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Supporting Texts 
 
Text S1. MSA generation and spatial restraints prediction. 

DeepMSA2 for MSA generation. Multiple sequence alignment in LOMETS3 is generated by DeepMSA2 (1), 
which is an extended pipeline based on the DeepMSA methodology (2) by adding pipelines to search larger 
metagenome sequence databases and including a contact-based MSA selection method based on deep learning 
predicted contact maps (Figure S1). Two individual MSA generation pipelines, dMSA and qMSA, in DeepMSA2, 
are used in LOMETS3. The dMSA (Figure S1A) pipeline is identical with the previous DeepMSA method. First, the 
query sequence is searched through Uniclust30 (version 2017_04) by HHblits2 to create dMSA-1. Next, the sequences 
identified by Jackhmmer and HMMsearch are used to construct a custom HHblits database, against which HHblits2 
is run starting from the MSA generated in the previous stage to generate dMSA-2 and dMSA-3, respectively. qMSA 
pipeline (“Quadruple MSA” in Figure S1B) is used to produce four more MSAs. First, HHblits2 is used to search 
against the Uniclust30 database (version 2020_01) to create qMSA-1. Next, the sequences detected by Jackhmmer, 
HHblits3, and HMMsearch through the UniRef90, BFD, and Mgnify databases are used to construct custom HHblits-
style databases, against which HHblits2 is used to search starting from the MSA generated by the previous stage to 
create qMSA-2, qMSA-3, and qMSA-4, respectively. The 7 MSAs (dMSA-1, dMSA-2, dMSA-3, qMSA-1, qMSA-
2, qMSA-3 and qMSA-4) will be fed into DeepPotential to get 7 predicted contact maps. The final MSA of DeepMSA2 
is the MSA that has the highest cumulative probability for the top 10L predicted contacts (Figure S1C). 

DeepPotential for spatial restraints prediction. Three types of spatial restraints are used in LOMETS3 and can 
be predicted by DeepPotential (1). The spatial restraints include (i) contact maps, (ii) distance maps, and (iii) hydrogen 
bond networks (3). In the DeepPotential pipeline, a set of co‐evolutionary features are extracted from the final MSA 
generated by DeepMSA2. These co‐evolutionary features, which are inherently two‐dimensional, include the raw 
coupling parameters from the pseudo likelihood maximized (PLM) 22‐state Potts model and the raw mutual 
information (MI) matrix. The PLM and MI matrices are extracted from the query‐specific co‐evolutionary information 
in the given MSA. The Potts model field parameters, Hidden Markov Model (HMM) features, and the self‐mutual 
information are the major one‐dimensional inputs, along with the one‐hot representation of the MSA and other 
descriptors, such as the number of sequences in the MSA. These two‐dimensional and one‐dimensional features are 
fed into deep convolutional residual neural networks separately, where each of them is passed through a set of one‐
dimensional and two‐dimensional residual blocks, respectively, and are subsequently tiled together. The tiled feature 
representations are considered as the inputs of another fully residual neural network containing 40 2-D residual blocks 
which output several inter-residue interaction terms, including the Cα-Cα (Cβ-Cβ) contact map, Cα-Cα (Cβ-Cβ) 
distance map, and hydrogen bond networks (aa, bb and cc). Here, the predicted distance restraints and hydrogen bond 
restraints are represented using various bins that correspond to specific probability values. For example, for the Cα 
and Cβ distances, the predictions are divided into 38 bins, where the first bin represents the probability that the distance 
is <2Å and the final bin represents the probability that the distance is ≥20Å. The remaining 36 bins represent the 
probability that the distance falls in the range [2Å, 20Å), where each bin has a width of 0.5 Å. For the 3 types of 
hydrogen bonds, the probability is predicted using a bin width of 10˚ (0-180˚) with an additional bin to indicate 
whether there is no hydrogen bond between the two residues (i.e., Cα-Cα distance ≥10Å). 

 
Text S2. Domain partition and assembly. 
A new domain partition and assembly module has been added to LOMETS3 for multi-domain protein template 
detection and modeling. The domain partition module combines two domain boundary prediction algorithms, 
ThreaDom and FUpred. Each predicted individual domain target will again be input to LOMETS3 for template 
detection and modeling. The final templates and models for domains will be assembled to “full-length” by DEMO2 
(4) guided by the knowledge-based potential, template-based potential and spatial restraints from DeepPotential. 

Domain partition. LOMETS3 combines ThreaDom (5) and FUpred (6) to predict whether a target is a single- or 
multi-domain protein and where the domain boundaries are. ThreaDom is a template-based method, which is mainly 
used for Easy targets, and FUpred predicts domains based on DeepPotential contact map, thus is mainly used for Hard 
targets. ThreaDom predicts domain boundary depending on LOMETS3 threading alignment coverage. A domain 
conservation score (DCS), which combines information from the template domain structures, terminal and internal 
gaps, and insertions, is calculated for each residue. The domain boundary information is derived from the DCS profile 
distribution. FUpred utilizes a recursive strategy to detect domain boundaries based on predicted contact maps and 
secondary structure information. The core idea of the algorithm is to retrieve domain boundary locations by 
maximizing the number of intra-domain contacts, while minimizing the number of inter-domain contacts from the 
contact maps. In benchmarks, FUpred achieved exceptional performance on domain boundary detection, especially 
for discontinuous domains (6).  



Domain assembly. “Full-length” templates/models of multi-domain proteins are constructed by assembling 
independently predicted domain templates/models through DEMO2, which is an improved version of DEMO (4) that 
integrates inter-domain spatial restraints predicted by DeepPotential associated with the knowledge-based potential 
and template-based potentials. In the DEMO2, ten global templates that cover as many domains as possible are first 
identified from a non-redundant multi-domain protein library by aligning each domain model to the template using 
TM-align (7). Starting from each initial global template, an L-BFGS algorithm is performed to detect each domain's 
optimal translation vectors and rotation angles for domain templates/models. The optimization is guided by a 
comprehensive energy function including inter-domain steric clashes, inter-domain distance profiles deduced from 
the top templates, domain boundary connectivity, inter-domain distances and domain-domain interfaces (distance 
<20Å) predicted by DeepPotential, and a generic inter-domain contact potential (8). The translation vectors and 
rotation angles with the lowest energy are selected to construct the final “full-length” template/model. Finally, the 
model with the lowest energy is selected for side-chain reconstruction and refinement by FASPR (9) and FG-MD (10). 
 
