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Figure S1. Overview of reconstructed ancestral human genomes. 
Phylogeny of extant genomes used to produce ancestral reconstructed genome sequences. 
Coloured internal nodes represent the ancestral human genomes in the dataset. Coloured text 
corresponding to node colours indicates the extant species with which the ancestral genome is 
a common ancestor to human, and estimated divergence time from human in millions of years 
ago (MYA), taken from TimeTree (Kumar et al. 2017). The orange line indicates the human 
lineage that is reconstructed.  
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Figure S2. Comparison of RepeatMasker outputs for L1 subfamilies from the modern human 
genome (hg38) and two alternative reconstructed pan-Eutherian genomes (Ancestors 1.1 (this 
study) and Progressive Cactus (Armstrong et al. 2020).  
All genomes were annotated using the RepeatMasker and the Dfam 2.0 library. L1 subfamilies shown 
are those distributed across Eutheria, according to Dfam annotations.  
A. Distributions of lengths among detected elements. 
B. Distributions of Kimura 2-parameter distances among detected elements.  
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Figure S3. Process for selecting ‘Full-length’ reconstructed sequences. 



L1
H
S

L1
PA
2

L1
PA
3

L1
PA
4

L1
PA
5

L1
PA
6

L1
PA
7

L1
PA
8

L1
PA
8A

L1
PB

1
L1
PA
10

L1
PA
11

L1
PB

2
L1
M
A1

L1
PA
14

L1
M
A3

L1
M
A2

L1
PB

3
L1
PA
13

L1
PA
15

L1
PR

EC
2

L1
PA
12

L1
PA
16

L1
PA
17

L1
PB

4
L1
M
A4
A

L1
M
A4

L1
M
A5

L1
M
A5
A

L1
M
A6

L1
M
A7

L1
M
A8

L1
M
A9

L1
M
B1

L1
M
B2

L1
M
C
1

L1
M
B3

L1
M
B4

L1
M
C
2

L1
M
B5

L1
M
A1
0

L1
M
D
1

L1
M
B7

L1
M
C
3

L1
M
C
4

L1
M
B8

L1
M
D
2

L1
M
C
4A

L1
M
E1

L1
M
E2

L1
M
E2
Z

L1
M
E3

L1
M
E3
A

L1
M
C
5

L1
M
C
5A

L1
M
E3
B

L1
M
D
3

L1
M
E3
D

L1
M
E3
C

L1
M
E3
E

L1
M
E3
F

L1
M
E3
C
Z

L1
M
E4
B

L1
M
E3
G

L1
M
E5

L1
M
E4
A

L1
M
E4
C

8

6

2

4

0

Su
bf

am
ily

50 100
hg38
ChimpanzeehgGorillahg

S MonkeyhgBushbabyhgCT ShrewhgPikahg
SN MolehgArmadillohg

OrangutanhgGibbonhgG Monkeyhg

Subfamily

Be
st

 re
co

ns
tr

uc
te

d 
se

qu
en

ce
 le

ng
th

 (k
b)

Ancestral human genome Identity to gold
standard (%)

Has published 
full-length model

Figure S4

Available

 
  

Figure S4. Lengths and source genomes of best full-length reconstructed sequence for each 
subfamily.  
Methods for conducting the reconstructions and selecting the best reconstructed sequence for each 
subfamily are illustrated in Figure S3 and described in Methods. 



  Figure S5. Comparison of full-length L1 reconstructed sequences derived from ancestral whole 
genomes reconstructed with Ancestors 1.1 or Progressive Cactus. 
A. % identity panels: 30 nt rolling average of the percent identity between the Ancestors genome-
derived “best” full-length reconstructed sequences, and the reconstructed sequence derived from the 
corresponding Cactus ancestral genome (simian for L1MA2, L1MA4, and L1MD1, and primate for 
L1MD2-3), and using the same indel-reconstruction method. Percent identity was calculated on the 
pairwise alignment, excluding internal gap positions. Posterior probability panel sets: Maximum-
likelihood posterior probabilities across sequence positions for the two alternate reconstructed 
sequences (grey dots). The 30 nt rolling average is given as an orange line. 
B. 50 bp rolling average of the number of base pairs aligned at each position in the Muscle source 
alignments that served as input to FastML. The number of input sequences in the alignment are given in 
the grey strips. 
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  Figure S6. Conserved Domain searches of Cactus-derived reconstructed sequences, and FastML 
reconstruction uncertainty of “best” full-length sequences. 
A. Conserved Domain search of the compared Ancestors or Cactus ancestral genome-derived 
reconstructed L1 sequences. Presence (black)/absence (white) of L1 protein-coding domains are shown, as 
detected by CD search on of three-frame translations of the full-length sequences. 
B. Percentage of reconstructed L1 sequence positions that are the incorrect nucleotide. Percentages were 
calculated by dividing the cumulative posterior-probabilities of non-maximum likelihood nucleotides within a 
full-length reconstructed sequence by the total sequence length. 
C. Distribution of all maximum-likelihood nucleotide posterior probabilities. 
D. Maximum-likelihood posterior probabilities across sequence positions for each “best” full-length 
sequence (grey dots). the top of each bar represents a probability of 1.0, and the bottom a probability of 0; 
the dotted line is a reference for 0.6. The rolling average using a window of 30 nt is given as an orange line. 
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Figure S7. Comparison of results from NCBI Conserved Domain Search of reconstructed 
sequences.  
A. Heatmaps showing CDS -log2 E-values of the three ORF1 and three ORF2 domains. Each pair of 
heatmaps represents a genome, with the top heatmap representing the full-length reconstructed 
sequences derived from that genome, and the lower heatmap the reconstructed ORFs. Subfamilies 
(ordered youngest to oldest) run along the x-axis of each heatmap. White cells indicate that no 
domain was detected. 
B. Black and white bars: Lengths of the longest ORFs (as detected by NCBI ORFfinder) that 
correspond to the ORF1 (top row) and ORF2 (bottom row) coding sequences, as a % of the 
expected lengths (based on the UniProt L1HS ORF1 and ORF2). The upper bar contains the longest 
ORFs of the initial full-length reconstructed sequences, and the lower bar are those found in the 
reconstructed ORFs. Subfamilies are ordered along the x-axis as in Panel A, and are aligned with 
those in the coloured heatmaps. 
Coloured heatmaps: Cell colours represent the frame distributions of detected domains, with green 
indicating different domains belonging to the same ORF as being in frame with one another, pink 
representing a domain split across multiple frames, and the remaining colours (1, 2, 3) representing 
domains that were detected out of frame from the others detected in that ORF. 
C. Bar height represents the probability of coiled-coil formation in the best reconstructed ORF1 
sequence for a given subfamily. Bar fill colour represents the presence of the coiled-coil domain in 
both the best full-length and reconstructed ORF1s (red), just the reconstructed full-length sequence 
(blue), just the reconstructed ORF1 (purple), or neither (green). 
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Figure S8. Schematic of the ORF reconstruction method and selection of best reconstructed 
ORFs.  
See Methods for detailed steps. 
 



