
Supplementary Notes

Data collection description

Melanoma data

We collected five melanoma datasets mostly consisting of late-stage samples, see Supplemen-
tary Table 1. Three of these data are samples from the Melanoma Institute Australia (MIA)
and the other two are publicly available data. Of the three MIA data, one is measured us-
ing Illumina microarray technology and two are measured using our customised NanoString
assay as described in the ‘Melanoma molecular signature assay’ section.

1. MIA-Microarray: A published gene expression study (Illumina platform) with 45 stage
III melanoma subjects from Melanoma Institute Australia.

2. MIA-NanoString: An in-house gene expression data constructed in 2018 using the
customised NanoString assay. The 45 samples are the same as the MIA-Microarray cohort
described above.

3. MIA-Validation This independent validation cohort contains 46 samples that are age-
matched and have similar characteristics to the MIA - NanoString data used to validated
the CPOP procedure. Due to manufacturer error, 12 genes are unavailable to be run in
this cohort and treated as missing.

4. TCGA: We downloaded the RNA-Seq data consisted of 472 samples from the TCGA1

on 28th July 2017 using the TCGABiolinks package2 in R3 and Bioconductor4. We
processed the data into log2-FPKM values and only retained 458 samples with survival
times and status recorded. Out of these samples, 169 samples are labelled as Stage III,
and after removing 30 samples that MIA has contributed to, we are left with a total of
139 independent samples to be used in the evaluation of survival analysis.

5. Sweden: This is a published microarray study from Cirenajwis et. al.5. We retained all
210 samples for survival-based evaluations as there is a lack of cancer staging information
in the data. Processed data was downloaded on 12 January 2020 via the GEOquery

package6.

Ovarian cancer data

The curation of this data collection closely follows from Waldron et. al.7 and the analysis
pipeline from Yoshihara et. al.8. All data are downloaded through the cureatedOvarianCancer
Bioconductor package9. Out of the ten datasets in Table 2 of Waldron et. al.7, we make
some key modifications to the selection of data:

• leaving out Konstantinopoulos et. al.10 data for its incomplete sample annotations;
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• leaving out Dressman et. al.11 data as this article was retracted;

• swapping the TCGA microarray data12 for the RNA-Seq data. And we further subset
the RNA-Seq cohort to those at tumour stage of III and IV with first metastasis
recurrence; and

• adding one extra data, abbreviated as “Japan B” from Yoshihara et. al.8.

We focus on the 126 gene signature reported in Yoshihara et. al.8 and select genes that
are present in all nine datasets. This results in 94 genes with corresponding 4,371 log-ratio
features. Samples in this ovarian data collection are described in Supplementary Table 2.

Inflammatory bowel disease data

This data is measured on a NanoString platform with genes originally selected to study
disease-associated risk loci in inflammatory bowel disease (IBD) by Peloquin et. al.13. We
try to classify all 983 samples as either inflamed or not inflamed learning from 712 genes. The
original authors provided the raw NanoString data on Gene Expression Omnibus repository
under the accession number GSE73094. We perform log2-transformation on the raw counts
data. This IBD data is chosen as the experiment extends over a few years with obvious
batch effect as the chemical reagent was changed twice. This change in the use of reagent
creates three batches, IBD2 (n = 303), IBD3 (n = 295) and IBD4 (n = 385) that mimics the
implementation challenge such prognostic (or risk) models will face when it is implemented in
a prospective setting. Supplementary Fig. 13 shows the batch effect in this IBD via a sample
boxplot and a principal component analysis (PCA) plot. Previous efforts in addressing the
stability in data quality is through normalisation techniques, for example, in Molania et.
al.14. CPOP distinguishes itself from normalisation techniques through the use of log-ratios
and making predictions simultaneously.

Cross-Platform Omics Prediction (CPOP) methodology

Cross-Platform Omics Prediction (CPOP) is a procedure that enables sample prediction
across gene expression datasets with different scales (e.g. different sample means). We will
use the generic phrase of “scale difference” to encompass all situations where multiple gene
expression data exhibit different scales in the data due to, for example, the use of different
experimental instruments/platforms or drifts in measurements in a prospective setting. We
use the term ‘biomarker’ and ‘feature’ interchangeably. We will use the term predictive in
a statistical sense and the term predictive markers in a generic way referring to all forms of
biomarkers whether they are diagnostic, prognostic or predictive. We use the term train-
ing set interchangeably with reference set (or sets), and restrict usage of the term test set
or validation set to situations with known patient outcome i.e. to situations where we are
assessing or comparing the performance of CPOP. We use the term test sample or validation
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sample when the unknown subjects are to be predicted.