Text S3. Extended COFACTOR pipeline for function prediction.  

COFACTOR (11) is a structure, sequence, and protein-protein interaction (PPI) based method for protein function 
predictions, providing predicted annotations including Gene Ontology (GO), Enzyme Commission (EC), and ligand 
binding sites. In LOMETS3, COFACTOR is integrated and extended by integrating the LOMETS3 threading 
templates associated with structural analogues to search through the BioLiP protein function database (12) for 
identifying functional sites. Here, BioLiP is a semi-manually curated structure-function database containing known 
associations of experimentally solved structures and biological functions of proteins in terms of GO terms, EC 
numbers, and ligand binding sites.  

GO term prediction. Three types of GO terms, Molecular Function (MF), Biological Process (BP), and Cellular 
Component (CC) GO terms, are predicted by COFACTOR (11), which detects functional homologs through three 
pipelines: 1) local and global structure alignments, 2) sequence and sequence profile comparison, and 3) partner-
homology based protein-protein interaction mapping.  

Structure-based pipeline. The query structure is compared to a non-redundant set of known proteins in the BioLiP 
(12) through two sets of local and global structural alignments based on TM-align (7), for functional homology 
detections. Currently, the BioLiP library contains 234,574 entries annotated with GO terms. In addition, the 
LOMETS3 threading templates and structure analogues are also be added into the structural alignments list in this 
pipeline. 

The overall confidence score for a particular GO term is defined by 
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where N is the number of templates associated with the GO term, and FCscorei is the confidence score of the i-th 
template hit associated with the GO term. TM is the global structure similarity in terms of TM-score between query 
and template, ID is the sequence identity between query and template in the aligned region, SSbs is the sequence 
identity at the binding site, and Lsim is the local structure similarity between query and template. 

Sequence-based pipeline. In the sequence-based pipeline, a query is searched against the UniProt-GOA by 
BLAST with an E-value cutoff 0.01 to identify sequence homologs, where unreviewed annotations with Inferred from 
Electronic Annotation (IEA) or No biological Data available (ND) evidence codes are excluded. Similarly, a three-
iteration PSI-BLAST search is performed for the query through the UniRef90 (13) database to create a sequence 
profile, which is used to jump-start a one-iteration PSI-BLAST search through the UniProt-GOA.   

The overall confidence score of the sequence-based pipeline is calculated as  
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where w equals the maximum sequence identity of the query to all the template hits. GOfreqblast and GOfreqpsiblast are 
the confidence scores for a particular GO term resulting from a BLAST or PSI-BLAST search. N is the number of 
templates identified, sk is the sequence identity between the query and the k-th template and 𝑁3 and 𝑠23  are those 
associated with a specific GO term. 

PPI-based pipeline. In this pipeline, the query is first mapped to the STRING (14) PPI database by BLAST; only 
the BLAST hit with the most significant E-value is subsequently considered. GO terms of the interaction partners, as 



annotated in the STRING database, are then collected and assigned to the query protein. The underlying assumption 
is that interacting protein partners tend to participate in the same biological pathway at the same sub-cellular location 
and therefore may have similar GO terms.   

The confidence score for a GO term mapped by PPI is calculated by 
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where N is the number of interacting partners, strk is the confidence score of interaction between query and the k-th 
interaction partner as assigned by the STRING database and 𝑁3 and 𝑠𝑡𝑟23  are those associated with a specific GO term. 
Sq is the sequence identity in the first step of BLAST alignment between the query sequence and the STRING entry it 
is mapped to.  

The final function predictions are obtained from a combination of the three pipeline results through logistic 
regression, with confidence score calculated by 
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where m∈{structure, sequence, PPI}. wm is the relative weight for each of the three methods, with wsequence = wPPI = 1 
and wstructure = 1 − w, where w equals to the maximum sequence identity among identified function templates. 

EC number prediction. The pipeline for EC number prediction is similar to the structure-homology based 
method used in GO prediction. Enzymatic homologs are collected from LOMETS3 threading templates and structure 
analogs, then mapped to a library containing 8,392 enzyme structures from the BioLiP library, with the active site 
residues obtained from the Catalytic Site Atlas database (15).   

The confidence score for each predicted EC number is estimated by 
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where TM is the global structure similarity in terms of TM-score between query and template, ID is the sequence 
identity between query and template in the aligned region, SSas is the sequence identity at the active site, and Lsim is 
the local structure similarity between query and template. 

Ligand binding site prediction. Ligand binding site prediction in COFACTOR consists of three steps.   
First, functional homologues are collected from the LOMETS3 templates and structure analogs, and then matched 

through the BioLiP library, which currently contains 115,951 structure templates harboring in total 569,071 ligand-
binding sites for interaction between receptor proteins and small molecule compounds, short peptides, and nucleic 
acids. The initial binding sites are then mapped to the query from the individual templates based on the structural 
alignments.  

Second, the ligands from each individual template (LOMETS3 threading templates or structure analogs) are 
superposed to the predicted binding sites on the query structure using superposition matrices from a local alignment 
of the query and template binding sites. To resolve atomic clashes, the ligand poses are refined by a short Metropolis 
Monte Carlo simulation under rigid-body rotation and translation.   

Finally, the consensus binding sites are obtained by clustering of all ligands that are superposed to the query 
structure, based on distances of the centers of mass of the ligands using a cutoff of 8Å. Different ligands within the 
same binding pocket are further grouped by the average linkage clustering with chemical similarity, using the 
Tanimoto coefficient (16) with a cutoff of 0.7. The model with the highest ligand-binding confidence score among all 
the clusters is selected.  

