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S1 Methods 
S1.1 Generating trials by varying delays across subjects. 

Eqn. (3) in the main manuscript may be rewritten as 𝑉! = 𝑟" +
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immediate outcome, 𝑝" is the (desired) immediate choice probability, and 𝑉! is the discounted 
value, implicitly containing the delay and the discount parameter. If we insert 𝑉!, defined by 
the respective model, we may solve for the adaptive delay given a set of immediate and delayed 
outcomes, model parameters, and desired immediate choice probabilities. For instance, 
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as trial generating condition, where D is the delay, and 𝜅 and 𝛽 are model parameters. 

 

 
Fig S1. Illustration of method’s operating principle when solving for delay rather than immediate outcome. 
In this example, the immediate reward was set to 5, and the delayed reward to 6. The 3 lines correspond to 
hypothetical 𝜅 values of .01 (light gray), .005 (gray), and .001 (dark grey). Colored dots mark the respective delays 
selected for each theoretical 𝜅 to obtain immediate choice probabilities of .5 (red), .6 (orange), .7 (yellow), and .8 
(green). The left graph corresponds to subjects with 𝛽=.2 and the right to 𝛽=.4 (i.e., high sensitivity). To obtain 
similar discounting probabilities for subjects with different 𝜅 values (with same 𝛽), delays are selected such that 
the discounted value is equal across subjects (i.e., lies on a horizontal line). 𝛽 tunes the difference between 
immediate and discounted outcomes, shifting the dots on the curves (i.e., discounted values) to the left. For larger 
𝛽, shorter delays are necessary to discriminate between outcomes, consistent with higher sensitivity.  
 
 
 
 
 
 
 
 
 



S2 Results 
S2.1 Experiment 1 
The frequency of discounted choices was lower in loss as compared to reward discounting in 
run A (Z=6.07, p<0.001), as well as run B (Z=3.59, p<0.001).   
 
S2.2 Experiment 2  
The frequency of discounted choices was lower in loss as compared to reward discounting in 
run A (Z=5.89, p<0.001), as well as run B (Z=4.14, p<0.001).  
 
S2.3 Experiment 3  
The frequency of discounted choices was lower in loss as compared to reward discounting in 
run A (Z=4.99, p<0.001), as well as run B (Z=3.14, p=0.002). 
 
 
 
 
 
 
 



Table S1. Socio-demographic and subjective reports. 

   Exp 1  Exp 2  Exp 3 

      N=98   N=50   N=50 

age (mean/SD)   32.44 11.55  31.38 9.79  31.86 9.24 

gender (N) female  65   37   43  

 male  32   12   7  

 diverse  1   1   0  

education (N) primary  0   1   0  

 alevel  44   16   12  

 gcse  6   6   1  

 undergrad  32   15   25  

 grad  15   12   11  

 phd  1   0   1  

AUDIT-total   5.58 5.15  4.4 3.52  4.56 4.19 

BIS-total   31.34 6.99  30.86 7.02  31.22 6.14 

BIS-non-planning  11.29 3.19  10.6 3.41  10.9 2.84 

BIS-motor   14 4.34  9.92 2.87  10.3 2.35 

BIS-attentional     10.23 2.78   10.34 2.91   10.02 2.39 

Legend. AUDIT = Alcohol Use Disorder Identification Test, BIS = Barratt Impulsiveness Scale; Exp = experiment; gcse = 
general certificates of secondary education  
 



