

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

The association of serum high sensitivity C-reactive protein with the mortality risk in Asian: the Health Examinees cohort

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-052630
Article Type:	Original research
Date Submitted by the Author:	20-Apr-2021
Complete List of Authors:	Lee, Sang-Ah; Kangwon National University School of Medicine, Preventive Medicine; Vanderbilt University Medical Center Kwon, Sung Ok; Kangwon National University School of Medicine, Preventive Medicine Park, Hyerim; Kangwon National University School of Medicine, Preventive Medicine Shu, Xiao-Ou ; Vanderbilt University Medical Center Lee, Jong-Koo; JW LEE Center for Global Medicine Kang, Daehee; Seoul National University College of Medicine, Preventive Medicine
Keywords:	PREVENTIVE MEDICINE, EPIDEMIOLOGY, Cardiac Epidemiology < CARDIOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		-
3 4	196	The association of serum high sensitivity C-reactive protein with the mortality risk in
5		
6 7	197	Asian: the Health Examinees cohort
8	198	
9 10	199	
11	200	Sang-Ah Lee ^{1,2 *} , Sung Ok Kwon ¹ , Hyerim Park ¹ , Xiao-Ou Shu ² , Jong-Koo Lee ³ , Daehee Kang ⁴
12 13	201	
14	202	
15	203	¹ Department of Preventive Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic
16 17	204	of Korea.
18	205	² Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville,
19 20	206	TN, USA.
20	207	³ JW Lee Center for Global Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea.
22	208	⁴ Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea.
23 24	209	
25	210	
26 27	211	ABSTRACT
28	212	Objectives This study aimed to examine the association of <i>hs</i> CRP with mortality risk and the attenuated effect
29 30	213	of non-communicable disease history (NCD _{history}) on the association.
31	214	Design Prospective cohort study.
32	215	Setting the Health Examinees (HEXA) cohort.
33 34	216	Participants A total of 41 070 men and 81 011 women aged \geq 40 years were involved (follow-up: 6.8 years).
35	217	Outcome measures The data and cause of death occurring until December 31, 2015, were confirmed by death
36 37	218	statistics from the National Statistical Office. We conducted the advanced analysis after stratification by
38	219	NCD _{history} and the sensitivity analysis after excluding death before 1 or 2 years from recruitment. Cox
39 40	220	proportional hazard and restricted cubic spline models were used to assess the association.
41	221	Results The association between serum <i>hs</i> CRP and the risk of all-cause mortality was observed with strong
42 43	222	linearity in both genders, which was not influenced by NCD _{history} . Otherwise, the association of serum hsCRP
43 44	223	with cancer-mortality risk was not observed in women with NCD _{history} , but the association with the risk of
45	224	cardiovascular disease (CVD) mortality was predominantly observed in men with NCD _{history} .
46 47	225	Conclusions This study suggested the dose-response association of <i>hs</i> CRP with mortality risk, including
48	226	cancer and CVD mortality, in Korean with low serum hsCRP, although the association with cancer and CVD-
49 50	227	mortality risk could be influenced by gender and NCD _{history} .
51	228	
52	229	
53 54	230	Strengths and limitations of this study
55 56	231	• This is the large population-based prospective study.
57 58 59	232	• We examined the effect of very high <i>hs</i> CRP concentration on mortality risk.
60	233	• The <i>hs</i> CRP level of present study was measured within 18 hours in a single institution to minimize error/bias.