The confidence score is defined by  
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where M is the number of ligands in the ligand cluster, Mtot is the total number of ligands collected from all homologous 
templates, TM is the global structure similarity in terms of TM-score between query and template, ID is the sequence 
identity between query and template in the aligned region, Lsim is the local structure similarity between query and 
template, and D is the average distance between ligands within the cluster. 
 
Text S4. Summary of the 11 component threading methods. 

The LOMETS3 server integrates predictions from 11 locally installed threading programs, which can be classified 
as two groups, contact-based threading method and profile-based threading method. The contact-based threading 
group includes 5 programs: CEthreader (17), DisCovER (18), EigenThreader (19), Hybrid-CEthreader (17), MapAlign 



(20). The profile-based threading group includes 6 methods: FFAS3D (21), HHpred (22), HHsearch (23), MRFsearch 
(24), MUSTER (25), and SparksX (26). The predicted contact map used in contact-based threading methods is the 
Cβ-Cβ contact map predicted by DeepPotential, and the sequence-profile or profile-HMM is derived from the final 
MSA generated by DeepMSA2. All the programs run with a unified non-redundant template library that contains 
around 90,000 items and is updated every week. For a protein chain that consists of multiple domains, both the whole 
chain and individual domain structures are included in the library. Below we summarize each of the component 
threading methods; full details can be found in the references cited above. 

CEthreader is an in-house threading program that uses predicted contact detecting templates.  The input contact 
map predicted from DeepPotential will be decomposed as single body 7-dimensional eigenvectors by Eigen 
decomposition, and then be used as part of a dynamic programming scoring scheme. In addition to residue-residue 
contacts, the sequence-profile and secondary structure terms are also used in the scoring scheme with an affine gap by 
Needleman-Wunsch dynamic programming algorithm. The contact map overlapping score, CMO (see Eq. S13 of 
Text S3), is used to rank the top threading templates. To speed up the threading approach, we first select the top 1,000 
templates identified by HHsearch, and then re-align and re-rank the templates by the CEthreader.  

DisCovER is a contact-based threading method utilizing an iterative double dynamic programming algorithm. In 
the first stage, an alignment score incorporates sequence-profile, predicted secondary structures, structure derived 
profiles, solvent accessibility, backbone dihedral angles, hydrophobicity, and the neighborhood effect. This score is 
calculated for every query-template alignment with the Needleman-Wunsch dynamic programming algorithm. In the 
second stage, a similarity score incorporating predicted distance term is used for re-aligning the top 50 ranked 
alignments in the first stage searching. A two-step iterative double dynamic programming algorithm is used to find 
the new optimal alignment that maximizes the similarity score when re-aligning those 50 templates. 

EigenThreader is a contact-based threading method which is extended from the Al-Eigen (27) method. Similar 
to CEthreader, the input contact map also will be decomposed as single body eigenvectors by Eigen decomposition, 
but with higher dimension of 20. Instead of evaluating all eigenvector signs in contact map alignment by Needleman-
Wunsch dynamic programming, an iterative search algorithm using sign inversion of eigenvectors is used. The final 
templates are ranked by a scoring function combined with a CMO term and secondary structure match term. 

Hybrid-CEthreader is a hybrid approach based on the CEthreader pipeline, where HHsearch is replaced by a 
fast version of CEthreader for the first-round database scan. The fast version of CEthreader only utilizes 2-dimensional 
eigenvectors for contact map alignment. Then, the top 1,000 templates detected by the fast version of CEthreader will 
be re-aligned and re-ranked by the full version of CEthreader with 7-dimensional eigenvectors. 

MapAlign is a contact-based threading method that uses a double dynamic programming algorithm to maximize 
the CMO between the query contact map and template contact map. The first step calculates a score between each 
row of the query contact map and each row of the template contact map.  The score is the sum of Gaussian functions 
based on sequence separation. Dynamic programming finds the alignment of these two rows that results in the 
maximization of the calculated score. The maximized scores are then used in a second matrix, where the second 
dynamic programming step utilizing the Smith-Waterman algorithm returns the optimal contact alignment. This 
alignment is used to update the second step similarity matrix, and the second dynamic programming step is carried 
out again, for a 20-times iterative process. 

FFAS3D is a profile-based threading method utilizing the Smith-Waterman dynamic programming algorithm to 
detect templates. The scoring function used in dynamic programming incorporates sequence profiles, predicted 
secondary structures, solvent accessibility, and residue depth. The raw alignment score after dynamic programming 
is calibrated as a Z-score with the mean and standard deviation of a distribution of scores. Templates are then re-
ranked based on a neural network with the Z-score, sequence identities, secondary structures, Pearson’s correlation 
coefficients, solvent accessibility, and residue depth as inputs, to generate a new alignment score. 

HHsearch is based on profile hidden Markov models (HMMs), an extension of sequence profiles which also 
contain information on position-specific probabilities of amino acid matches, insertions, and deletions as well as the 
frequencies of emitting different amino acid types. A profile HMM is calculated for the query sequence from its MSA 
and searched against a pre-built template database of profile HMMs.  Along with secondary structure information, 
dynamic programming is used to provide an HMM-HMM alignment that maximizes the log-sum-of-odds score, a 
generalization of the log-odds of sequence emission from an HMM to an HMM-HMM alignment.  

HHpred is an extension of HHsearch with the addition of a new template re-ranking scheme. A simple neural 
network with four alignment features as inputs is used to predict the template TM-score (28) based on a query-template 
alignment. From the top 100 HHsearch templates, a set of accepted templates is built with the highest predicted TM-
score template as the first member of the set. An iteratively updated score rewarding high coverage and penalizing 
worse alignment quality than pre-selected templates is used to re-rank remaining templates. Templates are added to 
the new set given there are positive scores. 



MRFsearch is a profile-based threading method that aligns Markov random fields (MRFs) to detect templates, 
where each node of the MRF represents one residue and each edge specifies mutation statistics between two 
corresponding residues. The scoring function for an MRF-MRF alignment incorporates node alignment potentials and 
edge alignment potentials with equal weights. A suboptimal alignment is obtained via alternating direction method of 
multiples (ADMM), an algorithm that reduces the MRF-MRF alignment problem to two iteratively solved sub-
problems. 

