Supplementary Material

Consequences of substitution model selection on protein ancestral sequence reconstruction

The supplementary material includes Figures S1-S5 and Tables S1-S2.

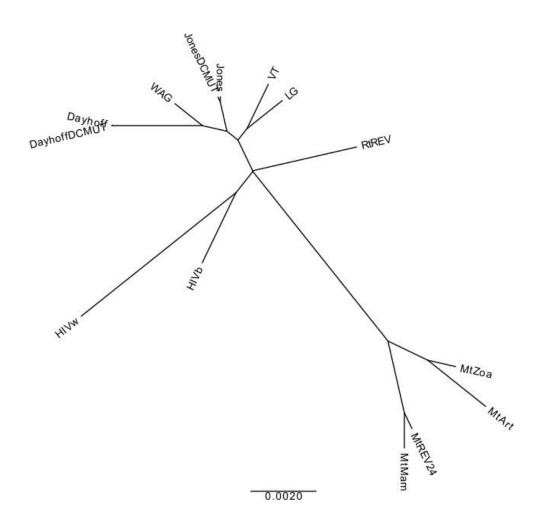
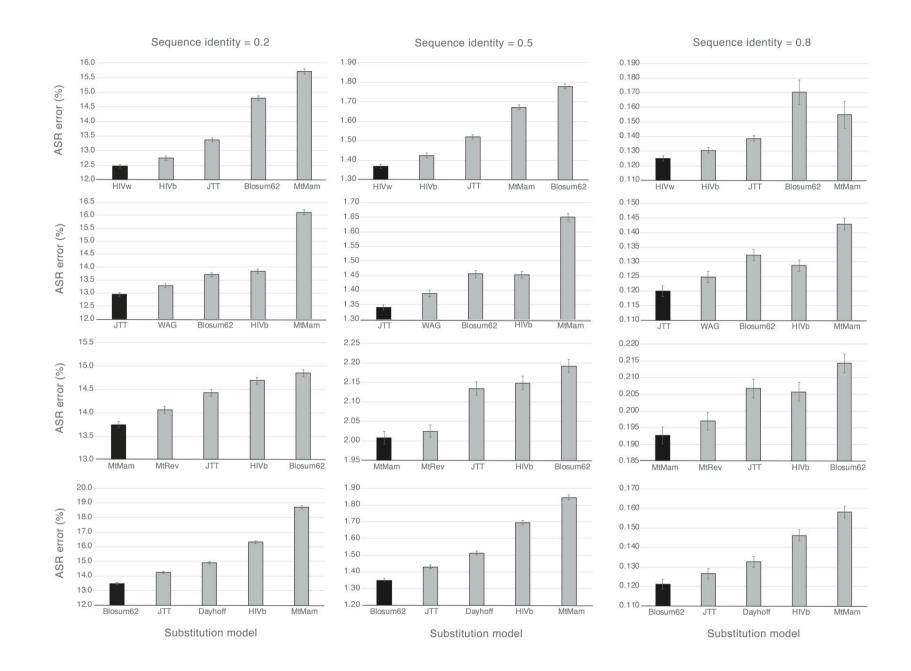
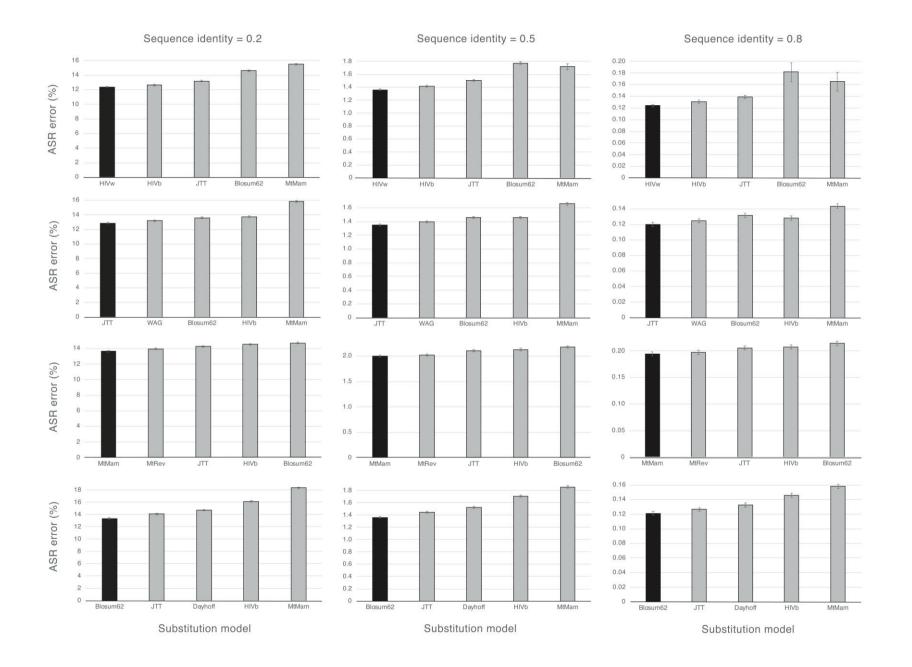