A major consideration in developing CPOP is to make predictions on a single-sample
without normalisation or combining it with additional data. The CPOP procedure has the
following three key characteristics:

1. CPOP uses (log-)ratios of genes as biomarkers (features), which are more stable than
using individual gene expression values (see Step 2 of CPOP).

2. CPOP uses Elastic Net models to perform feature selection using weights proportional
to the stability of features across more than one data set. This allows the selection of
common predictive markers (see Step 3 of CPOP).

3. CPOP selects for features with high similarity in their between-data estimated effects
(Step 4 of CPOP).

The use of (log-)ratios is not a new idea, but its usage in the context of patient out-
come prediction challenges the common practice of using only genes as features. The cal-
culation of these (log-)ratios is intended to obtain a quantitative measure for the relative
differences between original omics features (e.g. genes), which we have found to be bet-
ter preserved across different patient cohorts and data generation platforms. A key as-
sumption in using these (log-)ratios is that the omics platforms in question can unbiasedly
estimate the relative expression level of features. The prefix of ‘log’ simply reflects the
prevalence of the log-transformation in dealing with omics data in practice. It is known that
log(A/B) = log(A) − log(B) for positive values of A and B, thus, these log-ratios are able
to quantify the difference in expression levels of A and B, provided the data is available
on a log scale. In practice, there will be situations when published processed data are not
log-transformed but with some sensible transformation on the raw measurement values. In
such a case, it is assumed that these transformations will still be able to provide a sensible
quantification of the relative difference between the two features A and B (e.g. subtracting
one feature’s value from another). We acknowledge that the (log-)ratio transformation is not
suitable to be applied on a whole genome scale directly (e.g. whole genome RNA-sequencing)
due to the dimensionality associated with searching over all paired features but point out
that this approach is achievable on targeted omics assays. These targeted omics assays typ-
ically provide a higher signal-to-noise ratio for candidate features that are of higher clinical
relevance, and are in wide use in clinical validation, the translational work and in the imple-
mentation phase of precision medicine. We also note that this (log-)ratio construction is a
surrogate for the grander concept of “relative difference between features” and is certainly
not limited to just transcriptomics data (e.g. similar concept exist in protein expression).

Statistical Background

Suppose we have a gene expression data matrix X ∈ Rn×p where n is the number of samples
and p is the number of genes on a gene expression platform. We define the “log-ratio ma-
trix” as a matrix Z of dimension Rn×q where q =

(
p
2

)
and each column of Z is the pairwise

3



difference between two log-transformed columns in X. Formally, each column of Z is given
by enumerating all log-ratio features log(xl) − log(xm) for 1 ≤ l < m ≤ p. Thus, each col-
umn in the Z matrix is the log-ratio of the expression values of two genes. For the given
log-ratio matrix Z ∈ Rn×q, we denote each row of the matrix as zi for patient i = 1, . . . , n.
Let y ∈ Rn be a vector that measures each patient’s clinical outcome (e.g. patient tumour
shrinkage in millimetres or prognostic outcome).

The weighted Elastic Net (WEN) model is a regularised regression model that solves

for a regression coefficient vector β̂ ∈ Rq with the optimisation equation:

β̂(y,Z|w, α, λ) = min
β∈Rq

n∑
i=1

(yi − z⊤
i β)

2 + λ

q∑
j=1

wj

[
(1− α)

2
β2
j + α|βj|

]
, (1)

where λ ∈ (0,∞] and α ∈ [0, 1] are tuning parameters and w = (w1, . . . , wq) is a sequence
of weights placed on each of the q features. This will be explained in context of our cross-
platform prediction later. The first component of Equation (1) is a linear loss function that

measures the difference between the fitted value z⊤
i β̂ and the observed response value yi for

sample i. This component can be readily substituted with any appropriate non-linear loss
function depending on the variable type of the response variables (e.g. in ‘Performance eval-
uation’ section, logistic and Cox models are used to deal with binary and survival responses,
respectively). The second component of the equation is a penalty on the magnitude of the

estimated regression coefficients β̂. This component mixes a L1-norm penalty and a L2-norm
penalty through the use of the α tuning parameter. The λ tuning parameter controls the
total strength of penalisation in the overall equation.

CPOP procedure

In the Main Figure 1A, CPOP is presented as a five-step procedure, with the first step being
data selection. This step is often context-related and one should select datasets with similar
clinical phenotypes, e.g. independent samples at the same cancer stage. We describe the
rest of the CPOP procedure below:

Step 1. Data selection: the first step of data selection is dependent on the research ques-
tions to be addressed and one should select data with similar and appropriate clinical
outcomes of interest. For example, the selected cohort can consist of independent
samples at the same cancer stage. In the rest of the procedure, we assume we have
two gene expression data and the CPOP model training will aim to find features
consistently predictive in both data.