MUSTER is an in-house profile-based threading method built on Needleman-Wunsch dynamic programming. 
The scoring function contains sequence profiles, secondary structure, structure fragment profiles, solvent accessibility, 
backbone torsional angles, and hydrophobic scoring matrices. 

SparksX detects templates by Smith-Waterman dynamic programming. The alignment score includes profile-
profile comparison, and estimated probabilities between query and template 1D structural properties that includes 
predicted secondary structures, solvent accessibility, and backbone dihedral angles. 

 
Text S5. Templates ranking and target type definition. 

Template re-ranking for profile-based threading. For the six profile-based threading methods, including 
FFAS3D, HHpred, HHsearch, MRFsearch, MUSTER, and SparksX, a template re-ranking algorithm is utilized based 
on the scoring function, 𝑍 − 𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑗) , which combines the original profile-based alignment score, contact map 
overlapping score, mean absolute distance error, and hydrogen bond satisfaction. The 𝑍 − 𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑗)  where i 
represents i-th template and j represents j-th threading program, is defined as follows: 

𝑍 − 𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑗) = 𝑤*	𝑍 − 𝑠𝑐𝑜𝑟𝑒>?9(𝑖, 𝑗) + 𝑤@	𝑍 − 𝑠𝑐𝑜𝑟𝑒:>7(𝑖, 𝑗)																																																					 
+𝑤A	𝑍 − 𝑠𝑐𝑜𝑟𝑒B<(𝑖, 𝑗) + 𝑤C	𝑍 − 𝑠𝑐𝑜𝑟𝑒1#=D(𝑖, 𝑗)																																															(𝑆9) 

where 𝑍 − 𝑠𝑐𝑜𝑟𝑒>?9(𝑖, 𝑗) is the Z-score of the mean absolute error (MAE) based on the predicted distance map, 
𝑍 − 𝑠𝑐𝑜𝑟𝑒:>7(𝑖, 𝑗) is the Z-score of the number of overlapping contacts based on the predicted contact map (CMO), 
𝑍 − 𝑠𝑐𝑜𝑟𝑒B<(𝑖, 𝑗) is the Z-score based on the predicted hydrogen bond geometry (HB), and 𝑍 − 𝑠𝑐𝑜𝑟𝑒1#=D(𝑖, 𝑗) is a 
score which is based on the original profile threading scores. The formulas of these four Z-scores are as follows: 
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where 𝑑+,.
-$&#F  is the predicted distance between residue m and n in the query structure, 𝑑+,.

"&+1/0"&  is the predicted 
distance between residue m and n in the template structure, ali means the length of alignment, and 𝛿(𝑚, 𝑛) =
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scores across all templates for the j-th program, respectively. 
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where 𝑁(𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐶𝑀-$&#F, 𝐶𝑀"&+1/0"&)) is the number of overlapping contacts between the predicted contact map 
and the contact map derived from the aligned template, and 𝑁(𝐶𝑀-$&#F)  is the number of predicted contacts. 
⟨𝐶𝑀𝑂(𝑗)⟩ and 𝜎(𝐶𝑀𝑂(𝑗))	are the mean and standard deviation of the contact overlap scores across all templates for 
the j-th program, respectively. 

𝑍 − 𝑠𝑐𝑜𝑟𝑒B<(𝑖, 𝑗) =
𝐻𝐵𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑗) − ⟨𝐻𝐵𝑠𝑐𝑜𝑟𝑒(𝑗)⟩

𝜎(𝐻𝐵𝑠𝑐𝑜𝑟𝑒(𝑗)) 																																																							(S14) 

𝐻𝐵𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑗) =o
1

1 + (
|𝑚𝑖𝑛(|𝜃+,.

-$&#F − 𝜃+,.
"&+1/0"&|, 𝜋 − |𝜃+,.

-$&#F − 𝜃+,.
"&+1/0"&|)|

𝜃 )@

0/'

+,.
									(𝑆15) 

where 𝜃+,.
-$&#F is the predicted hydrogen bond angle between residue m and n in the query structure, 𝜃+,.

"&+1/0"& is the 
predicted hydrogen bond angle between residue m and n in the template structure, and 𝜃 = 15˚. ⟨𝐻𝐵𝑠𝑐𝑜𝑟𝑒(𝑗)⟩ and 
𝜎(𝐻𝐵𝑠𝑐𝑜𝑟𝑒(𝑗))	are the average and standard deviation of the alignment scores across all templates for the j-th 
program, respectively. 

𝑍 − 𝑠𝑐𝑜𝑟𝑒1#=D(𝑖, 𝑗) =
𝑆(𝑖, 𝑗) − ⟨𝑆(𝑗)⟩

𝜎(𝑆(𝑗)) 																																																														(S16) 



where 𝑆(𝑖, 𝑗) is the alignment score of the i-th template for the j-th program, and ⟨𝑆(𝑗)⟩ and 𝜎(𝑆(𝑗))	are the average 
and standard deviation of the alignment scores across all templates for the j-th program, respectively. 

Final template ranking in LOMETS3. For a given target, 220 templates (=11×20) are collected, where each 
threading method generates 20 top templates that are sorted by their Z-scores. The top 10 templates are finally selected 
from the 220 templates pool based on the following scoring function that integrates Z-score and sequence identity 
between the identified templates and query sequence: 

𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑗) = 𝑐𝑜𝑛𝑓(𝑗) ∗
𝑍 − 𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑗)

𝑍G(𝑗)
+ 𝑠𝑒𝑞𝑖𝑑(𝑖, 𝑗)																																																(S17) 

where 𝑠𝑒𝑞𝑖𝑑(𝑖, 𝑗) is the sequence identity between the query and the i-th template from the j-th program, 𝑐𝑜𝑛𝑓(𝑗) is 
the confidence score for the j-th program, which was calculated by determining the average TM-scores over the first 
templates to the native structures on the benchmark dataset, and 𝑍G(𝑗) is the Z-score cut-off for defining good/bad 
templates for the j-th program, which was determined by maximizing the Matthews correlation coefficient (MCC) for 
distinguishing a good template (with a TM-score ≥0.5) from a bad template (TM-score <0.5) on the benchmark 
Dataset-1 that contains 614 single-domain proteins. As a result, the parameters 𝑍G(𝑗) (and 𝑐𝑜𝑛𝑓(𝑗)) are 6.1 (0.495), 
7.8 (0.478), 6.0 (0.472), 22.0 (0.471), 3.8 (0.471), 8.5 (0.461), 6.0 (0.456), 6.9 (0.445), 46.0 (0.440), 6.0 (0.437), and 
83.0 (0.389) for Hybrid-CEthreader, SparksX, CEthreader, HHsearch, MapAlign, MUSTER, MRFsearch, DisCovER, 
FFAS3D, EigenThreader, and HHpred, respectively.  