Table S2. Socio-demographic information across experiments with respect to gender (binary) 

  female  male test-statistic 

    N=145   N=51 Z p 
age (mean/SD)  31.49 12.09  33.94 9.89 1.09 0.275 

run A         
% non-discounter  46.89   49.02    
% non-discounter reward  16.55   13.73    
% non-discounter loss  46.89   41.18    
reward imm choice freq (mean/SD)  37.21 25.21  32.98 26.09 0.88 0.381 

loss imm choice freq (mean/SD)  80.53 16.94  84.72 22.83 0.39 0.693 

reward explo-exploitan (mean/SD)  11.69 26.81  9.76 29.72 1.04 0.299 

reward discounting par (median/perc)  0.02 [0.01,0.14]  0.01 [0.004,0.13] 0.87 0.382 

reward scaling par (mean/SD)  0.57 0.38  0.60 0.37 0.49 0.618 
loss explo-exploitan par (mean/SD)  27.36 42.04  28.49 42.9339 0.78 0.433 

loss discounting par (median/perc)  0.002 [<0.001,0.03]  0.007 [<0.001,0.02] 0.79 0.424 

loss scaling par (mean/SD)  0.52 0.35  0.53 0.36 0.19 0.845 

run B         
% non-discounter   44.14   39.22    
% non-discounter reward  13.10   3.92    
% non-discounter loss  39.31   37.25    
reward imm choice freq (mean/SD)  42.96 24.53  50.04 27.25 1.74 0.081 

loss imm choice freq (mean/SD)  71.92 30.19  68.76 28.94 0.72 0.469 
reward explo-exploitan (mean/SD)  10.17 24.58  9.88 26.31 0.33 0.739 

reward discounting par (median/perc)  0.01 [0.001,0.05]  0.02 [0.004,0.09] 0.28 0.781 

reward scaling par (mean/SD)  0.65 0.37  0.65 0.36 0.01 0.995 

loss explo-exploitan par (mean/SD)  33.68 43.65  30.75 44.87 0.19 0.844 

loss discounting par (median/perc)  9.5x10-5 [<0.001,0.04]  0.004 [<0.001,0.04] 0.35 0.725 
loss scaling par (mean/SD)   0.43 0.39   0.5 0.37 1.18 0.238 
 Legend. discount = discounting; explo = exploration; exploit = exploitation; imm = immediate; freq = frequency; par = parameter; 
SD = standard deviation; perc = percentile (25% - 75%); % = percentage 

 



 

 
Fig. S2. Illustration of online paradigm technical information flow. 
Upper left: The reward and loss discounting paradigm was programmed in JavaScript using the open-source 
package 'jsPsych'.  Lower left: Exemplary reward discounting trial prompting the participant to either press ‘q’ or 
‘p’, if she/he wants to win £5 today (blue) or £10.20 in 7 days (red). Upper right: The experiment was hosted on 
a custom virtual server using Linux-Apache-PHP-MySQL. Lower right: Model inference on data from run A and 
trial generation for run B was realized on the custom virtual server using self-written Python scripts. Data was 
stored on the open-source data management system MySQL.  



  
Fig. S3. Model comparison for experiment 1. Average predicted (out-of-sample) probability of observed 
responses �̂�$ (y-axis) for reward and loss conditions (x-axis) for different models averaged over run A and B. 
Choice behavior of run B was predicted based on model parameters inferred on run A and vice versa. Choice 
behavior of the reward discounting condition was predicted by the hyperbolic model with  �̂�%&'(%)=.55, by the 
exponential model with �̂�%&'(%)=.66, by the quasi-hyperbolic model with  �̂�=.68, by the hyperboloid model with  
�̂�%&'(%)=.67, by the modified hyperboloid model with  �̂�%&'(%)=.67, by the double-exponential model with  
�̂�%&'(%) =.68, and by the constant-sensitivity model with �̂�%&'(%)=.60 (in order of the legend). Choice behavior 
of the loss discounting condition was predicted by the hyperbolic model with  �̂�*+,,=.55, by the exponential model 
with  �̂�*+,,=.72, by the quasi-hyperbolic model with  �̂�*+,,=.73, by the hyperboloid model with  �̂�*+,,=.72, by the 
modified hyperboloid model with  �̂�*+,,=.72, by the double-exponential model with  �̂�*+,,=.73, and by the 
constant-sensitivity model with �̂�*+,,=.57.  
  