 
  

Figure S9. Properties of the best reconstructed ORF1 and ORF2 sequences for each L1 
subfamily.  
Colour changes on the ‘Conserved Domains’ heatmap indicate a frame shift between the two 
domains of the same protein. Dotted lines on each bar graph represent the expected length of each 
ORF, based on the L1HS proteins as deposited in UniProt (ORF1: Q9UN81, ORF2: O00370).  
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Figure S10. N-terminal and C-terminal truncations in the reconstructed ORF1.  
Muscle multiple sequence alignment is shown for the best reconstructed ORF1s, highlighting: 
A. The N-terminal/5’ end, through the coiled-coil domain. 
B. The C-terminal/3’ extension region. 
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Figure S11. C-terminal extensions of reconstructed L1MA ORF1s. 
A. Alignment of reconstructed L1MA5-1 ORF1s, with the corresponding best reconstructed full-
length sequences. 
B. Left: N-terminal alignment of ORF1 sequences from Khan et al. 2006, and the best 
reconstructed ORF1 sequences. Right: C-terminus alignments of these sequences. 
C. Alignment from B, restricted to the C-terminal extension, highlighted with a red box. 
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Figure S12. Lengths of Composite Sequence components.  
Includes only the 54 subfamilies that produced successful Composite Sequences.  
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Figure S13. Composite Sequence component sources and lengths. 
A. Source genomes of the full-length (FL) reconstructed sequences, and the two reconstructed 
ORFs that comprise each of the best Composite Sequences. Each genome is named according 
to the most distant species relative to humans that share the common ancestral genome. ORFs 
for which no successful reconstructed sequences were produced are shown in white. 
B. Lengths of the best reconstructed ORF1s and ORF2s, normalized to a proportion of the 
corresponding L1HS proteins (aa lengths). ORFs between 90-100% of the length of the L1HS 
proteins are grey.  
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Figure S14. ORF0 homology detected in full-length reconstructed progenitor sequences. 
TBLASTN scores for the ORF0 amino acid sequence from (Denli et al. 2015), searched against 
the Composite Sequences. Denli et al. (2015) reported that ORF0 was detected in L1PA8-
L1HS. Subfamily progenitor sequences with BLAST bit-scores < 25 for ORF0 are excluded. 
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Figure S15. Composite Sequence component trees. 
A. Phylogenetic tree of all 67 final Composite Sequences, produced using the same method as 
Figure 4. Subfamilies that were removed due to irreconcilable difference from the expected tree 
topology are in red text. 
B-E. Phylogenetic trees were produced using different components of the composite sequences – 
B. ORF2, C. 5’UTR, D. ORF1, and E. 3’UTR.  
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Figure S16. Comparison of properties of the 13 Composite Sequences that were removed 
from further analysis (red) and the remaining 54 sequences.  
A. Lengths of the initial full-length reconstructed sequences. 
B. Number of sequences input into the initial reconstruction. 
C. Maximum % identity to any of a subfamily’s gold standard sequences. 
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Figure S17. Composite Sequences and BLAST annotations of hg38 and comparison to 
RepeatMasker and Dfam models.  
A-C. Log2 fold changes, by subfamily, of the three annotation quality metrics shown in Figure 6 
(BLAST annotations/RepeatMasker annotations). Dotted red lines indicate fold changes of 2 and 
0.5. A. Percent coverage of genome. B. Count of individual L1 instances. C. Median lengths of L1 
instances. 
D. Percentage agreement between BLAST-called subfamily assignments and RepeatMasker 
annotations. In cases where a single BLAST hit overlapped multiple RepeatMasker hits, the 
element with the greatest overlap with the BLAST hit was selected. BLAST hits that overlapped 
no RepeatMasker annotation for > 5 bp are considered “unique”. 
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Figure S18. Reconstructed subfamily progenitor sequence lengths relative to existing 
models. 
 