Target type definition. Based on the quality and number of threading alignments from LOMETS3, protein 
targets can be classified as “Easy” and “Hard”, where “Easy” target mainly represents homologous target and “Hard” 
target represents non-homologous protein. The target type definition used in LOMETS3 considers the threading 
template quality, i.e., Z-score, and the structural similarity between templates from different threading methods.  

For each protein target, the first ranked template for each of the 11 threading methods in LOMETS3 are selected. 
Based on the 11 templates, Za, the average normalized Z-score (divided by Z0), is calculated for the 11 threading 
methods. We further calculate the pairwise TM-scores among the 11 templates. There are 55 (= 𝐶**@ = 11 × 10/2) 
distinct template-template pairs and corresponding TM-scores. We define TM1, TM2, TM3, and TM4 as the average 
TM-scores over the top 1/4, 2/4, 3/4 and 4/4 template-template pairs ranked by their TM-scores. Thus, we get a set of 
9 scores, i.e., S = {Za, TM1, TM2, TM3, TM4, Za*TM1, Za*TM2, Za*TM3, Za*TM4}. Based on the set S, the target 
can be classified by the following rule, 
 

Target	is	classified	as	 f𝐸𝑎𝑠𝑦,										𝑖𝑓	|{𝑠 ∈ 𝑆|𝑠 > 𝑐𝑢𝑡(𝑠)}| ≥ 7																						
𝐻𝑎𝑟𝑑,									𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																							 																		(𝑆18) 

 
where cut(S)={1.052, 0.508, 0.396, 0.350, 0.339, 0.353, 0.279, 0.239, 0.209}. Here, |{… }| means the number of items 
in the set {… }.  
 
Text S6. Model generation by an L-BFGS system. 

For each pair of residues, the probabilities of structural geometry terms will be converted into smooth potentials 
for the gradient-descent based protein structure prediction. For each term, the negative log of the raw probability 
histogram will be interpolated by cubic spline as potentials. The folding potential can be written as 

𝐸D=/H = 𝑤*𝐸%,H'! +𝑤@𝐸%0H'! +𝑤A(𝐸00 + 𝐸,, + 𝐸%%) (𝑆19) 

where 𝐸%,H'! and 𝐸%0H'! are distance potentials (𝐸%,H'! and 𝐸%0H'!), and 𝐸00, 𝐸,, and 𝐸%% are hydrogen potentials. The 
weights of corresponding terms are set empirically to 𝑤* = 5.0, 𝑤@ = 0.1, and 𝑤A = 0.5. 

Here, the hydrogen bond probability histogram is directly predicted from DeepPotential, while for distance 
probability histogram, the probability, 𝑃(𝑖, 𝑗)H'!, used to calculate 𝐸%,H'! and 𝐸%0H'!, is a fusion probability combining 
the raw probability 𝑃(𝑖, 𝑗)H'!

H1  predicted from DeepPotential and statistical probability 𝑃(𝑖, 𝑗)H'!"&+  derived from 
LOMETS3 top N ranked templates with alignment coverage > 0.5 for Easy targets (coverage >0.6 for Hard targets). 
Here, N is 50 for Easy targets, and 30 for Hard targets. The fusion probability 𝑃(𝑖, 𝑗)H'! can be calculated as 

𝑃(𝑖, 𝑗)H'! = 𝑤𝑃(𝑖, 𝑗)H'!
H1 + (1 − 𝑤)𝑃(𝑖, 𝑗)H'!"&+																																																											(𝑆20) 

where i and j are a residue pair, and w is a weight, which equals to 0.8. 
The backbone structure of the protein is specified by the 𝜙/𝜓 backbone torsion angle of each residue along the 

query sequence, while the backbone torsion angle 𝜔 is set to 180°. Given a set of (𝜙' , 𝜓') parameters with 𝑖 = 1,⋯ , 𝐿, 
the coordinates of backbone atoms (including Cβ atoms) can be recovered, thus the energy of such decoy conformation, 
defined in Eq. S19, can be computed according to the interpolated potential curves. With the help of the automatic 
differentiation in PyTorch (29), the gradient with respect to the parameters could be readily obtained.  



We implemented the L-BFGS algorithm to iteratively update the protein structure conformations. The whole 
backbone folding process is performed 10 times with different initial structures built from random backbone torsion 
angle samplings. The final conformation with the lowest total energy is returned. Once the optimal backbone 
conformation is obtained, the FASPR program (9) is used to construct and repack the sidechain atoms, and FG-MD 
(10) is used to refine the final model by removing any clashes. 

 
 
 
 
  



Supporting Figures 
 

 
Figure S1. Flowchart of the DeepMSA2 algorithm. (A) dMSA pipeline that contains three stages of MSA generation 
using sequences from HHblits searching against Uniclust30, Jackhmmer searching through UniRef and HMMsearch 
through Metaclust. (B) qMSA pipeline which is extended from dMSA pipeline by adding a new stage for searching 
the BFD metagenome database. (C) MSA selection method that ranks the MSAs based on the sum of top L predicted 
contact probabilities.  
  