Step 2. Log-ratio matrices construction: Suppose we have two gene expression data and
the associated log-ratio matrices as Z1 ∈ Rn1×q and Z2 ∈ Rn2×q, where n1 and n2

are the samples sizes for the two datasets. We do not impose the restriction of paired
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samples across the two data, however, we assume the two data measure the same
q log-ratio features or we restrict our modelling to the common q log-ratio features
between two datasets. For both data, we also have a clinical outcome measurement,
denoted as y1 ∈ Rn1 and y2 ∈ Rn2 associated with data 1 and 2 respectively.

Step 3. Selecting common predictive features: compute a sequence of non-negative
weights wj, j = 1, . . . , q that measure the column-wise statistical concordance be-
tween Z1 and Z2. Fit a WEN model for both (Z1,y1) and (Z2,y2) using wj, j =

1, . . . , q to obtain estimated regression coefficients β̂
(1)

1 , β̂
(1)

2 ∈ Rq with a penalty
parameter α ∈ (0, 1]. Note the superscript denotes these regression coefficients are
in the first step of CPOP.

Since WEN generates sparse estimates for α ̸= 0, thus it also naturally selects

features from our data as those features with non-zero estimates in β̂
(1)

1 and β̂
(1)

2 .

Define a feature set S(1) = {j|β̂
(1)

1,j ̸= 0, β̂
(1)

2,j ̸= 0} that collects all non-zero features
selected into both models in both data.

In this paper, we primarily focus on the use of mean-difference weights: wj =
|mean(Z1j) − mean(Z2j)| for each j = 1, . . . , q, whereas other choices are also
available in our CPOP package.

Step 4. Selecting features with between-data stability: define Z1,S(1) and Z2,S(1) as
the matrices that we obtain when subsetting Z1 and Z2 to only the features present
in S(1). Then, fit an unweighted ridge regression model (i.e. a WEN model with no

weights and α = 0) onto (Z1,S(1) ,y1) and (Z2,S(1) ,y2) to obtain β̂
(2)

1 and β̂
(2)

2 . Define

another feature set S(2) = {j| sign(β̂
(2)

1,j) = sign(β̂
(2)

2,j)}.
We also include an additional step by iteratively fitting ridge regression to both
Z1,S(2) and Z2,S(2) and in each iteration, we update the feature set S(2) by removing

all features that do not satisfy sign(β̂
(2)

1,j) = sign(β̂
(2)

2,j). This removal of features using

the ridge models means that the size of S(2) is non-increasing with each iteration.
This iterative step terminates when there is no further reduction in the size of S(2).

Step 5. Final model estimation: the final CPOP models are the unweighted ridge regres-
sion models fitted onto (Z1,S(2) ,y1) and (Z2,S(2) ,y2). We will refer to these models

as β̂
CPOP

1 and β̂
CPOP

2 , respectively. Predictions on new samples could be made by

using the coefficients β̂
CPOP

1 or β̂
CPOP

2 or taking the average of the two to produce a

singular β̂
CPOP

.

In some situations, S(1) in step 3 of CPOP might not select enough predictive features
as some versions of the Elastic Net models have a tendency to only select one of many
correlated features and ignoring the rest15. The most notable example of this is the Lasso16.
To overcome this, we can enlarge this feature set by introducing an iterative component. This
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can be done by first calculating S(1) as described above and then removing these features
from the log-ratio matrices to obtain Z1,S(1)c and Z2,S(1)c , where S(1)c is the set complement

of S(1). We can then fit WEN onto (Z1,S(1)c ,y1) and (Z2,S(1)c ,y2) and update the feature set

by adding the selected features in each iteration into S(1). The removal of selected features
in future iterations means informative correlated features are more likely to enter the feature
set. The size of S(1) is non-decreasing and empirically we find that 20 iterations are usually
enough for the size of S(1) to stabilise.

Practical implementation

Imputation: One particular important issue is the handling of missing values. CPOP
model training assumes two complete data. However, if certain genes cannot be measured in
a test/validation data, then imputation on the gene-level data (Xtest) will be necessary prior
to the calculation of the log-ratio matrix Ztest. We make no particular recommendation
on imputation methods as there are many good methods in the statistical literature and
preference can vary among practitioners. However, we highlight a special case of missingness
in gene expression data, which is when a gene is not measured at all. This situation arises
typically when a gene fails quality control and any numerical values are deemed as invalid.
In this case, we propose to use the non-missing gene values in the two gene-level training
data of CPOP (X1 and X2) to impute on Xtest. While a variety of methods can be used,
in the CPOP package we provide a function (impute cpop) that utilises the Lasso estimator
from the glmnet package16;17 to make this imputation. Supplementary Figure 14 extends
the results in Main Figure 3a and assumed some of the genes in the TCGA data (used
as validation) are missing at random. Under 100 simulations for each level of missingness,
prediction values from the imputed TCGA data is compared to the prediction values from
the complete TCGA data. According to this assessment, the imputation method is able to
handle up to 10% of missing genes without significantly impacting on the correlation and
concordance of prediction.
Setting a CPOP prediction cut-off: Applying the CPOP model to any new sample
of interest will produce a predicted value similar to that of a linear regression model. In
order to produce a binary class prediction (e.g. good vs poor prognosis), a single cut-off
independent of between-data scale differences is needed. Here, we will set a cut-off at 0