Figure S1. Agglomerative clustering of empirical substitution models of protein evolution traditionally used in phylogenetics. The figure shows the clustering of empirical substitution models of protein evolution that are traditionally applied in phylogenetics based on the distance between the normalized amino acid frequencies and exchangeability matrices.

Figure S2. Influence of substitution model selection on ancestral sequence reconstruction using data simulated with 100 protein sequences. Distances between true ancestral sequences and ancestral sequences reconstructed under true (black bars) and other substitution models (grey bars; including from the left to the right a model that is similar, intermediate and far from the true model). The distances are shown in percentage. The study is based on 1000 simulated datasets of 100 protein sequences with sequence identity of 0.2 (large genetic diversity; plots on the left), 0.5 (intermediate genetic diversity; middle plots) and 0.8 (low genetic diversity; plots on the right). Error bars indicate 95% confidence intervals. The same results showing ASR error (Y-axis) from zero is presented in the Figure S4 (Supplementary Material).

Figure S3. Influence of substitution model selection on ancestral sequence reconstruction using simulated data showing ASR error (Y-axis) from zero. Distances between true ancestral sequences and ancestral sequences reconstructed under true (black bars) and other substitution models (grey bars; including from the left to the right a model that is similar, intermediate and far from the true model). The distances are shown in percentage. The study is based on 1000 simulated datasets of 50 protein sequences with sequence identity 0.2 (large genetic diversity; plots on the left), 0.5 (intermediate genetic diversity; middle plots) and 0.8 (low genetic diversity; plots on the right). Error bars indicate 95% confidence intervals. The statistical differences among the ASR error caused by the studied substitution models are better visualized in Figure 1.