 
Figure S2. Average TM-scores of the first templates for 11 single threading methods in LOMETS3 on (A) All 614 
single-domain targets, (B) 403 Easy targets, and (C) 211 Hard targets. The methods can be categorized as two groups, 
contact-based threading and profile-based threading, based on whether deep learning contact information used as input 
or not. Here, the original threading results (without re-ranking by deep learning predicted restraints) of the profile-
based methods are shown to demonstrate the advance provided by contact-based methods.  
  



 
Figure S3. Inter-residue distance map from DeepPotential and LOMETS3 for PDB ID 1prtD. (A) Inter-residue 
distance map predicted from DeepPotential (upper triangle), and the distance map calculated from the target structure 
(lower triangle) for 1prtD. (B) Inter-residue distance map combined from DeepPotential and threading templates in 
LOMETS3 (upper triangle), and the distance map calculated from the target structure (lower triangle) for 1prtD. 
  



 
 
Figure S4.   The DBD score for different domain partition methods on 408 multi-domain proteins.  
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Figure S5. Case study of four targets for which LOMETS3 can generate correct models with TM-score >0.5 but 
AlphaFold2 cannot in benchmarking datasets, where the LOMETS3 models (blue) and the AlphaFold2 models (red) 
are overlaid with the experimental structures (yellow). It indicates that although very rare there is possibility that the 
TBM method could generate better models than the best end-to-end training approach.  



 
Figure S6. Summary of the modeling results of the top-20 server groups in the CASP14 experiment. The ranking of 
the groups is based on the analysis of Z-scores for GDT-TS, where models with Z-scores below the tolerance threshold 
(0.0) were removed. GDT-TS means global distance test score, which is calculated by GDT-TS = (GDT_P1 + 
GDT_P2 + GDT_P4 + GDT_P8)/4, where GDT_Pn indicates the percent of residues under the distance cut-off  ≤nÅ. 
Here, LOMETS3 was registered as ‘Zhang-TBM’. In addition, “Zhang-Server” and “QUARK” also utilized 
LOMETS3 as threading method for template detection during CASP14. Data were taken from the official CASP14 
webpage at https://www.predictioncenter.org/casp14/zscores_final.cgi?gr_type=server_only.  
  



 
Figure S7. The response time versus protein size for the 3,779 jobs processed by the LOMETS3 server recently. In 
cases where many jobs are accumulated in the queue, it will take a longer time for each job to finish due to increased 
queue waiting time. The blue and red lines fit to the targets with the quickest response time, which should correspond 
to the actual running time of the LOMETS3 programs for single-domain targets when the job queue is clear. Notably, 
the multi-domain proteins will require longer processing time than the single-domain proteins, since they need a 
second round of calculation for domain-level threading and domain assembly. 
  



 
Figure S8. Outputs of the LOMETS3 results page, (A) summary of the user input, including sequence, predicted 
secondary structure, and predicted solvent accessibility, (B) spatial restraints predicted by deep learning, including 
contact map and distance map. 
  



 
Figure S9. Output of the LOMETS3 results page showing the top templates from the component threading programs 
and the associated function annotations. 
 
 

 
  



Supporting Tables 
 

Table S1. Comparison between the TM-scores of the first templates identified by LOMETS3 and LOMETS2 on 614 
single-domain test proteins. P-values are calculated between the TM-scores for LOMETS3 and LOMETS2 using one-
sided Student’s t-tests. #{TM-score>0.5} is the number of targets with a TM-score >0.5. 

Method Type TM-score P-value RMSD #{TM-score>0.5} 

LOMETS3  
All 0.656  * 4.38  529 

Easy 0.725  * 3.48  395 
Hard 0.525  * 6.09  134 

 
LOMETS2  

All 0.624  1.7E-28 5.84  479 
Easy 0.709  6.9E-10 4.60  382 
Hard 0.462  2.3E-19 8.23  97 

 
 
  



Table S2. Comparison between the TM-scores of the original and re-ranked first templates identified by profile-based 
threading methods on 614 test proteins. P-values are calculated between the TM-scores of the original and re-ranked 
templates for profile-based threading methods using one-sided Student’s t-tests. #{TM-score>0.5} is the number of 
targets with a TM-score >0.5. 
 

 
“r” represents that the templates are re-ranked by DeepPotential predicted spatial restraints. 
 
  

Method Type TM-score P-value RMSD #{TM-score>0.5} 
SparksX 

All 
(614 targets) 

0.590 * 6.98 436 
SparksXr 0.634 1.2E-35 5.25 484 
MRFsearch 0.585 * 6.88 413 
MRFsearchr 0.622 5.7E-39 4.53 456 
FFAS3D 0.575 * 6.80 415 
FFAS3Dr 0.611 4.0E-29 5.23 453 
MUSTER 0.570 * 7.47 411 
MUSTERr 0.626 5.3E-29 5.39 465 
HHsearch 0.563 * 7.33 414 
HHsearchr 0.631 1.9E-45 5.18 475 
SparksX 

Easy 
(403 targets) 

0.699 * 4.67 380 
SparksXr 0.715 1.0E-10 4.09 389 
MRFsearch 0.689 * 4.60 363 
MRFsearchr 0.709 1.5E-13 3.58 379 
FFAS3D 0.682 * 4.48 371 
FFAS3Dr 0.700 2.9E-10 3.79 384 
MUSTER 0.685 * 4.78 368 
MUSTERr 0.712 2.7E-09 4.16 386 
HHsearch 0.687 * 5.08 365 
HHsearchr 0.714 3.9E-17 3.95 387 
SparksX 

Hard 
(211 targets) 

0.383 * 11.39 56 
SparksXr 0.478 8.5E-25 7.48 95 
MRFsearch 0.388 * 11.23 50 
MRFsearchr 0.456 5.9E-26 6.36 77 
FFAS3D 0.371 * 11.24 44 
FFAS3Dr 0.440 9.1E-21 8.00 69 
MUSTER 0.349 * 12.60 43 
MUSTERr 0.461 3.3E-20 7.72 79 
HHsearch 0.327 * 11.61 49 
HHsearchr 0.472 2.8E-27 7.51 88 



Table S3. Comparison between the TM-scores of the first templates identified by LOMETS3 and different component 
threading programs on 614 single-domain test proteins. P-values are calculated between the TM-scores for LOMETS3 
and the component threading methods using one-sided Student’s t-tests. #{TM-score>0.5} is the number of targets 
with a TM-score >0.5. 
 

