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Figure S1. Overview of reconstructed ancestral human genomes.

Phylogeny of extant genomes used to produce ancestral reconstructed genome sequences.
Coloured internal nodes represent the ancestral human genomes in the dataset. Coloured text
corresponding to node colours indicates the extant species with which the ancestral genome is
a common ancestor to human, and estimated divergence time from human in millions of years
ago (MYA), taken from TimeTree (Kumar et al. 2017). The orange line indicates the human
lineage that is reconstructed.
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Figure S2. Comparison of RepeatMasker outputs for L1 subfamilies from the modern human
genome (hg38) and two alternative reconstructed pan-Eutherian genomes (Ancestors 1.1 (this
study) and Progressive Cactus (Armstrong et al. 2020).

All genomes were annotated using the RepeatMasker and the Dfam 2.0 library. L1 subfamilies shown
are those distributed across Eutheria, according to Dfam annotations.

A. Distributions of lengths among detected elements.

B. Distributions of Kimura 2-parameter distances among detected elements.
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Figure S3. Process for selecting ‘Full-length’ reconstructed sequences.
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Methods for conducting the reconstructions and selecting the best reconstructed sequence for each
subfamily are illustrated in Figure S3 and described in Methods.
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Figure S5. Comparison of full-length L1 reconstructed sequences derived from ancestral whole
genomes reconstructed with Ancestors 1.1 or Progressive Cactus.

A. % identity panels: 30 nt rolling average of the percent identity between the Ancestors genome-
derived “best” full-length reconstructed sequences, and the reconstructed sequence derived from the
corresponding Cactus ancestral genome (simian for L1IMA2, L1MA4, and L1MD1, and primate for
L1MD2-3), and using the same indel-reconstruction method. Percent identity was calculated on the
pairwise alignment, excluding internal gap positions. Posterior probability panel sets: Maximum-
likelihood posterior probabilities across sequence positions for the two alternate reconstructed
sequences (grey dots). The 30 nt rolling average is given as an orange line.

B. 50 bp rolling average of the number of base pairs aligned at each position in the Muscle source
alignments that served as input to FastML. The number of input sequences in the alignment are given in
the grey strips.
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Figure S6. Conserved Domain searches of Cactus-derived reconstructed sequences, and FastML
reconstruction uncertainty of “best” full-length sequences.

A. Conserved Domain search of the compared Ancestors or Cactus ancestral genome-derived
reconstructed L1 sequences. Presence (black)/absence (white) of L1 protein-coding domains are shown, as
detected by CD search on of three-frame translations of the full-length sequences.

B. Percentage of reconstructed L1 sequence positions that are the incorrect nucleotide. Percentages were
calculated by dividing the cumulative posterior-probabilities of non-maximum likelihood nucleotides within a
full-length reconstructed sequence by the total sequence length.

C. Distribution of all maximum-likelihood nucleotide posterior probabilities.

D. Maximum-likelihood posterior probabilities across sequence positions for each “best” full-length
sequence (grey dots). the top of each bar represents a probability of 1.0, and the bottom a probability of 0;
the dotted line is a reference for 0.6. The rolling average using a window of 30 nt is given as an orange line.
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Figure S7. Comparison of results from NCBI Conserved Domain Search of reconstructed
sequences.

A. Heatmaps showing CDS -log2 E-values of the three ORF1 and three ORF2 domains. Each pair of
heatmaps represents a genome, with the top heatmap representing the full-length reconstructed
sequences derived from that genome, and the lower heatmap the reconstructed ORFs. Subfamilies
(ordered youngest to oldest) run along the x-axis of each heatmap. White cells indicate that no
domain was detected.

B. Black and white bars: Lengths of the longest ORFs (as detected by NCBI ORFfinder) that
correspond to the ORF1 (top row) and ORF2 (bottom row) coding sequences, as a % of the
expected lengths (based on the UniProt L1HS ORF1 and ORF2). The upper bar contains the longest
ORFs of the initial full-length reconstructed sequences, and the lower bar are those found in the
reconstructed ORFs. Subfamilies are ordered along the x-axis as in Panel A, and are aligned with
those in the coloured heatmaps.

Coloured heatmaps: Cell colours represent the frame distributions of detected domains, with green
indicating different domains belonging to the same ORF as being in frame with one another, pink
representing a domain split across multiple frames, and the remaining colours (1, 2, 3) representing
domains that were detected out of frame from the others detected in that ORF.