1 2		2
3 4	234	• Due to due to random fluctuations of <i>hs</i> CRP, using the single measurement of <i>hs</i> CRP at baseline could reflect
5 6	235	the inaccurate status of blood <i>hs</i> CRP levels in the study participants and increase the instability of <i>hs</i> CRP.
7 8	236	This study lacked information on medication use at recruitment and during the follow-up period, and
9		
10 11	237	information on hormone-replacement therapy (HRT) among women.
12	238 239	
13 14	239	*Correspondence to: Sang-Ah Lee, Ph.D.
15 16	241	Department of Preventive Medicine, School of Medicine, Kangwon National University,
17	242	Chuncheon, Gangwon, Republic of Korea.
18 19	243	Tel: +82 33 250 8871
20	244	E-mail: sangahlee@kangwon.ac.kr
21 22	245	
23 24	246	
24 25 26	247	E-mail: sangahlee@kangwon.ac.kr
27 28	248	
29 30	249	
31 32	250	
33 34	251	
35 36	252	
37 38	253	
39	254	
40 41	255	
42 43	256	
44 45	257	
46 47	258	
48 49	259	
50 51	260	
52 53	261	
54 55	262	
56 57	263	
58 59	264	
59 60	265	

266 INTRODUCTION

High sensitivity C-reactive protein (hsCRP) is an acute-phase response protein synthesized by the liver and the most sensitive and dynamic marker of inflammation[1]. Since hsCRP has been reported as a candidate marker for generalized atherosclerosis and cardiovascular disease (CVD)[2], many studies[3-7] have investigated the role of hsCRP levels as a predictor of mortality risk. A recent meta-analysis[8] reported the predictable role of serum hsCRP on all-cause and CVD mortality in the general population. Nevertheless, it is controversial whether the predictable role of hsCRP could be applied to the risk of mortality in Asians, whose hsCRP levels are lower than those in individuals in Western countries.

Serum *hs*CRP represents a low-grade inflammation state that is generally involved in the process of aging[9]. Several large cohorts, including Study of Women's Health Across the Nation (SWAN)[10], the Women's Health Study[11] and the Dallas Heart Study[12], reported significant differences in hsCRP levels by race and gender. In two studies of multiethnic populations residing in the USA[10, 13], the median hsCRP level in East Asians was less than half the concentration in Caucasians. Even among East Asian populations, the geometric mean of hsCRP levels varied depending on ethnic background[14]. In addition, a meta-analysis[11] reported the hsCRP levels among women of various ethnic groups living in the United States (from the Women's Health Study) on the association between hsCRP and the mortality risk; the association was observed in only men supported by the results from two cohort studies [15, 16] reported in Korea. On the other hand, the increased hsCRP may be influenced by comorbidity itself because inflammation has emerged as an important factor in the progression of non-communicable diseases (NCDs), including CVD[17], cancer[18], chronic obstructive pulmonary disease (COPD)[19], type 2 diabetes[20] and fractures[21], which contribute to increased morbidity and mortality. This study aimed to examine the association of serum hsCRP with the risk of mortality in Koreans with low

serum *hs*CRP and to evaluate the attenuated effect of non-communicable disease history (NCD_{*history*}) on the
 association.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

METHODS

Study population

Details on the main objectives, rationale, study design and baseline characteristics of the Health Examinees (HEXA) study have been published elsewhere[22]. Considering the homogeneity and comparability of participants, we created a qualified dataset called HEXA-G (Health Examinees-Gem) from previously published HEXA studies[23]. In the new HEXA-G data, a total of 141 968 participants remained after the exclusion of withdrawers (n=12). In addition, 19 887 were excluded due to missing information (n=19 876) or small sample size (n=11) on any hsCRP components at the baseline survey. Ultimately, 122 081 subjects, including 41 070 men and 81 011 women, remained in the final analysis (Fig. 1). All study participants provided informed consent prior to entering the study. The Institutional Review Board of the Seoul National University Hospital, Seoul, Korea, approved it for statistical analysis (IRB No. E-1503-103-657).

Laboratory measurements

After at least 10 hours of overnight fasting, blood samples were obtained in the morning. Bio-specimens included fasting blood samples that were collected in a serum separator tube and two ethylenediaminetetraacetic acid (EDTA) tubes. All samples were then transported to the National Biobank of Korea and stored for future research purposes within 18 hours. hsCRP was measured using a turbidimetric immunoassay (ADVIA 1650 and ADVIA 1800; Siemens Healthineers).