Method Type TM-score P-value RMSD #{TM-score>0.5} 
LOMETS3 

All  
(614 targets) 

0.656 * 4.38 529 
Hybrid-CEthreaderc 0.641 3.8E-13 4.91 502 
SparksXp 0.634 4.4E-30 5.25 484 
HHsearchp 0.631 8.9E-26 5.18 475 
MUSTERp 0.626 5.6E-38 5.39 465 
CEthreaderc 0.623 6.4E-30 6.12 485 
MRFsearchp 0.622 7.9E-49 4.53 456 
MapAlignc 0.617 4.7E-38 6.40 470 
FFAS3Dp 0.611 5.9E-66 5.23 453 
DisCovERc 0.607 3.9E-59 5.04 467 
HHpredp 0.599 7.5E-37 6.48 441 
EigenThreaderc 0.590 1.0E-73 7.10 431 
LOMETS3 

Easy 
(403 targets) 

0.725 * 3.48 395 
Hybrid-CEthreaderc 0.717 9.8E-05 3.87 390 
SparksXp 0.715 2.0E-10 4.09 389 
HHsearchp 0.714 1.3E-08 3.95 387 
MUSTERp 0.712 3.1E-12 4.16 386 
CEthreaderc 0.702 1.2E-12 4.73 382 
MRFsearchp 0.709 2.6E-23 3.58 379 
MapAlignc 0.693 1.1E-22 4.74 376 
FFAS3Dp 0.700 3.0E-33 3.79 384 
DisCovERc 0.691 1.8E-33 3.90 380 
HHpredp 0.710 3.8E-09 4.54 381 
EigenThreaderc 0.670 2.8E-46 5.52 357 
LOMETS3 

Hard 
(211 targets) 

0.525 * 6.09 134 
Hybrid-CEthreaderc 0.495 9.2E-11 6.89 112 
SparksXp 0.478 3.1E-19 7.48 95 
HHsearchp 0.472 2.6E-19 7.51 88 
MUSTERp 0.461 5.5E-29 7.72 79 
CEthreaderc 0.472 1.8E-17 8.76 103 
MRFsearchp 0.456 1.7E-29 6.36 77 
MapAlignc 0.472 1.2E-14 9.55 94 
FFAS3Dp 0.440 6.4E-39 8.00 69 
DisCovERc 0.445 7.3E-27 7.20 87 
HHpredp 0.389 2.9E-29 10.20 60 
EigenThreaderc 0.437 2.2E-29 10.10 74 

 
“c” represents the contact-based threading method, and “p” represents the profile-based threading method. Templates 
of the profile-based threading methods are re-ranked by the restraints from DeepPotential. 
 
  



Table S4. Comparison between the full-length models generated by LOMETS3 and the control modeling methods on 
614 single-domain test proteins. The control modeling methods include L-BFGS folding system with DeepPotential 
restraints, and MODELLER with LOMETS3 templates. P-values are calculated between the TM-scores for the 
LOMETS3 and the control modeling programs using one-sided Student’s t-tests. #{TM-score>0.5} is the number of 
targets with a TM-score >0.5. 

Method Type TM-score P-value RMSD #{TM-score>0.5} 

LOMETS3  
All 0.814 * 3.93 602 

Easy 0.837 * 3.59 400 
Hard 0.768 * 4.58 202 

 
L-BFGS + DeepPotential  

All 0.797 6.6E-55 4.21 595 
Easy 0.820 3.2E-39 3.82 398 
Hard 0.752 2.0E-17 4.95 197 

 
MODELLER + LOMETS3 template  

All 0.695 1.7E-94 7.18 561 
Easy 0.759 6.1E-60 5.94 398 
Hard 0.575 1.7E-35 9.56 163 

 
  



Table S5. Comparison between the TM-scores of the assembled templates by LOMETS3 (with domain partition and 
assembly) and full-chain threading templates (without domain partition and assembly) on 408 multi-domain targets 
for full-length assessment and 927 domains extracted from the 408 multi-domain proteins for domain-level assessment. 
P-values are calculated between the TM-scores for assembled templates and full-chain threading templates using one-
sided Student’s t-tests. #{TM-score>0.5} is the number of targets with a TM-score >0.5. 
 

Target Method Type TM-score P-value #{TM-score>0.5} 

Full-length 
(408 proteins) 

Assembled template 
All 

0.548 * 234 
full-chain threading template 0.506 5.1E-15 202 
Assembled template 

Easy 
0.581 * 213 

full-chain threading template 0.555 6.5E-07 193 
Assembled template 

Hard 
0.427 * 21 

full-chain threading template 0.327 2.2E-12 9 

Domain-level 
(927 domains) 

Assembled template 
All 

0.646 * 760 
full-chain threading template 0.500 3.1E-35 559 
Assembled template 

Easy 
0.687 * 716 

full-chain threading template 0.539 1.6E-25 531 
Assembled template 

Hard 
0.412 * 44 

full-chain threading template 0.278 1.4E-08 28 
 
 
  



Table S6. Comparison between the models generated by AlphaFold2 with LOMETS3 templates and default HHsearch 
templates on 614 single-domain test proteins. P-values are calculated between the TM-scores for the AlphaFold2 with 
LOMETS3 templates and default HHsearch templates using one-sided Student’s t-tests. 
 

Method Type TM-score P-value RMSD 

AlphaFold2 
(with LOMETS3 templates) 

All 0.9254 * 2.20 
Easy 0.9366 * 2.00 
Hard 0.9040 * 2.57 

AlphaFold2 
(with default HHsearch templates) 

All 0.9210 4.49E-18 2.28 

Easy 0.9327 1.47E-11 2.11 
Hard 0.8986 3.39E-08 2.62 

 
  



References 
1. Zheng, W., Li, Y., Zhang, C., Zhou, X., Pearce, R., Bell, E.W., Huang, X. and Zhang, Y. (2021) Protein 

structure prediction using deep learning distance and hydrogen-bonding restraints in CASP14. Proteins: 
Structure, Function, and Bioinformatics, n/a. 

