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Section 1: Networks
The networks used on the web-server are BioGRID (1, 2), STRING-EXP (3), GIANT-TN (4), and STRING (3).
Detailed information about the network properties and sources can be seen in Table S1, with the network
construction method and interaction type information coming from (5). BioGRID (version 4.2.191) is a
low-throughput network that includes both genetic interactions, as well as physical protein-protein interactions
(1, 2). STRING (version 11.0) is a high-throughput, scored network that aggregates information from many data
sources (3). We used two different STRING networks. First, we used the “combined” network that directly
includes database annotations, text-mining, ortholog information, co-expression, and experimental determined
interactions (referred to as “STRING” on the web-server). We also used a subset of edges in STRING that had
just the “experiments” data, thus restricting the network to one constructed just from experimental determined
interactions in humans (referred to as “STRING-EXP” on the web-server). For both networks, we used the
corresponding relationship scores as edge weights, after scaling them to lie between 0 and 1. The GIANT-TN
(version 1.0) network is the tissue-naïve network from GIANT, referred to as the “Global” network on the
HumanBase website, and is constructed from both low- and high-throughput data, and includes information
from co-expression, non-protein sources, regulatory data, and physical protein-protein interactions (4). The
GIANT-TN network is a fully connected, scored network. To add sparsity to the GIANT-TN network, we
removed all edges with scores below 0.01 (equal to the prior in the Bayesian model used to construct the
network). We used all edge scores (weights) unless otherwise noted, and the nodes in all networks were
mapped into Entrez genes using the MyGene.info database (6, 7). If the original node ID mapped to multiple
Entrez IDs, we added edges between all possible mappings.

Table S1. Information on the molecular networks. LT : low-throughput, HT : high-throughput, G : genetic, P : physical,
E : Experimentally determined, DA : database annotations, CE : co-expression, NP : non-protein, R : regulation,
TM : text-mining, O : orthologous.

Network Number
of

Genes

Number of Edges Network
Construction

Method

Weighted Interaction Type

BioGRID 19,022 484,356 LT No G, P

STRING-EXP 17,417 2,121,428 HT Yes E

GIANT-TN 25,689 38,904,929 LT, HT Yes CE, NP, P, R

STRING 18,582 5,521,113 HT Yes TM, CE, O, DA, P

Section 2: Network representation
We utilize three distinct representations of molecular networks: the adjacency matrix, an influence matrix, and
low-dimensional node embeddings. Let denote an undirected molecular network, where is the𝐺 =  (𝑉, 𝐸, 𝑊) 𝑉
set of vertices (genes), is the set of edges (associations between genes), and is the set of edge weights𝐸 𝑊
(the strengths of the associations). can be represented as a weighted adjacency matrix , where𝐺 𝐴

𝑖,𝑗
= 𝑊

𝑖,𝑗
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. can also be represented as an influence matrix, which can capture both local and𝐴 ∈ 𝑅 𝑉| |× 𝑉| | 𝐺 𝐹 ∈ 𝑅 𝑉| |× 𝑉| |,
global structure of the network. was obtained using a random walk with restart transformation kernel (8),𝐹

(eqn. 1)𝐹 =  α 𝐼 − 1 − α( )𝑊
𝐷[ ]−1

where, is the restart parameter, is the identity matrix, and is the degree weighted adjacency matrixα 𝐼 𝑊
𝐷

given by , where is a diagonal matrix of node degrees. A restart parameter of 0.85 was𝑊
𝐷

= 𝐴𝐷−1 𝐷 ∈ 𝑅 𝑉| |× 𝑉| |

used for every network.

can also be transformed into a low-dimensional representation through the process of node embedding. In𝐺
this study we used the node2vec algorithm (9), which borrows ideas from the word2vec algorithm (10, 11) from
natural language processing. The objective of node2vec is to find a low-dimensional representation of the

adjacency matrix, , where . This is done by optimizing the following log-probability objective𝐸 ∈ 𝑅 𝑉| |×𝑑 𝑑 ≪ 𝑉
function:

(eqn. 2)𝐸 =
𝑢∈𝑉
∑ 𝑙𝑜𝑔 𝑃𝑟 𝑁

𝑠
𝑢( )|𝑒 𝑢( )( )( )

where is the network neighborhood of node generated through a sampling strategy , and is𝑁
𝑠

𝑢( ) 𝑢 𝑆 𝑒 𝑢( ) ∈ 𝑅𝑑

the feature vector of node . In node2vec, the sampling strategy is based on random walks that are controlled𝑢
using two parameters p and q, in which a high value of q keeps the walk local (a breadth-first search), and a
high value of p encourages outward exploration (a depth-first search). The values of p and q were both set to
0.1 for every network.