Follow-up and ascertainment of mortality

All-cause mortality was confirmed by death statistics from the National Statistical Office, which provided the data and causes of all deaths occurring through December 31, 2015. We added the mortality data from Statistics Korea to our dataset using each participant's unique identifier. Information on death and causes of death was obtained from a record link with the national death certificate files in Korea. The main outcome of interest was all-cause mortality (defined as death from any cause), including cancers and CVD mortality. The cause of death was classified according to the International Classification of Diseases, 10th revision (ICD-10). Deaths were coded as C00-C97 for cancer and I00-I99 for CVD.

323 Baseline variables

Trained interviewers collected information on demographic, socioeconomic and lifestyle factors. Anthropometric measurements were obtained using standardized methods. Body mass index (BMI) was calculated, and all participants were defined into four classes based on the World Health Organization classification of BMI for Asian adults[24]: underweight (BMI <18.5 kg/m²), normal (18.5 BMI <23.0 kg/m²), overweight (23.0 \leq BMI <25.0 kg/m²), obesity (25.0 \leq BMI <29.9 kg/m²), and severe obesity (BMI \geq 30.0 kg/m²). The current study defined metabolic syndrome using the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III)[25], modified for the Asian guideline for waist circumference (WC ≥90 and \geq 80 cm for men and women, respectively). Nonsmokers were defined as those who had smoked less than 400 cigarettes over the course of their lifetime. Participants who had smoked were categorized into two groups: noncurrent (never/former) and current smoker. Noncurrent drinkers were defined as those who had never consumed an alcoholic drink over the course of their lifetime or those who had not consumed alcohol at recruitment, while current drinkers were defined as those who persisted in consuming alcohol. Regular exercise was classified into two groups (ves/no) as follows: "Do you currently engage in regular exercise strenuous enough to cause you to break into a sweat at least once per week?" Furthermore, considering the attenuated effect of the NCD_{history} on the association between serum hsCRP and the risk of mortality, we performed advanced analysis after stratification by NCD_{history}. We considered six main non-communicable diseases (hypertension, diabetes, hyperlipidemia, cancer, cardiovascular and cerebrovascular diseases, and respiratory disease) to classify healthy subjects vs. subjects with NCD_{history}.

41 342

343 Statistical analysis

For the categorical analysis, we created nine categories based on the distribution of hsCRP levels in our population: <1.00 (reference group), 1.01-1.50, 1.51-2.00, 2.01-2.50, 2.51-3.00, 3.01-4.00, 4.01-6.00, 6.01-10.0, and >10.0 mg/L. For the advanced analysis after stratification by the NCD_{history}, the hsCRP levels were categorized as $\leq 1.00, 1.01-2.00, 2.01-3.00, 3.01-10.0, and >10.0 mg/L$ because of the reduced sample size in each subgroup. The concentrations of hsCRP were log-transformed for analyses because of the skewed distribution.

We calculated a follow-up time for each subject starting from the date of interview until the date of death or
 We calculated a follow-up time for each subject starting from the date of interview until the date of death or
 December 31, 2015, whichever came first. Using age as the time scale, subjects enter the risk set at the age at
 which they completed the baseline questionnaire and exit at their event/censoring age. The associations of