for the linear predicted response variable ytest,i = ztest,iβ̂
CPOP

to produce binary class pre-
dictions. This cut-off is chosen for its ease of interpretation in the context of two common
types of clinical variable modelling. In binary classification, a cut-off for this linear predicted
response implies a cut-off at 0.5 for the predicted probability, see section on ‘Performance
evaluation’. This is a threshold which a sample is equally likely to be assigned to one of
two binary classes. Similarly, in Cox regression model in survival analysis, this cut-off at
0 corresponds to a cut-off at 1 for the predicted hazard ratio, see section on ‘Performance
evaluation’. Here, a value great than 1 implies an at-risk sample. Though it should be noted,
as with all statistical models, this cut-off is only sensible if the validation data is biologically
and clinically similar to training data.
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This notion of a data-independent cut-off is closely related to the challenge of between-
data scale differences and forms a critical part in our evaluation. A data-adaptive choice of
this cut-off on the linear prediction values, for example, using the median, could easily bias
the result in assuming there is about half of high-risk incoming samples, a poor assumption
in prospective testing. On the other hand, the popular area under the receiver operating
characteristic curve (AUC-ROC18) metric for binary classification and the survival concor-
dance index (C-index19) are not appropriate measures as they avoid making a cut-off and
thus mask the scale differences in the data. Nonetheless, we choose to report on both of
these metrics in this manuscript so comparisons may be made with other publications.

Performance evaluation

We propose an evaluation framework with an emphasis on producing between-data predic-
tions that are robust to scale differences. Supplementary Fig. 10 summarises the evaluation
framework we have. For the evaluations below, we choose to use the prediction values aver-
aged between the two ridge models at Step 4 of the CPOP procedure. Here, we choose to
focus on two most common response data seen in clinical studies:

• Binary classification response variable (e.g. good vs poor prognosis) can be modelled
using the (penalised) logistic regression loss function. In logistic regression, the prob-
ability for assigning a sample i can be written as ptest,i = 1/[1 + exp(−ytest,i)].

• Survival time response variable (e.g. recurrence-free survival) can be modelled using
(penalised) Cox proportional hazard loss function. In Cox proportional hazard model,

the hazard ratio can be written as hi(t)
h0(t)

= exp(Ztest,iβ̂
CPOP

) = exp(ytest,i).

Both can be modeled using the glmnet package17 (version 3.0-2).

Evaluation metrics and settings

We consider three broad classes of performance metrics to capture survival performance, clas-
sification performance and concordance performance. Supplementary Fig. 10 summarises
the various metrics we use in connection with the CPOP training and testing data. In our
evaluation setting, the majority of the metrics can be calculated under 100 repeated 5-fold
cross-validations.

Survival performance metrics. Where survival time is available in the test data:

1. C-index: we take the predicted values from either a CPOP or a Lasso model and
fit a classical Cox regression model (i.e. without penalisation) together with age and
gender. The C-index19 of this Cox model is reported. The C-index is defined as:

c = P(ηi > ηj|ti > tj) (2)
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where ti and tj are survival times of sample i and j respectively and ηi and ηj are linear
predicted values in the classical Cox regression model. Survival analysis is performed
using the survival package20.

2. KM-plot: we create a binary split of predicted samples at the hazard ratio of 1. This
binary split means we can construct a Kaplan-Meier21 survival plot (KM-plot) using
the survminer package22. The log-rank statistic associated with this KM-plot is also
reported.

3. Log-rank test p-value: similar to the KM-plot evaluation above, we also compute
the log-rank test p-value of the binary split of predicted sample classes.

Concordance performance metrics. We propose two additional statistics to measure
between-data concordance. For a validation data, we may calculate

• a re-substituted value, Ztestβ̂test and use this value as the “gold-standard” against

• a prediction value Ztestβ̂.

