

Expanded View Figures

Figure EV1. Seeding activity of Aβ42 fibrils extracted from APPtg brain extract.

- A ThT fluorescence aggregation kinetics of recombinant Aβ42 in the presence of extracted fibrils from APPtg brain extract at different concentrations from 83 to 1,660 nM, exhibiting a concentration-dependent seeding effect.
- B ThT fluorescence aggregation kinetics in the presence of equal amounts of extract from non-tg brain extract, revealing no seeding activity but a delaying effect on the aggregation kinetics.
- C, D TEM images showing seeded Aβ42 fibrils at the aggregation kinetic end points using 166 nM seeds (C), and 1,660 nM seeds (D). The fibril morphology is heterogenous.
- E In vitro Aβ42 fibrils aggregated without the presence of seeds. The fibril morphology is more homogenous compared to the seeded Aβ42 fibrils with brain extract.

Data information: In (A) and (B), the same curve is shown for Aβ42 aggregated without fibril extract. In (C–E), scale bars correspond to 500 nm. Source data are available online for this figure.

Figure EV2. Immunopositivity for Aß in liver cells (macrophages) after intraperitoneal Aß injection.

Representative images of liver sections (anti-A β staining, clone 4G8) at 1 day after intraperitoneal ¹³C-Lys APPtg or non-tg brain extract injection, bottom row insets of delineated areas. A β -positivity is detectable in mice injected with APPtg brain extract but not in mice injected with non-tg brain extract. Scale bars correspond to 50 μ m (top row) and 10 μ m (bottom row), respectively.

Figure EV3. Intraperitoneally injected Aβ is not detectable in plasma but in mononuclear blood cells shortly after injection.

- A Temporal and comparative 4G8 immunoassay quantification of A β 42 in blood plasma after unlabeled APPtg or non-tg brain extract injection (for APPtg extract, n = 5 mice per time point after injection; for non-tg extract, mice (n = 1 at time points 5 h and 3 days, n = 2 at 1 day) were pooled and referred to as negative controls). Data are shown as mean \pm SD.
- B Temporal and comparative 4G8 immunoassay quantification of A β 42 in mononuclear blood cells after unlabeled APPtg or non-tg brain extract injection (for APPtg extract, n = 2 mice at time points 5 h and 5 days, and n = 3 mice at time points 1, 3, and 7 days; for non-tg extract, mice (n = 1 per time point) were pooled and referred to as negative controls). Mann-Whitney *U*-test * P = 0.0325, APPtg extract-injected vs. negative controls. Normalization to blood volume. Error bars show median \pm interquartile range.

Source data are available online for this figure.

Figure EV4. Peripheral injection of APPtg brain extract has no influence on the accumulation of Aβ plaques or microglial activation.

- A Analysis of cortical A β plaque load, plaque number, and plaque size distribution in anti-A β (clone 4G8)-stained brain sections from mice injected with ¹³C-Lys APPtg or ¹³C-Lys non-tg extract (n = 4 mice per time point and group). Data are presented as mean \pm SD.
- B Analysis of cortical coverage and number of activated microglia in anti-IBA1-stained brain sections from mice injected with ¹³C-Lys APPtg or ¹³C-Lys non-tg extract (n = 4 mice per time point and group). Error bars are shown as mean \pm SD.

Source data are available online for this figure.

Figure EV5. Intraperitoneal injection of APPtg brain extract does not induce exacerbation of β -amyloidosis 240 days after injection.

Comparative 4G8 immunoassay quantification of A β 42 in the insoluble brain fraction after unlabeled APPtg or non-tg brain extract injection (n = 12 mice in the APPtg extract group, n = 11 mice in the non-tg extract group). Normalization to brain weight. Data are presented as mean \pm SD.

Source data are available online for this figure.