2

BMJ Open

2 3		
4 5	353	hsCRP and all-cause mortality, as well as cancer and CVD mortality, were analyzed by Cox proportional hazard
6 7	354	models (aHR) and included adjustment for age, gender, demographic factors (education, marital status, job, BMI
8 9	355	and NCD _{history}), and lifestyle factors (smoking, alcohol consumption and exercise). In addition, we conducted a
10 11	356	sensitivity analysis to avoid latent period bias after excluding death before 1 year (aHR _{1year}) or 2 years (aHR _{2year})
12	357	since recruitment. We employed restricted cubic splines (RCSs) to evaluate the possibility of complex (i.e.,
13 14	358	nonlinear) hazard functions[26] using continuous values of hsCRP (aHR _{continuous}). We selected five hsCRP
15 16	359	concentration values as knots based on hsCRP concentration percentiles, tested the linear and nonlinear associa-
17 18	360	tions between knots using a cubic function, and presented the integrated graph smoothly. All statistical analyses
19 20	361	were performed using SAS version 9.3 (SAS Institute Inc., Cary, NC, USA) and RCS analysis was carried out
21 22	362	using the SAS LGTPHCURV9 macro. The <i>P</i> -values < 0.05 were defined as indicating statistical significance.
23 24	363	
25 26	364	Patient and public involvement
27 28	365	No patients and public were involved in the design, conducting, reporting, and dissemination plans of the present
29 30	366	study.
31 32	367	
33 34	368	
35 36	369	study. RESULTS
37 38	370	The association of demographic and lifestyle factors with the risk of all-cause mortality is presented in Table
39 40	371	1. During the follow-up period (average 6.8 years), 1 365 men and 864 women died. The median levels of
41 42	372	hsCRP were 0.77 and 0.59 mg/L for men and women, respectively. The risk of all-cause mortality was inversely
43 44	373	associated with female gender (aHR=0.38), high educated (aHR=0.65), overweight (aHR=0.81) or obesity
45 46	374	(aHR=0.83), current alcohol consumption (aHR=0.81) and regular exercise (aHR=0.83), but was positively
47 48	375	associated with single marital status (aHR=1.23), NCD _{history} (aHR=1.57), underweight (aHR=2.05) and current
49 50	376	smoking (aHR=1.97).
51	377	
52 53	378	
54 55	0,0	
55	379	

		All	Death	All-cause m	ortality
		(<i>n</i> =122 081)	(<i>n</i> =2229)	Age,gender adjusted	adj HR ^a
	Age	53.1 ± 8.3	59.7 ± 8.8		
	Female	66.4	38.8	0.40 (0.36-0.43)	0.38 (0.33-0.44)
	Education (≥10 year, %)	68.2	55.4	0.67 (0.60-0.75)	0.65 (0.56-0.75)
	Blue-colored worker ^b (%)	32.3	33.8	1.46 (1.26-1.68)	1.16 (0.99-1.35)
	Marital status (single, %)	11.0	13.3	1.35 (1.19-1.54)	1.23 (1.07-1.40)
	NCD _{history} (yes, %)	32.4	53.6	1.51 (1.39-1.65)	1.57 (1.42-1.72)
	Hypertension	18.9	31.5	1.18 (1.08-1.30)	1.22 (1.11-1.35
	Diabete	6.5	17.1	1.81 (1.62-2.03)	1.77 (1.57-2.00)
	Hyperlipidemia	9.2	7.6	0.73 (0.62-0.86)	0.78 (0.66-0.92
	Cancer	3.2	8.8	2.69 (2.31-3.12)	2.66 (2.27-3.11)
	Cerebral & cardiovascular disease	3.7	10.2	1.50 (1.30-1.73)	1.43 (1.23-1.66
	Respiratory disease	2.4	4.3	1.37 (1.12-1.68)	1.32 (1.06-1.64
	Body mass index (%)			× ,	× .
	<18.5	1.8	3.7	2.14 (1.69-2.69)	2.05 (1.61-2.62
	18.5-22.9	38.1	34.9	1.00 (ref.)	1.00 (ref.)
	23.0-24.9	27.8	26.0	0.82 (0.73-0.91)	0.81 (0.72-0.91
	25.0-29.9	29.5	32.5	0.90 (0.81-1.00)	0.83 (0.74-0.93
	\geq 30.0	2.8	2.9	1.08 (0.83-1.39)	0.81 (0.61-1.08
	P-trend			0.0118	<.0001
	Metabolic syndrome (yes, %)	22.0	28.4	1.13 (1.03-1.24)	1.07 (0.96-1.19
	Current smoker (%)	11.7	22.7	2.04 (1.79-2.33)	1.97 (1.71-2.27
	Current drinker (%)	44.0	43.8	0.86 (0.77-0.95)	0.81 (0.73-0.91
	Regular exercise (yes, %)	53.4	49.1	0.76 (0.70-0.83)	0.83 (0.76-0.91
383 384 385 386	Regular exercise (yes, %) NCD _{history:} Non-communicable diseas ^a Adjusted for age, gender, education, ^b Compared to white-colored worker	e history			`
387					
388					
389					
390					
391					
392					
393					