In the application to melanoma data collection, we evaluate CPOP against the competing
Lasso model, where we use a Lasso-Cox model (results shown in Main Fig. 2E) for feature
selection and then these features are then fitted using a ridge-Cox regression model. That

is, we choose β̂ to be the ridge regression coefficients , β̂
R
, fitted using only features selected

CPOP or the Lasso. Denoting a = Ztestβ̂test and b = Ztestβ̂
R
. This procedure ensures that

we can make fair comparisons across two distinct feature selection methodologies. Thus,
three statistics we use are:

1. Pearson’s correlation coefficient between a and b, which measures the concordance
between the between-data prediction and the within-data re-substitution value. A
higher positive value implies a higher quality of between-data prediction. To visualise
this evaluation, the CPOP models and the Lasso-Cox models are placed on the x-axes
of Main Fig. 2E and the re-substituted prediction values are placed on the y-axes and
the Pearson’s correlation is calculated.

2. Identity distance between a and b, which is defined as:

1√
2
median(|a1 − b1|, . . . , |an − bn|). (3)

This metric is based on the simple geometric fact that for a given point (a, b) ∈ R2,
the quantity 1√

2
(|a− b|) measures the perpendicular distance between the point to the

identity line y = x. Hence, this identity distance can measure the average deviation
between the within-data resubstitution values (a) and the between-data prediction
values (b). A lower value implies a better agreement between the two quantities.
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3. Concordance correlation coefficient between a and b, which is defined as:

2ρσaσb

σ2
a + σ2

b + (µa − µb)2
. (4)

This metric is defined by Lin23 and it is a standard metric for evaluating reproducibil-
ity between two vectors measuring the same quantity. Its value can be expressed
colloquially as:

1− Expected squared perpendicular deviation from the identity line
Expected squared perpendicular deviation from the identity line,

assuming independence between a and b

.

We will refer to this metric as “concordance” to avoid confusion with the more popular
Pearson’s correlation coefficient which considers the least square regression line.

Classification performance metrics. For cases where we are interested in binary classi-
fication (e.g. good vs poor prognosis) and all metrics below can be repeated applied under
the 100 repeated 5-fold cross validation setting.

1. AUC-ROC: we use the yardstick package24 to compute the AUC-ROC. Though it
should be noted that this is not the most appropriate metric, its construction masks
the effect of data scale differences.

2. We create a binary split of predicted samples at the predicted probability of 0.5 (e.g.
predicted good prognosis class vs predicted poor prognosis class). The predicted class
and true class labels defined for each data makes up a confusion matrix with four
categories: true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN). The predicted binary class are evaluated using classical classification
statistics and computed using the yardstick package24:

(a) Precision of prediction, defined as:

TP

TP + FP
. (5)

(b) Recall of prediction, defined as:

TP

TP + FN
. (6)

(c) Balanced accuracy, defined as:

Precision + Recall

2
. (7)
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(d) The Matthews correlation coefficient (MCC), defined as:

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (8)

(e) F1 statistic, defined as:

F1 =
2TP

2TP + FP + FN
. (9)

All of these metrics range from 0 to 1. In the application to melanoma data collection (results
shown in Main Fig. 3B), we use the CPOP model to make prediction on the MIA-validation
46 samples (reduced from five batches each consist of 12 samples by removing technical
replicates).

Evaluation on sex-imbalance in melanoma data

In melanoma, there is a sex-imbalance with males typically associated with more severe
outcomes25;26. Given that the melanoma patients we considered in our study are mostly in
Stage III, it is not surprising that we have observed more males in our study as shown in
Table 1. In light of this imbalance due to biology, we evaluated the fairness of prediction
results by calculating the equalised odds for the two sexes, males and females. Predicted
outcomes are considered as fair if the sensitivities in the subgroups are close to each other
(i.e. the equalised odds is close to 1). The group-specific sensitivities indicate the number of
the true positives divided by the total number of positives in that group. This calculation
is implemented in the fairness package27. For the CPOP model presented in Main Figure
3, for the TCGA dataset, the equalised odds for females and males are 1.000 and 0.957,
respectively. For the Sweden dataset, the equalised odds for females and males are 1.000
and 0.987, respectively. Thus, we evaluated the CPOP algorithm to be fair between the
two sexes and the prediction accuracy and outcome from our CPOP model has not been
impacted by this sex imbalance.

Evaluation on ovarian data collection

We apply the CPOP procedure with a penalised Cox loss function on the Japan A8 and
Tothill28 data as the dual training set 1. This collection of ovarian data is heterogeneous
(Supplementary Fig. 11) in terms of survival times. Through careful data curation, we
selected a subset of data where the range of survival times overlap between multiple data,
however, the degree of separation by survival status still varies from data to data. Thus,
this heterogeneity still impacts our analytics.

1Due to instability in the coefficient estimates in the second step of CPOP, we use an alternative approach
of retaining features with estimated coefficients within 0.5 units with each other.
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Evaluation on inflammatory bowel disease data

Treating IBD2 and IBD3 (raw data) as the training set, we apply the CPOP procedure with
a penalised logistic loss function on the inflammation status of the samples. The selected
features are then refitted back on IBD2 and IDB3 separately using ridge regression. These
ridge regression models are then used to predict on the inflammation status of samples in
IBD4 (Main Fig. 4C).

