Herein, the TA spectra of Ru-
dppz obtained in different solvents, namely dichloromethan (DCM), acetonitrile (ACN) and water
(H2O) are compared.

4.3.1.1 General settings

• For a better comparison the data of each project can be normalized to the master object (in
this example ta_ACN). For the normalization a normalization range is defined by the lower and
upper limits of deay times and probe wavelengths (e.g. norm_window=[0.5,0.7,420,470]).

• In order to be able to compare the individual data sets well with each other, the use of a highly
diverging colormap is recommended. Herein the colormap Accent is used. For more available
maps see: https://matplotlib.org/stable/tutorials/colors/colormaps.html

[4]: norm_window = [0.5,0.7,420,470] # norm window

ta_ACN.cmap=pf.cm.Accent # use a diverge colormap for comparison
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4.3.1.2 Compare transient spectra
[5]: for delay_time in [1,10,100]: #plot spectra for each selected delay time

ta_ACN.Compare_at_time(fitted=False, #compare pre-processed data

other=compare_projects, #list of projects to compare

rel_time=[delay_time], #selected decay times to compare

norm_window=norm_window) #set norm window

Figure S17: Comparing transient spectra at three different timepoints. 1ps top, 10ps middle and
100ps bottom. All spectra are normalized in the same window, allowing the direct comparision of
the intensities.
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4.3.1.3 Compare transient and external spectra To compare the transient spectra at a certain delay
time to an external spectrum (e.g. spectro-electro-chemistry or steady state absorption data), the user
can pass a dataframe with such spectra to the Compare_at_timefunction. Herein, the absorption
data of electrochemically unmodified Ru-dppz and its singly reduced form are loaded into a Pandas
DataFrame with the wavelength column as index. In the example the scaled difference spectrum of
the reduced and unreduced complex is plotted for comparison to the TA spectra of Ru-dppz in ACN
and H2O obtained at a delay time of 1 ps.

[5]: # define name of external spectra

spectra_name = 'UVvis_SEC_Rudppz_ACN.dat'

# define path of external spectra

spectra_path = os.path.join(os.getcwd(), 'Data', 'Compare')

# create dataframe of external spectra

SEC_df = pd.read_csv(os.path.join(spectra_path, spectra_name), index_col=0,

sep="\t", header=0)

diff_spectrum=(SEC_df['red']-SEC_df['ocp'])*0.05 # create difference spectrum

diff_spectrum.name='Rudppz_ACN - difference' # give it a name for the plot

ta_ACN.Compare_at_time(fitted=False,

rel_time=1.0, # selected delay time

other=compare_projects, # list of projects to compare

spectra=diff_spectrum, # external spectra to compare

norm_window=norm_window) # set norm window

Figure S18: Spectra at 1 ps compared to external spectrum

4.3.1.4 Compare kinetic traces The kinetic traces of several projects at a given probe wavelength
(rel_wave) can be plotted into the same figure by the Comapre_at_wavefunction. This allows to com-
pare the kinetics at various conditions (e.g. pump intensity, quencher concentration, solvent). A
normalization window can be given at which all the plotted curves are normalized to. This window
does not have to be in the plotted region. In this example the TA kinetics of the excited state absorp-
tion at 340 and 580 nm and the ground state bleach minimum at 440 nm in DCM, ACN and H2O are
compared.
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[6]: plt.close('all')

%matplotlib inline

%matplotlib qt

ta_ACN.cmap=pf.cm.Accent

for nm in [340,440,580]: # plot kinetics at each selected wavelengths

ta_ACN.timelimits=[-0.5,1500] # set timelimits of the plot

ta_ACN.Compare_at_wave(fitted=False, # plot preprocessed data

other=compare_projects, # list of projects to compare

rel_wave=nm, # selected wavelengths to compare

norm_window=norm_window) # norm window
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Figure S19: Comparing the Kinetics at three separate wavelength for the ruthenium complex in three
different solvents. Note that all spectra were normalized to the same window. That allows the com-
parision of e.g. the residual excitation.
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4.4 Tutorial 04_KiMoPack_ScanHandling.ipynb

[1]: import os,sys

import pandas as pd

import numpy as np

import matplotlib,lmfit

import matplotlib.pyplot as plt

try:

import KiMoPack.plot_func as pf

except:

print("General installation did not work, try to import from the same folder as 

↪→a workaround")

import plot_func as pf

#qt is mandatory for the functioning of this module

%matplotlib qt

Plot_func version 6.2.9

was imported from path: (path to local module)

The current working folder is: (path to current working folder)

Read and average single scans: Load single scans of a data set and select certain scans that are
excluded from the summary (Summarize_scans). Therefore, up to two windows including lower
and upper boundaries for delay times and probe wavelengths (e.g. [1,10,500,700]) can be defined.
In that region the TA signals are integrated. The respective integrals of each scan are shown in an
active plot. The scans to exclude from the average are selected by right-click on the respective data
points in the active window. Advice: the GUI is sometimes hidden on the desktop. The window is
recognizable with a little feather in the top left corner.

[ ]: #simple usage, select all files with "ACN" in the name and "SIA" ending in the 

↪→folder with name "scans"

ta=pf.Summarize_scans('gui', # use gui to select files

list_to_dump='single', # select single points to be removed

window1=[1,10,500,700]) # integration window

Figure S20: Gui for selecting the scans to be processed.
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This is the advanced usage of the tool. By using "fileending", all files with a different ending are
rejected. The "filename_part" works similar and looks if a certain string is in the filename, so can one
e.g. filter all files with "ACN" in the name. The save_name is a useful option to keep track of the
files. without it the file would be saved as "combined.SIA". The "list_of_scans" could be used to give
e.g. a series of numbers that should be the last part of the filename. This is mainly useful if the option
"return_list_of_names" is selected. Then e.g. multiple different selection series can be combined. See
the Manual for more information on its usage.

[ ]: # Define a folder, This trick works on windows and linux

scanfolder = os.path.join(os.getcwd(), 'Data', 'Scans')

ta=pf.Summarize_scans(path_to_scans=scanfolder, # define path of the scan files

list_of_scans=None, # read all scans from the given folder

list_to_dump='single', # select single points to be removed

window1=[1,10,500,700], # integration window

window2=[1,10,410,470], # integration window

fileending='.SIA', # file extension, ignore rest

filename_part='ACN', # part of the filenames to read

save_name='TA_Ru-dppz_400nm_'+'ACN'+'_mean.SIA')#set save name

Figure S21: Gui that allows the selection of single scans to be dropped from the average.
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