Table 1 Baseline characteristics of participants by all-cause mortality

The risk of all-cause mortality was inclined with a dose-dependent pattern as increased serum hsCRP level ($P_{trend} < 0.001$, Supplement 1), regardless of gender ($P_{trend} < 0.001$ in both genders), even in the sensitivity analysis $(P_{trend} < 0.001 \text{ for aHR}_{1\text{ver}} \text{ in both genders})$. The increased risk of female mortality with increased hsCRP levels was observed in both premenopausal ($P_{trend}=0.020$) and postmenopausal women ($P_{trend} < 0.001$), although the statistical significance in premenopausal women disappeared after sensitivity analysis (Ptrend=0.150 for aHR2year, Supplement 1). The integrated graph, based on the restricted cubic spline analyses, indicated a strong and linear association of serum hsCRP level with all-cause mortality in both genders (aHR_{continuous}=1.019 and 1.013 in men and women, respectively, Fig. 2 (a)).

The dose-response association between hsCRP level and the risk of all-cause mortality was not influenced by NCD_{history} (Supplement 2). After stratification by gender, however, the attenuated effect by NCD_{history} on the association was observed only in women; the linearity of the relationship was observed in healthy women $(P_{trend}=0.001 \text{ for aHR}_{2\text{vear}})$ but disappeared in women with NCD_{history}, particularly after sensitivity analysis with the exclusion of a 2-year follow-up time ($P_{trend}=0.084$ for aHR_{2vear}). Based on the restricted cubic spline analyses, otherwise, the pattern of increase in the association was different depending on the NCD_{history} (Fig. 2 (b)(c)). In the healthy subjects, the risk of all-cause mortality was increased with a gradual slope (strength) until 3.0 mg/L hsCRP, with a very steep slope until 4.5 mg/L and finally with a reduced and flattened slope after 4.5 mg/L (Fig. 2 (b)). On the other hand, the slope of the association fluctuated as the hsCRP level increased in the subjects with NCD_{history}; the slope increased up to 3.0 mg/L hsCRP but decreased until 4.5 mg/L and rapidly increased after 4.5 mg/L (Fig. 2 (c)).

The association of serum hsCRP with the risk of cancer-mortality was not influenced by NCD_{history} $(P_{trend} < 0.001 \text{ regardless of NCD}_{history})$ (Table 2). Otherwise, after stratification by gender, the association was not observed in women with NCD_{history} (P_{trend} =0.856); however, the association was not influenced by NCD_{history} in men (Ptrend<0.001 and 0.002 for aHR in both healthy and NCDhistory) (Table 2). Although the risk of CVD mortality was linearly associated with increasing hsCRP levels, the association was dominant in men (Ptrend=0.002) and in subjects with NCDhistory (Ptrend=0.001, Table 3) after stratified by gender and NCDhistory, respectively. After stratification by gender and NCD_{history}, otherwise, the association only appeared in individuals of both genders with NCD_{history} (P_{trend}=0.015 and 0.035 in men and women with NCD_{history}, respectively); no association between hsCRP level and CVD mortality risk was found in either healthy men or women.