Supplementary Discussion

Additional remarks on scale differences between datasets

Given two arbitrary omics data measuring the same set of features, there is a very small
chance that these two data will have equal scale. Main Fig. 1B provides an illustration
showing boxplots of five melanoma gene expression data with four clear differences in scale.
This is because omics features are typically measured on a relative scale with unit-less nu-
merical values that are proportional to some molecular units. Technical batch effect across
omics data of different origins is a classical example of this inconsistency and its presence in
data is a key reason as to why omics data of different origins cannot be readily combined for
the implementation of a clinical prediction work. Failing to correct for this scale difference
in the data can produce misleading interpretation in the final predicted values.

For example, in Supplementary Fig. 3, we compute a Lasso model from samples in MIA
- Microarray, MIA - NanoString, TCGA Stage III samples1 and Sweden5 samples. Then, for
the TCGA stage III samples and Sweden samples, we compute the re-substituted prediction
values. These values, drawn on the y-axis, are considered as gold standard of what the
estimated risk probabilities should be from independent data. The prediction values from
MIA - Microarray-trained Lasso model and MIA - NanoString-trained Lasso model are then
plotted on the x-axis and coloured. Clearly, depending which data is used in the training
of the Lasso model, we may arrive at different scale in the prediction. This comparison is
particularly illustrative of the challenge associated with prediction in the presence of gene
scale difference, as Main Fig. 1C shows MIA - Microarray and MIA - NanoString share high
concordance for matched samples and yet their prediction values can show a large amount
of variation.

Existing statistical methods aim to resolve gene scale differences through normalisation
which inevitably requires estimation of data specific scales (e.g. mean and median) across all
patient samples and a way to combine the samples. This procedure is often restrictive, since
in a prospective experiment, it is not clear how a single sample should be combined with
an existing study cohort (e.g. samples from previous studies frozen as a reference bank).
Combining a single-patient’s data with different cohorts and performing normalisation could
lead to different predicted values for the same patient depending on the choice of the cohort.
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The most popular method for adjusting data scales between different datasets is through
the use of normalisation and this type of method can be divided into two broad categories:
z-score standardisation and between-data normalisation. We refer to z-score standardisation
as a pre-processing step where each omics predictor is centred at 0 and its sample variance is
scaled to 1. This procedure has been widely used7;29;30;31;32;33. On the other hand, between-
data normalisation aims to correct the statistical distributions of genes in validation data to
be similar to that of training data. Rudy et. al.34 provides an evaluation of nine different
between-data normalisation methods and more recent updates on this kind of normalisation
include Taroni et. al.35 and Thompson et. al.36. Through the act of combining multiple
data and calculating summary statistics like sample-wise mean, both of these methods in-
troduce interdependencies between the samples and may not be suitable for processing and
predicting on a single omics profile in Criterion 15 of McShane et. al.37. Though within-
sample standardisation methods such as in Le Cao et. al.38 have the potential to bypass
some of these constraints, in this manuscript, we will operate under the assumption that
re-normalisation for incoming samples together with existing cohort is not practical due to
constraint with consent, data security or other reasons.

Data normalisation alone is not enough to address the various challenges in implementing
precision medicine utilising omics data with additional considerations relating to the model
stability and reproducibility also being necessary. We will demonstrate this effect using a
popular normalisation method, ComBat39. We first took the log-ratio matrices of MIA-
Microarray, MIA-NanoString and TCGA from Supplementary Table 1 and performed the
ComBat normalisation, available through the sva package in R. See Supplementary Figure
12 for the sample-wise boxplots before and after the ComBat normalisation. The normalised
data is then split back to their original respective sources. Lasso models are fitted on the
MIA-Microarray-normalised and MIA-NanoString-normalised data and the TCGA data is
used as the validation data for both Lasso models. The prediction values from both Lasso
models are then compared against each other. The CPOP model in Main Figure 3 was used
again to compare the prediction values between MIA-Microarray and MIA-NanoString. Note
that in the case of CPOP, no normalisation was performed on the log-ratios. Supplementary
Figure 13a shows the prediction values from the Lasso models exhibit clear bias away from
the identify line. This comparison of prediction values was designed to give the normalised
data an advantage, as the TCGA validation data was also used in the normalisation, which
created data leakage in the between-data modelling. Despite this, we see that the Lasso
prediction values exhibit bias away from the identity line (red line). We compare this against
Supplementary Figure 13b, where the CPOP prediction values are shown to have much
lower bias. Thus, we see that the instability of prediction is not always fully addressed by
normalisation.