 

 
Fig. S4. Model comparison for experiment 2. Average predicted (out-of-sample) probability of observed 
responses �̂�$ (y-axis) for reward and loss conditions (x-axis) for different models averaged over run A and B. 
Choice behavior of run B was predicted based on model parameters inferred on run A and vice versa. Choice 
behavior of the reward discounting condition was predicted by the hyperbolic model with  �̂�%&'(%)=.6, by the 
exponential model with �̂�%&'(%)=.62, by the quasi-hyperbolic model with  �̂�=.66, by the hyperboloid model with  
�̂�%&'(%)=.69, by the modified hyperboloid model with  �̂�%&'(%)=.7, by the double-exponential model with  
�̂�%&'(%)=.68, and by the constant-sensitivity model with �̂�%&'(%)=.64 (in order of the legend). Choice behavior of 
the loss discounting condition was predicted by the hyperbolic model with  �̂�*+,,=.54, by the exponential model 
with  �̂�*+,,=.55, by the quasi-hyperbolic model with  �̂�*+,,=.58, by the hyperboloid model with  �̂�*+,,=.62, by the 
modified hyperboloid model with  �̂�*+,,=.63, by the double-exponential model with  �̂�*+,,=.59, and by the 
constant-sensitivity model with �̂�*+,,=.58.  
 



   
 
Fig. S5. Model comparison across all experiments. Left: Average predicted (out-of-sample) probability of 
observed responses �̂�$ (y-axis) for reward and loss conditions (x-axis) for different models averaged over run A 
and B. Choice behavior of run B was predicted based on model parameters inferred on run A and vice versa. 
Choice behavior of the reward discounting condition was predicted by the hyperbolic model with  �̂�%&'(%)=.57, 
by the exponential model with �̂�%&'(%)=.64, by the quasi-hyperbolic model with  �̂�=.66, by the hyperboloid model 
with  �̂�%&'(%)=.67, by the modified hyperboloid model with  �̂�%&'(%)=.68, by the double-exponential model with  
�̂�%&'(%)=.67, and by the constant-sensitivity model with �̂�%&'(%)=.59 (in order of the legend). Choice behavior of 
the loss discounting condition was predicted by the hyperbolic model with  �̂�*+,,=.55, by the exponential model 
with  �̂�*+,,=.64, by the quasi-hyperbolic model with  �̂�*+,,=.65, by the hyperboloid model with  �̂�*+,,=.71, by the 
modified hyperboloid model with  �̂�*+,,=.71, by the double-exponential model with  �̂�*+,,=.66, and by the 
constant-sensitivity model with �̂�*+,,=.56. Right: Same as left separated for predictions on run A and run B. When 
predicting run B based on models inferred on run A, all models perform below and close to the upper bound given 
by the theoretical expectation (horizontal grey line). When predicting behavior in run A based on models inferred 
on run B, the hyperboloid models show the highest prediction performance, while the common hyperbolic model 
performs particularly poorly.  
 
 
 
 
 
 
 



   
 
Fig S6. Investigation of model bias. The figure displays the deviation between observed relative immediate 
choice frequencies and induced immediate choice probabilities (y-axis), as a function of observed immediate 
choice probabilities (y-axis) in experiment 2 (grey) and experiment 3 (black), averaged across reward and loss 
conditions. The experiments differ w.r.t to whether choice probabilities were induced via the hyperbolic 
(experiment 2) or the modified hyperboloid (experiment 3) models. Descriptively, observed deviations are closer 
to 0 in experiment 3 indicating a lower bias in the induction of behavior for the modified hyperboloid model and 
thus indicating higher model validity. Statistically, we see a marginal difference within the .5 trail condition 
(p=.06).  
 
 
 
 
  



 

 
Fig S7. Correlation between subjective reports and discount factor of the modified hyperboloid model 
across all experiments. Left: Negative association between the discount factor (loss, run A) and impulsivity (BIS-
total: r=-0.15, p=0.037). Right: Negative association between the discount factor (loss, run B) and alcohol use 
(AUDIT-total: r=-0.14, p=0.044).  
 
 