	Cancer-mortality							bjects at	recruitme	nt	Subjects with NCD _{history} at recruitment				
	E	MR	aHR	HR _{1year}	HR _{2year}	E	MR	aHR	HR _{1year}	HR _{2year}	 Е	MR	aHR	HR_{1year}	HR _{2year}
Total															
≤1.00	590	10.9	Ref	Ref	Ref	270	7.9	Ref	Ref	Ref	320	16.3	Ref	Ref	Ret
1.01-2.00	232	17.1	1.25	1.23	1.17	85	13.4	1.43	1.40	1.31	147	20.3	1.19	1.13	1.09
2.01-3.00	86	20.4	1.32	1.24	1.19	29	16.0	1.38	1.34	1.35	57	23.7	1.35	1.18	1.10
3.01-10.0	149	29.4	1.83	1.76	1.72	54	24.8	2.22	2.07	2.01	95	33.0	1.75	1.59	1.55
>10.0	66	48.9	2.69	2.28	1.96	20	30.6	1.85	1.59	1.57	46	65.9	3.25	2.64	2.16
P-trend			<.001	<.001	<.001			<.001	<.001	<.001			<.001	<.001	<.001
Men						2									
≤1.00	302	18.5	Ref	Ref	Ref	169	23.6	Ref	Ref	Ref	133	14.5	Ref	Ref	Ret
1.01-2.00	144	26.6	1.36	1.36	1.32	95	32.6	1.40	1.38	1.34	49	19.7	1.31	1.34	1.31
2.01-3.00	59	34.7	1.45	1.31	1.19	40	40.4	1.54	1.37	1.16	19	26.7	1.29	1.22	1.26
3.01-10.0	111	52.7	2.17	2.10	2.00	77	64.5	2.26	2.24	2.12	34	37.3	1.98	1.80	1.70
>10.0	50	82.9	3.13	2.66	2.34	38	114.1	4.07	3.42	2.79	13	46.1	1.58	1.40	1.56
P-trend			<.001	<.001	<.001			<.001	<.001	<.001			0.002	0.009	0.015
Women										O,					
≤1.00	288	7.7	Ref	Ref	Ref	137	5.5	Ref	Ref	Ref	151	12.1	Ref	Ref	Re
1.01-2.00	88	10.8	1.13	1.08	0.99	36	9.4	1.60	1.48	1.31	52	12.1	0.86	0.86	0.81
2.01-3.00	27	10.7	1.16	1.17	1.2	10	9.1	1.48	1.50	1.47	17	12.0	0.96	0.98	1.03
3.01-10.0	38	12.9	1.31	1.24	1.29	20	15.8	2.58	2.48	2.57	18	10.7	0.75	0.71	0.74
>10.0	15	20.4	1.89	1.61	1.28	7	18.9	2.16	1.75	1.42	8	21.9	1.66	1.47	1.17
P-trend			0.019	0.074	0.161			<.001	0.001	0.002			0.856	0.635	0.538

E: Number of death, MR: Mortality rate (10 000 person year), Ref: Reference

aHR: Adjusted for age, gender, education, job, marital status, BMI, non-communicable disease history, smoking, alcohol consumption and exercise