To confirm that the observed bias effect is not due to random seeds in computation, 100
bootstrap samplings were performed on the samples of the normalised and unnormalised
data with the Lasso and the CPOP model separately. The concordance and correlation
between the predicted values are used to summarise the presence of bias as shown in the
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boxplots in Supplementary Figure 13C and Supplementary Figure 13D, respectively.
While there are numerous modelling approaches we could have taken, for example, rank-

based approach such as Eddy et. al.40 and Afsari41 or tree-based approach like Breiman et.
al.42 and Ishwaran et. al.43; we ultimately opt for a regression-based modelling approach
because we want to efficiently utilise all gene expression information rather than summarising
into ranks and wish to place a greater emphasis on model/feature interpretability.
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Supplementary Figures
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Supplementary Figure 1: Distribution of the survival time for the melanoma data collection,
stratified by survival status. All data illustrated here use disease-specific survival times or
recurrence-free survival except for TCGA data where overall survival is used.
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Supplementary Figure 2: a Boxplot of Pearson’s correlation of gene expression values between
MIA-Microarray and MIA-NanoString for 192 common genes. b Scatter-plot of six genes
with the highest correlation across the two data.
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Supplementary Figure 3: These plots highlight the statistical challenges of Lasso regression,
where scale difference in the data can lead to scale difference in the prediction which will affect
the translational interpretation. On the x-axis, we plot the prediction values from a Lasso
model trained on MIA-Microarray (red points) and another trained on MIA-NanoString
(blue points), with both models making predictions on the TCGA (panel a) and Sweden
(panel b) samples. On the y-axis, we plot the re-substituted Lasso models where we trained
and tested on the TCGA data and Sweden. As the re-substituted values (y-axis) are identical
between data platform, we can then fairly compare the scale of prediction values between the
MIA-Microarray-trained model and the MIA-NanoString-trained model (x-axis) and see an
obvious scale difference between the two. Furthermore, both of these between-data prediction
values are on a very different centering/scale to the re-substituted (“gold-standard”) values
from TCGA and Sweden.
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Supplementary Figure 4: We perform 20 repeated 5-fold cross-validation to select 100 dif-
ferent sets of features where each CPOP and Lasso feature set is constructed from 80% of
MIA-Microarray and MIA-NanoString samples. We compare the CPOP and Lasso predicted
probabilities performance (light blue and light green) in for TCGA and Sweden in panel a
and b respectively. We also add the within-data re-substituted values for CPOP and Lasso
for reference (darker blue and darker green). While within-data performance of CPOP and
Lasso are similar, CPOP consistently perform better than Lasso in terms of between-data
performance.
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Supplementary Figure 5: Assessment of prediction model with missing values. We introduce
missing values into the TCGA data by randomly removing 5 genes and use the training
model to impute the missing genes before calculating the log-ratio matrices and correspond-
ing CPOP prediction. The process randomly removing of 5 genes is repeated 100 times. Panel
a illustrates the prediction performance using five difference performance metrics (balance
accuracy, F1, MCC, precision and recall). The red points represent the prediction perfor-
mance on the complete TCGA without any missing values. Panel b shows the ROC curves
for the prediction performance on imputed data (black line) where we predict on the TCGA
data with 5 genes randomly removed and the complete TCGA data (red line).
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Supplementary Figure 6: Assessment of the impact of missing features in predicting TCGA
data. Assuming missing features at random, the described imputation method is able to
handle up to approximately 20 of the 163 (12%) of missing columns without significantly
impacting on the correlation and concordance of prediction.
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Supplementary Figure 7: Kaplan-Meier plots showing the prediction performance of the
Lasso model on the TCGA (a) and the Sweden data (b), respectively. The Lasso model
used both MIA-Microarray and MIA-NanoString as the training data. Compared to this
Lasso model, the CPOP model in Main Figure 3 is able to achieve better separation of
predicted prognosis groupings on the TCGA and Sweden validation data.
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Supplementary Figure 8: Assessment of melanoma data with survival performance metrics.
Kaplan-Meier plots show a significant difference between the predicted good (blue line) and
poor (orange line) prognostic classes on different training-testing pairs from four of the
melanoma data collection (MIA-Microarray, MIA-NanoString, TCGA and Sweden). Here,
we show that the general applicability of the CPOP procedure through KM-plots of all 24
combinations of training-testing set of the MIA-Microarray, MIA-NanoString, TCGA and
Sweden data. While not every training and testing combination shows a statistical difference,
a majority (19 out of 24, or 79%) of pairs did.
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Supplementary Figure 9: a Quartile plot of unnormalised log-ratios across three melanoma
data. b Quartile plot of ComBat normalised log-ratios across the same three melanoma
data. c Comparing CPOP prediction values on the TCGA unnormalised data. Each point
represents a TCGA sample. d Comparing Lasso prediction values on the TCGA Combat
normalised data. We note the increased bias compared to panel A. e and f Under 100
bootstrap sampling on the MIA-NanoString and MIA-Microarray data (i.e. the training
data), we repeatedly calculate the concordance and correlation between the prediction values
for the TCGA data, respectively. The Wilcoxon rank sum test p-value for the concordance
and correlation metrics are 1.2e-15 and <2e-16 respectively.
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Supplementary Figure 10: Schematic illustration of the evaluation framework for CPOP
using three different classes of metrics.
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Supplementary Figure 11: Distribution of the survival time for the Ovarian cancer data
collection, stratified by survival status. All data illustrated here uses overall survival time.
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Supplementary Figure 12: Assessment of the ovarian data with survival performance metrics.
Kaplan-Meier plot of CPOP prediction on all the nine ovarian data showing the survival
probability between the predicted good (blue line) and poor (orange line) prognostic classes.
We build the model using the CPOP procedure with a penalised Cox loss function on the
Japan A8 and Tothill28 data. Five out of the nine data show a statistical significance between
good and poor predicted outcomes. This illustrates the high predictive strength of the CPOP
method. While not all data achieved statistical significance as the original publication7, it
should be noted that z-score standardisation (standardisation with mean equal to 0 and
variance equial to 1) is applied on all data prior to modelling in7. On the other hand, our
CPOP evaluation avoids this transformation for the reason that we wish to best evaluate our
method in a single-sample prediction situation where z-transformation is not impossible.
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Supplementary Figure 13: a Quartile plot of gene expression values for the IBD data,
coloured by the reagent codeset. Each sample is represented by its median (a single solid
point), the 25% quantile of the gene/features (the lower end of a vertical line) and 75%
quantile of the gene/features (the upper end of a vertical line). b PCA plot using the 3rd
and 4th components, coloured by the reagent codeset.
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Supplementary Tables