Section 3: Processing gene set collections
The GenePlexus web-server uses two different gene set collections and the properties of these collections can
be seen in Table S2. First, is a gene set collection that maps genes to various biological processes found in the
Gene Ontology (12, 13). To build this gene set collection we retrieved gene to biological processes annotations
from MyGene.info (6, 7) (downloaded on 2020-10-29) for any human gene that had an Entrez ID, where the
annotations were subset to only include the following evidence codes; EXP, IDA, IPI, IMP, IGI, TAS, and IC.
These annotations were propagated up the ontology, i.e. if a gene was annotated to a term, we then also
annotated it to every ancestor term, where the ontology structure only included biological process terms. The
other collection maps genes to various diseases. This mapping was downloaded directly from the DisGeNet
database (14, 15) (downloaded on 2020-11-23), and we also propagated the gene-disease annotations to
ancestor nodes using the Disease Ontology (16).

Each collection was also further processed separately for each network by first finding the intersection between
the genes in a given network and the genes annotated to a term in the gene set collection. If the length of this
intersection was between 10 and 200 the gene set was retained. After having gone through every term in the
collection, we additionally keep track of all genes that are annotated to at least one term in this subset version
of the gene set collection. This set of total genes is used when determining which genes to use as negative
examples in the machine learning model.
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Table S2. Information on the gene set collections. The last four columns reflect the fact each gene set collection is
slightly different for every network and these values are presented as either a range, a median value, or number of genes
in a union.

gene set
Collection

Network Number of gene
sets After

Processing

gene set
Size

Range

Median
gene set

Size

Number of Unique
Genes from Union

of all gene sets

GO BioGRID 3692 (10, 200) 26 10,662

STRING 3630 (10, 200) 26 10,643

STRING-EXP 3622 (10, 200) 26 10,480

GIANT-TN 3688 (10, 200) 26 10,897

DisGeNet BioGRID 896 (10, 198) 26 6,126

STRING 890 (10, 199) 26 6,055

STRING-EXP 889 (10, 199) 26 5,977

GIANT-TN 903 (10, 196) 26 6,231

Section 4: Selecting positive and negative genes
The GenePlexus web-server uses a supervised machine learning model for predicting the association of all the
genes in the network to the user supplied gene set. To build the classification boundary the model requires
both positive and negative training examples. The positive set of genes is any gene from the user-supplied
gene list that is able to be converted to an Entrez ID and found in the chosen network. The user can then
choose if they want to define genes in the negative class based on one of two gene set collections, biological
processes from the Gene Ontology (12, 13) or diseases from DisGeNet (14, 15), based on whether the input
genes better represent a cellular process/pathway or a disease. GenePlexus then automatically selects the
genes in the negative class by:

1. Consider the total pool of possible negative genes to be any gene that has an annotation to at least one
of the terms in the selected gene set collection

2. Remove genes that are in the positive class.
3. For every term in a gene set collection, we perform a one-sided Fisher’s exact test between the genes

in the positive class and the genes annotated to the given term. If the p-value of the test is less than
0.05, all genes from the given term are also removed from the pool of possible negative genes.

4. The remaining genes in the pool of possible negative genes are used in the negative class. Note that
most genes in the network are not contained in the positive class or negative class and are considered
as part of the unlabeled class.

