Supplementary Material for "Discriminating protein tags on a dsDNA construct using a Dual Nanopore Device"

Swarnadeep Seth¹, Arthur Rand⁴, Walter Reisner², William B. Dunbar⁴, Robert Sladek³, and Aniket Bhattacharya¹

Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA

Department of Physics, McGill University, 3600 rue university, Montreal, Quebec H3A 2T8, Canada

Departments of Medicine & Human Genetics, McGill University, Montreal, H3A 0G1, Canada and

Nooma Bio, 250 Natural Bridge Dr, Santa Cruz, CA 95060, USA

VII. COMPARISON OF EXPERIMENT AND SIMULATION DWELL TIME DISTRIBUTIONS FOR DIFFERENT VOLTAGE BIASES

In the double nanopore experiments [S1–S4] there is an uncertainty in the applied voltage on the left nanopore for the $R \to L$ scans. For the $L \to R$ scans the left pore voltage is $V_L = 150$ mV and the right pore voltage is 300 mV, and for the $R \to L$ scan the left pore voltage is increased to 600/650 mV while keeping the right pore applied voltage constant at 300 mV. In our Brownian dynamics simulation we have implemented both the voltage conditions, where $V_L/V_R = 0.5$ for the $L \to R$ scans and $V_L/V_R = 2.0$ shown in Fig. S1(d), and $V_L/V_R = 2.17$ shown in Fig. S1(f) for the $R \to L$ scans. We observe that this voltage variations in the left pore for $R \to L$ scans does not affect the distributions qualitatively.

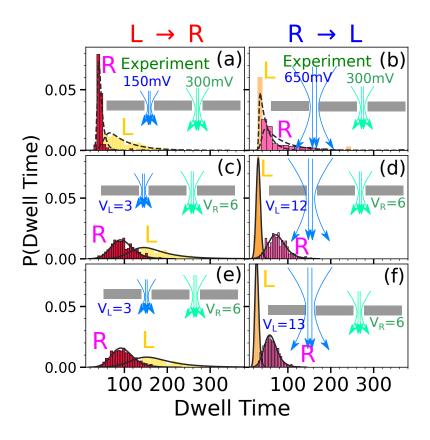


FIG. S1. Cumulative dwell time distributions of the seven tags (sidechains) (a) $L \to R$ and (b) $R \to L$ (1st row) obtained from the experiment. The next two rows (2nd - 3rd) are simulation dwell time data for different combinations of voltages V_L and V_R applied across the left and right nanopore. In the 2nd row, the ratio of the left/right pore voltages for (c) $L \to R$ scans is $V_L/V_R = 0.5$ and 2.0 for the (d) $R \to L$ scans. In the 3rd row, the voltage ratio for (e) $L \to R$ scans is $V_L/V_R = 0.5$ and 2.17 for the (f) $R \to L$ scans. In each row the yellow/red (left column) and the orange/magenta (right column) dwell time histograms are obtained from the left/right pore in $L \to R$ and $R \to L$ directions. Schematics of the electrostatic forces on the DNA in the left/right pore are shown by the blue/green arrows (not to scale). The black envelops represent the exponentially modified Gaussian distribution fit of the dwell time histograms.

- [S1] Zhang, Y., Liu, X., Zhao, Y., Yu, J.-K., Reisner, W. & Dunbar, W. B. Single Molecule DNA Resensing Using a Two-Pore Device. Small 14, 1801890 (2018).
- [S2] Liu, X., Zhang, Y., Nagel, R., Reisner, W. & Dunbar, W. B. Controlling DNA Tug-of-War in a Dual Nanopore Device. Small 15, 1901704 (2019).
- [S3] Liu, X., Zimny, P., Zhang, Y., Rana, A., Nagel, R., Reisner, W. & Dunbar, W. B. Flossing DNA in a Dual Nanopore Device. Small 16, 1905379 (2020).
- [S4] Rand, A., Zimny, P., Nagel, R., Telang, C., Mollison, J., Bruns, A., Leff, E., Reisner, W. W., & Dunbar, W. B. Electronic Mapping of a Bacterial Genome with Dual Solid-State Nanopores and Active Single-Molecule Control. ACS Nano, 16, 5258-5273 (2022).