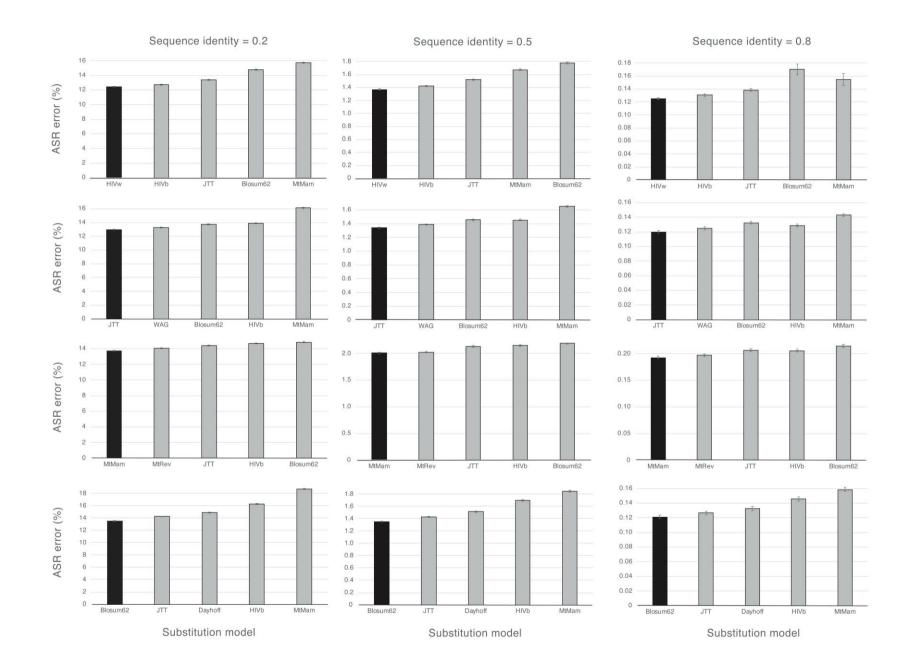


Figure S4. Influence of substitution model selection on ancestral sequence reconstruction using data simulated with 100 protein sequences including ASR error (Y-axis) from zero. Distances between true ancestral sequences and ancestral sequences reconstructed under true (black bars) and other substitution models (grey bars; including from the left to the right a model that is similar, intermediate and far from the true model). The distances are shown in percentage. The study is based on 1000 simulated datasets of 100 protein sequences with sequence identity of 0.2 (large genetic diversity; plots on the left), 0.5 (intermediate genetic diversity; middle plots) and 0.8 (low genetic diversity; plots on the right). Error bars indicate 95% confidence intervals. The statistical differences among the ASR error caused by the studied substitution models are better visualized in Figure S2.

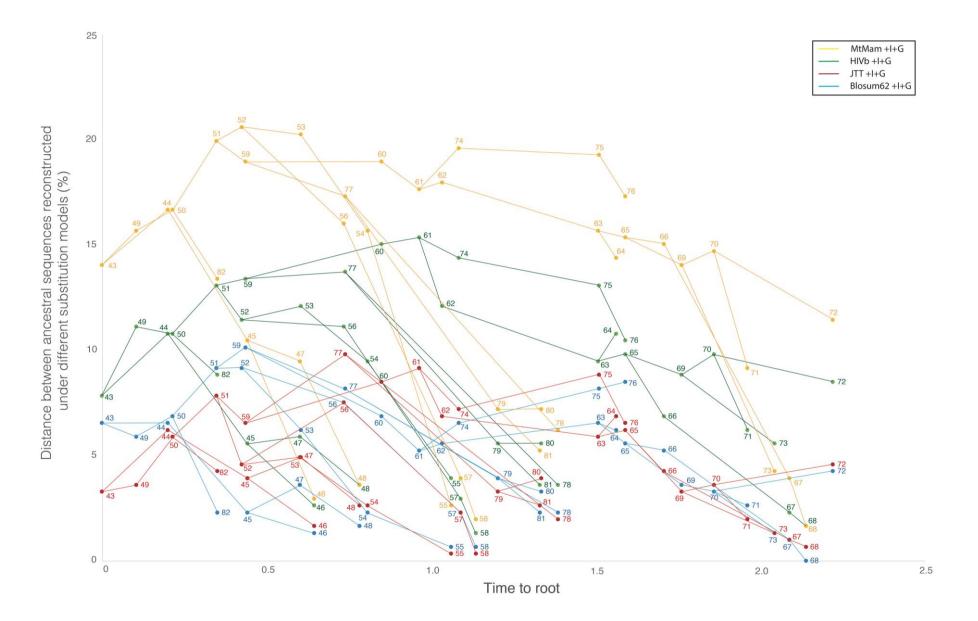


Figure S5. Influence of substitution model selection on ancestral sequence reconstruction of the DDL protein family. The figure shows the distance between ancestral sequences reconstructed under the best-fitting substitution model (LG +I+G) and other substitution models (MtMam +I+G, HIVb +I+G, JTT +I+G and Blosum62 +I+G; shown with different colors) at every internal node and as a function of the time to root. Note that all the nodes shown in the figure are internal nodes, the tip nodes are excluded because their sequences are given (thus, they are not reconstructed).

Table S1. Inferred CTL epitopes from ancestral sequences reconstructed under different substitution models for the HIV-1 group M reference alignment of the HIV-1 *env* region. Numbers are the CTL epitopes estimated by *MHCPred* for all available alleles in March of 2022. The cut-off value for the IC50 was 50, which only returns CTLs with high affinity. The best-fitting substitution model for the dataset was HIVb +I+G (numbers of epitopes in bold) and results from ancestral sequences reconstructed under other substitution models are included. Below, sum of absolute differences (per HLA allele) of number of epitopes in ancestral sequences reconstructed under the best-fitting substitution model and under other studied substitution models. Note that the substitution model with the exchangeability matrix more similar (HIVw +I+G) to the exchangeability matrix of the best-fitting substitution model.