C. Bar height represents the probability of coiled-coil formation in the best reconstructed ORF1
sequence for a given subfamily. Bar fill colour represents the presence of the coiled-coil domain in
both the best full-length and reconstructed ORF1s (red), just the reconstructed full-length sequence
(blue), just the reconstructed ORF1 (purple), or neither (green).
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Figure S11. C-terminal extensions of reconstructed L1MA ORF1s.

A. Alignment of reconstructed L1MAS5-1 ORF1s, with the corresponding best reconstructed full-
length sequences.

B. Left: N-terminal alignment of ORF1 sequences from Khan et al. 2006, and the best
reconstructed ORF1 sequences. Right: C-terminus alignments of these sequences.

C. Alignment from B, restricted to the C-terminal extension, highlighted with a red box.
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Figure S13. Composite Sequence component sources and lengths.

A. Source genomes of the full-length (FL) reconstructed sequences, and the two reconstructed
ORFs that comprise each of the best Composite Sequences. Each genome is named according
to the most distant species relative to humans that share the common ancestral genome. ORFs
for which no successful reconstructed sequences were produced are shown in white.

B. Lengths of the best reconstructed ORF1s and ORF2s, normalized to a proportion of the
corresponding L1HS proteins (aa lengths). ORFs between 90-100% of the length of the L1HS
proteins are grey.
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Figure S14. ORF0 homology detected in full-length reconstructed progenitor sequences.

TBLASTN scores for the ORFO amino acid sequence from (Denli et al. 2015), searched against
the Composite Sequences. Denli et al. (2015) reported that ORFO was detected in L1PA8-
L1HS. Subfamily progenitor sequences with BLAST bit-scores < 25 for ORFO are excluded.
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Figure S15. Composite Sequence component trees.
A. Phylogenetic tree of all 67 final Composite Sequences, produced using the same method as

Figure 4. Subfamilies that were removed due to irreconcilable difference from the expected tree

topology are in red text.
B-E. Phylogenetic trees were produced using different components of the composite sequences —
B. ORF2, C. 5UTR, D. ORF1, and E. 3'UTR.
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Figure S16. Comparison of properties of the 13 Composite Sequences that were removed

from further analysis (red) and the remaining 54 sequences.

A. Lengths of the initial full-length reconstructed sequences.
B. Number of sequences input into the initial reconstruction.
C. Maximum % identity to any of a subfamily’s gold standard sequences.



Figure S15

A

% of genome annotated log2 fold change
o
! -—
' N
i —
—_—
—_——
[ e—
S ,,———

subfamily

Tt pons .It.ll tllInd L1 "l l H' ;'Ul‘llp

™ il

Hit count log2 fold change

Median length log2 fold change
—_—

subfamily

BLAST Subfamily

ERTREEPEEsSE
IEFssass eo&a_o =00

OISO — N SO L O CDO T NS LA OIS LI T NI NN
——mmmm(«<§<(<§<<<<;mmmmmmmoooo§g§aommwﬁmgg%gmmw’:

§§§§§w§w i Y
;

Overlapplng RepeatMasker Hit

L

L1HS
L1PA2
L1PA3
L1PA4
L1PA5
L1PAG6
L1PA7
L1PAS8
L1PASA
L1PA10
L1PA11
L1PREC2
L1PA12
L1PA13
L1PA14
L1PA15
L1PA16
L1PA17
L1PB1
L1PB2
L1PB3
L1PB4
L1MA1
L1MA2
L1MA3
L1MA4A
g
()
L1MABA % of
L1MA6 BLAST Hits
L1MA7 100
L1MA8 80
L1MA9
L1MA10
L1MB1
L1MB2
L1MB3
L1MB4
L1MB5
L1MB7
L1MB8
L1MCA1
L1MC2
L1MC3




Figure S17. Composite Sequences and BLAST annotations of hg38 and comparison to
RepeatMasker and Dfam models.

A-C. Log2 fold changes, by subfamily, of the three annotation quality metrics shown in Figure 6
(BLAST annotations/RepeatMasker annotations). Dotted red lines indicate fold changes of 2 and
0.5. A. Percent coverage of genome. B. Count of individual L1 instances. C. Median lengths of L1
instances.

D. Percentage agreement between BLAST-called subfamily assignments and RepeatMasker
annotations. In cases where a single BLAST hit overlapped multiple RepeatMasker hits, the
element with the greatest overlap with the BLAST hit was selected. BLAST hits that overlapped
no RepeatMasker annotation for > 5 bp are considered “unique”.
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Figure S18. Reconstructed subfamily progenitor sequence lengths relative to existing

models.