• Supplementary Table 1 (below): Data collection and processing summaries for five
melanoma datasets, MIA-Microarray, MIA-NanoString, TCGA, Sweden and MIA-
Validation. Including the data platforms, number of samples, definition of the prog-
nostic groups, data accession number, date of download and references. OS, RFS and
DSS refers to overall survival, recurrence-free survival and disease specific survival,
respectively.

• Supplementary Table 2 (below): Table of samples in the ovarian data, with median
survival time.

• Supplementary Table 3 (separate CSV file): Table of NanoString panel genes for stage
III melanoma prognosis.

• Supplementary Table 4 (separate CSV file): Table of CPOP coefficients for stage III
melanoma prognosis constructed from MIA-Microarray and MIA-NanoString.
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Table 1: Data processing on five melanoma data.

Platform n n Definition of Processing Accession Date Reference
(good) (poor) prognosis groups. strategies

MIA - Microarray

Illumina Human
WG-6 BeadChip
microarray
Version 3.

19 26

Good: RFS more than
4 years and alive
with no sign of relapse.
Poor: RFS less than
1 year and died
due to melanoma.

NEQC
normalisation

GSE54467 8 Jun 2016 44;45

MIA - NanoString

Customised
NanoString
nCounter
assay

19 26

Good: RFS more than
4 years and alive
with no sign of relapse.
Poor: RFS less than
1 year and died
due to melanoma.

log2(raw counts) GSE156030

Between
24 May 2017
and
17 Apr 2018

This paper

TCGA - SKCM RNA-Seq 43 34

Good: survived more
than the
median survival
time (26.9 mo).
Poor: survived less
than the median
survival time.

log2(FPKM)
GDC-TCGA
portal

21 Apr 2018 1

Sweden

Illumina
HumanHT-12
V4.0
beadchip

67 64

Good: survived more
than the
median survival
time (17.6 mo).
Poor: survived less
than the median
survival time.

Normalised
values from
GEO

GSE65904 12 Jan 2020 5

MIA - validation

Customised
NanoString
nCounter
assay

- -
Validation cohort with
46 samples

log2(raw counts) GSE156030

Between
5 Mar 2020
and
13 Mar 2020

This paper

Table 2: Samples and median survival time for nine ovarian data.

Data source Abbreviation Median survival (months) Number of samples
1 Yoshihara et. al.8 Japan A 104 260
2 Tothill et. al.28 Tothill 72 276
3 Yoshihara et. al.8 Japan B 96 40
4 Bell et. al.12 TCGA RnaSeq 91 51
5 Bonome et. al.46 Bonome 97 185
6 Mok et. al.47 Mok 52 53
7 Yoshihara et. al.48 Yoshihara2010 76 110
8 Bentink et. al.49 Bentink 76 129
9 Crijns et. al.50 Crijins 52 157
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