HLA	HIVb +I+G	HIVw	JTT +I+G	WAG	Blosum62	MtMam
Allele	HIVD +I+G	+I+G	JII +I+G	+I+G	+I+G	+I+G
A0201	13	13	7	7	7	7
H2Db	5	5	6	6	7	5
H2Kb	97	95	107	108	104	106
H2Kk	47	47	50	51	52	45
A0101	3	4	5	8	7	4
A0202	15	15	26	25	23	27
A0203	222	224	225	228	223	227
A0206	45	43	44	48	46	47
A0301	34	43	32	30	27	31
A1101	348	351	374	359	359	369
A3101	1	1	2	2	2	2
A6801	26	26	25	24	25	25
A6802	18	18	13	15	12	14
B3501	0	0	0	0	0	0
DRB00101	342	339	326	329	327	324

DRB0401	4	4	5	9	7	6
DRB0701	11	11	16	13	13	18
IAb	0	0	0	0	0	0
IAk	61	58	49	50	49	49
IEg	0	0	0	0	0	0
IEk	0	0	0	0	0	0
IAd	61	59	56	55	58	58
IAs	174	177	189	189	183	183
IEd	0	0	0	1	1	0
TAP	174	175	171	180	168	167
All	1701	1708	1728	1737	1700	1714
	HIVb +I+G - HIVw +I+G	HIVb +I+G - JTT +I+G	HIVb +I+G - WAG +I+G		9 +I+G - n62 +I+G	HIVb +I+G - MtMam +I+G
Differences	31	129	126	1	111	125

Table S2. Inferred CTL epitopes from ancestral sequences reconstructed under different substitution models for the HIV-1 subtype B reference alignment of the HIV-1 *env* region. Numbers are the CTL epitopes estimated by *MHCPred* for all available alleles in March of 2022. The cut-off value for the IC50 was 50, which only returns CTLs with high affinity. The best-fitting substitution model for the dataset was HIVw +I+G (numbers of epitopes in bold) and results from ancestral sequences reconstructed under other substitution models are included. Below, sum of absolute differences (per HLA allele) of number of epitopes in ancestral sequences reconstructed under the best-fitting substitution model and under other studied substitution models. Note that the substitution model with the exchangeability matrix more similar (HIVb +I+G) to the exchangeability matrix of the best-fitting substitution model.

HLA Allele	HIVw +I+G	HIVb +I+G	JTT +I+G	WAG +I+G	Blosum62 +I+G	MtMam +I+G
A0201	7	7	13	9	9	13
H2Db	4	3	3	4	4	4
H2Kb	113	114	104	108	107	105
H2Kk	59	60	63	63	63	62
A0101	5	5	4	4	3	4
A0202	21	21	21	22	20	22
A0203	239	240	234	229	230	235
A0206	39	39	32	34	33	33
A0301	28	28	26	26	24	27
A1101	383	377	391	394	392	397
A3101	3	3	1	2	3	1
A6801	25	24	24	25	26	26
A6802	19	19	26	26	25	26
B3501	0	0	0	0	0	0
DRB00101	326	321	314	304	304	311

DRB0401	3	3	2	2	2	2
DRB0701	16	16	14	13	14	13
IAb	0	0	0	0	0	0
IAk	54	54	64	66	67	63
IEg	0	0	0	0	0	0
IEk	0	0	0	0	0	0
IAd	59	57	53	55	55	53
IAs	202	201	193	188	189	192
IEd	0	0	0	0	0	0
TAP	134	131	136	134	137	136
All	1739	1723	1718	1708	1707	1725
	HIVw +I+G -	HIVw +I+	G - HIVw -	-1+(i -	W + I + G - H	IVw +I+G -

	HIVw +I+G -	HIVw +I+G -	HIVw +I+G -	Blosum62	HIVw +I+G -
	HIVb +I+G	JTT +I+G	WAG +I+G	+I+G	MtMam +I+G
Differences	22	95	105	108	100

-