Section 5: Supervised learning model
In GenePlexus, the supervised machine learning model uses the connections of a user chosen genome-scale
molecular network as feature vectors. As described above, these feature vectors can be one of three
representations; Adjacency, Influence and Embedding. The GenePlexus web-server uses logistic regression
with l2-regularization as the supervised learning algorithm and is implemented using the python package
scikit-learn (17). After training a model using the labeled genes, the trained model is used to classify all the
genes in the chosen network, returning a prediction probability for these genes that is bounded between 0 and
1. The regularization parameter is set to 1.0 on the web-server.

https://www.zotero.org/google-docs/?s9J8Xt
https://www.zotero.org/google-docs/?4iVUsa
https://www.zotero.org/google-docs/?S7l7Zt


Section 6: Generating similarity scores
A unique feature of the GenePlexus web-server is proving some interpretation of the machine learning model
trained on the user supplied gene set. This is done by comparing the weights of that trained model to the
weights from thousands of other models pretrained on known gene sets of biological processes from the Gene
Ontology and diseases from DisGeNet.

Section 6.1: Pre-training models
The first step in this process is to train models for each known gene set. For each gene set in either the Gene
Ontology or DisGenet collection a model is trained for every combination of network (BioGRID, STRING,
STRING-EXP, GIANT-TN), feature type (Adjacency, Influence, Embedding) and way of selecting negatives
(GO, DisGeNet) and the weights of these trained models are saved.

The next step is building up matrices that will be used for doing background correction of the final similarities

presented on the web-server. To accomplish this, we generate a correction matrix, , where is𝐶 ∈ 𝑅 𝑁| |× 𝑇| | 𝑁| |
number of terms in the gene set collection that the user chose to build the negative class and is the number𝑇| |
of terms in the gene set collection of the target table. For example, if the user chose to build the negative class
based on biological processes in GO and the output result table on the web-server is displaying similarity of the
user trained model to diseases in DisGeNet, then the rows of would correspond to biological process terms𝐶
and the columns would correspond to disease terms. An element in the correction matrix is given by

, where is the vector of weights from a trained model and is a function that captures𝐶
𝑖,𝑗

= 𝑆(𝑤
𝑁

𝑖

, 𝑤
𝑇

𝑗

) 𝑤 𝑆

similarity between the two weight vectors. In this work, we use the cosine similarly as our similarity metric. A
separate correction matrix is generated for all combinations of network, feature type, negative selection
method and target table. We note that this requires training over >10,000 machine learning models where a
model can have up to 25,689 weights and use thousands of training examples.

Section 6.2: Getting similarities to user trained model
After the user submits a job, a custom machine learning model is trained. Once trained, the GenePlexus
web-server computes the cosine similarity of the weights from the user model to the weights of each term in

the target table, where is given by and are the weights of the user model. This𝑞 ∈ 𝑅1× 𝑇| | 𝑞
𝑗

= 𝑆(𝑤
𝑈

, 𝑤
𝑇

𝑗

) 𝑤
𝑈

vector is then appended as the last row of the corresponding correction matrix, . This is done𝑞 𝐶
𝑁| |+1, 𝑗

= 𝑞
𝑗

separately for each target table.

Section 6.3: Background correction
The background correction is done in two parts. First, a z-score is calculated across all scores for the user
genes, which is given by,

,𝑧
𝑞

𝑗

= 𝑚𝑎𝑥 0,
𝐶

𝑁| |+1, 𝑗
−µ 𝑁| |+1( )

σ 𝑁| |+1( )( )
Where and are the mean and standard deviation calculated across the row of ,µ 𝑁| | + 1( ) σ 𝑁| | + 1( ) 𝑁| | + 1 𝐶
respectively. Additionally, a z-score is calculated to correct for any bias in the negative gene selection, which is
given by,

,𝑧
𝑇

𝑗

= 𝑚𝑎𝑥 0,
𝐶

𝑁| |+1, 𝑗
−µ 𝑗( )

σ 𝑗( )( )



Where and are the mean and standard deviation calculated across the column of , respectively.µ 𝑗( ) σ 𝑗( ) 𝑗𝑡ℎ 𝐶
The final scores presented on the GenePlexus web-server are the l2-norm of the above z-scores given by,

.𝑧
𝑗

= 𝑧
𝑞

𝑗

2 + 𝑧
𝑇

𝑗

2
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