2. Zhang, C., Zheng, W., Mortuza, S.M., Li, Y. and Zhang, Y. (2020) DeepMSA: constructing deep multiple 
sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins. 
Bioinformatics, 36, 2105-2112. 

3. Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J. and Zhang, Y. (2015) The I-TASSER Suite: protein structure 
and function prediction. Nature Methods, 12, 7-8. 

4. Zhou, X., Hu, J., Zhang, C., Zhang, G. and Zhang, Y. (2019) Assembling multidomain protein structures 
through analogous global structural alignments. Proceedings of the National Academy of Sciences, 116, 
15930. 

5. Xue, Z., Xu, D., Wang, Y. and Zhang, Y. (2013) ThreaDom: extracting protein domain boundary information 
from multiple threading alignments. Bioinformatics, 29, i247-i256. 

6. Zheng, W., Zhou, X., Wuyun, Q., Pearce, R., Li, Y. and Zhang, Y. (2020) FUpred: detecting protein domains 
through deep-learning-based contact map prediction. Bioinformatics, 36, 3749-3757. 

7. Zhang, Y. and Skolnick, J. (2005) TM-align: a protein structure alignment algorithm based on the TM-score. 
Nucleic Acids Research, 33, 2302-2309. 

8. Zheng, W., Zhang, C., Li, Y., Pearce, R., Bell, E.W. and Zhang, Y. (2021) Folding non-homologous proteins 
by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Reports Methods, 1, 
100014. 

9. Huang, X., Pearce, R. and Zhang, Y. (2020) FASPR: an open-source tool for fast and accurate protein side-
chain packing. Bioinformatics, 36, 3758-3765. 

10. Zhang, J., Liang, Y. and Zhang, Y. (2011) Atomic-Level Protein Structure Refinement Using Fragment-
Guided Molecular Dynamics Conformation Sampling. Structure, 19, 1784-1795. 

11. Zhang, C., Freddolino, P.L. and Zhang, Y. (2017) COFACTOR: improved protein function prediction by 
combining structure, sequence and protein–protein interaction information. Nucleic Acids Research, 45, 
W291-W299. 

12. Yang, J., Roy, A. and Zhang, Y. (2013) BioLiP: a semi-manually curated database for biologically relevant 
ligand–protein interactions. Nucleic Acids Research, 41, D1096-D1103. 

13. Suzek, B.E., Wang, Y., Huang, H., McGarvey, P.B., Wu, C.H. and the UniProt, C. (2015) UniRef clusters: a 
comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics, 31, 926-
932. 

14. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, 
A., Santos, A., Tsafou, K.P. et al. (2015) STRING v10: protein–protein interaction networks, integrated over 
the tree of life. Nucleic Acids Research, 43, D447-D452. 

15. Furnham, N., Holliday, G.L., de Beer, T.A.P., Jacobsen, J.O.B., Pearson, W.R. and Thornton, J.M. (2014) 
The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic Acids 
Research, 42, D485-D489. 

16. Rogers David, J. and Tanimoto Taffee, T. (1960) A Computer Program for Classifying Plants. Science, 132, 
1115-1118. 

17. Zheng, W., Wuyun, Q., Li, Y., Mortuza, S.M., Zhang, C., Pearce, R., Ruan, J. and Zhang, Y. (2019) Detecting 
distant-homology protein structures by aligning deep neural-network based contact maps. PLOS 
Computational Biology, 15, e1007411. 

18. Bhattacharya, S., Roche, R. and Bhattacharya, D. (2020) DisCovER: distance-based covariational threading 
for weakly homologous proteins. bioRxiv, 2020.2001.2031.923409. 

19. Buchan, D.W.A. and Jones, D.T. (2017) EigenTHREADER: analogous protein fold recognition by efficient 
contact map threading. Bioinformatics, 33, 2684-2690. 

20. Ovchinnikov, S., Park, H., Varghese, N., Huang, P.-S., Pavlopoulos, G.A., Kim, D.E., Kamisetty, H., 
Kyrpides, N.C. and Baker, D. (2017) Protein structure determination using metagenome sequence data. 
Science, 355, 294. 

21. Xu, D., Jaroszewski, L., Li, Z. and Godzik, A. (2013) FFAS-3D: improving fold recognition by including 
optimized structural features and template re-ranking. Bioinformatics, 30, 660-667. 

22. Meier, A. and Söding, J. (2015) Automatic prediction of protein 3D structures by probabilistic multi-template 
homology modeling. PLoS computational biology, 11, e1004343. 

23. Söding, J. (2005) Protein homology detection by HMM–HMM comparison. Bioinformatics, 21, 951-960. 



24. Ma, J., Wang, S., Wang, Z. and Xu, J. (2014) MRFalign: Protein Homology Detection through Alignment of 
Markov Random Fields. PLOS Computational Biology, 10, e1003500. 

25. Wu, S. and Zhang, Y. (2008) MUSTER: improving protein sequence profile–profile alignments by using 
multiple sources of structure information. Proteins: Structure, Function, and Bioinformatics, 72, 547-556. 

26. Zhou, H. and Zhou, Y. (2005) Fold recognition by combining sequence profiles derived from evolution and 
from depth‐dependent structural alignment of fragments. Proteins: Structure, Function, and Bioinformatics, 
58, 321-328. 

27. Di Lena, P., Fariselli, P., Margara, L., Vassura, M. and Casadio, R. (2010) Fast overlapping of protein contact 
maps by alignment of eigenvectors. Bioinformatics, 26, 2250-2258. 

28. Zhang, Y. and Skolnick, J. (2004) Scoring function for automated assessment of protein structure template 
quality. Proteins: Structure, Function, and Bioinformatics, 57, 702-710. 

29. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L. and 
Lerer, A. (2017) Automatic differentiation in pytorch. 

 
 