HR_{1year}: aHR after exclude subjects who died within 1 yr f/u time

 HR_{2year}: aHR after exclude subjects who died within 2 yr f/u time

BMJ Open

	Cardiovascular disease mortality					H	Healthy subjects at recruitment					Subjects with NCD _{history} at recruitment					
	E	MR	aHR	HR_{1year}	HR _{2year}	E	MR	aHR	HR_{1year}	HR _{2year}	E	MR	aHR	HR_{1year}	HR _{2year}		
Total																	
≤1.00	167	3.1	Ref	Ref	Ref	58	1.7	Ref	Ref	Ref	109	5.5	Ref	Ref	Ref		
1.01-2.00	79	5.8	1.35	1.37	1.23	18	2.8	1.19	1.15	0.94	64	8.4	1.42	1.46	1.36		
2.01-3.00	42	10.0	2.06	2.05	2.02	6	3.3	1.47	1.54	1.46	36	15.0	2.28	2.25	2.26		
3.01-10.0	39	7.7	1.45	1.38	1.44	8	3.7	1.44	1.50	1.70	31	1.08	1.48	1.37	1.40		
>10.0	13	9.6	1.81	1.76	1.59	3	4.6	2.02	2.10	1.58	10	14.3	1.85	1.74	1.68		
P-trend			0.001	0.002	0.004			0.130	0.100	0.162			0.001	0.006	0.009		
Men						20											
≤1.00	89	5.5	Ref	Ref	Ref	25	2.7	Ref	Ref	Ref	64	8.9	Ref	Ref	Ref		
1.01-2.00	45	8.3	1.33	1.32	1.25	12	4.8	1.30	1.22	1.22	33	11.3	1.31	1.33	1.33		
2.01-3.00	30	17.6	2.70	2.67	2.53	3	4.2	1.31	1.37	1.37	27	27.3	3.05	2.99	2.99		
3.01-10.0	24	11.4	1.43	1.36	1.46	6	6.6	1.70	1.79	1.79	18	15.1	1.42	1.21	1.21		
>10.0	8	13.0	1.90	2.02	1.70	3	10.6	3.42	3.61	3.61	5	15.0	1.59	1.62	1.62		
P-trend			0.002	0.003	0.009			0.053	0.038	0.062			0.015	0.027	0.047		
Women																	
≤1.00	78	2.1	Ref	Ref	Ref	33	1.3	Ref	Ref	Ref	45	6.3	Ref	Ref	Ref		
1.01-2.00	34	4.2	1.41	1.46	1.25	6	1.6	1.09	1.13	0.62	28	9.6	1.60	1.66	1.58		
2.01-3.00	12	4.8	1.26	1.30	1.44	3	2.7	1.65	1.70	1.86	9	9.1	1.17	1.20	1.39		
3.01-10.0	15	5.1	1.51	1.45	1.44	2	1.6	1.06	1.07	1.14	13	10.9	1.75	1.64	1.65		
>10.0	5	6.8	1.72	1.35	1.45	0	-	-	-	-	5	15.0	2.51	1.91	2.07		
P-trend			0.092	0.177	0.168			0.940	0.998	0.922			0.035	0.092	0.078		

E: Number of death, MR: Mortality rate (10 000 person year), Ref: Reference

aHR: Adjusted for age, gender, education, job, marital status, BMI, non-communicable disease history, smoking, alcohol consumption and exercise

 HR_{1year} : aHR after exclude subjects who died within 1 yr f/u time

HR_{2year}: aHR after exclude subjects who died within 2 yr f/u time

DISCUSSION

This study suggests that the risk of all-cause mortality was associated with elevated hsCRP levels with a dose-response manner in both gender among Asian who have reported low hsCRP levels compared to other races, and was not influenced by NCD_{*history*}. Otherwise, the association was influenced by gender and NCD_{*history*} although a dose-response association of hsCRP with the risk of cancer- and CVD-mortality was also observed in this population. The level of hsCRP was not associated with the risk of cancer- mortality among women with NCD_{*history*}. The risk effect of high hsCRP level on CVD mortality was predominantly observed in men with NCD_{*history*}.

Several large cohorts [10-12, 14] have suggested that serum hsCRP levels may differ according to ethnic background, with the highest concentrations seen in African Americans, followed by Hispanic, White, Chinese and Japanese individuals. Although the reason for this ethnic difference is not clearly resolved, genetic diversity[27], the relatively low BMI in Asian populations and ethnic differences in diet and lifestyle[28] have been suggested. Although the extent to which these findings adopt to Asian populations has been unclear, several recent studies [11, 16] conducted in Asia reported a positive association of *hs*CRP with mortality risk. In this population, the hsCRP level was associated with the risk of all-cause mortality in a dose-dependent manner, even though the level of hsCRP was lower than that in the western population. A meta-analysis[29] and large cohort studies[3-6] supported the robustness of the association regardless of adjusted confounders, the cut-off point of CRP level and exclusion deaths within the first 2 years of follow-up. The reason for the discrepancy in *hs*CRP levels with respect to gender is not clearly resolved, although several studies suggested different lifestyle and metabolic risk factors between men and women[30] and genetic diversity[27]. A high level of serum hsCRP in our population was positively related to the increased risk of all-cause mortality in both genders, supported by several previous studies[8, 16, 31]. Nevertheless, several studies reported no association of hsCRP levels with all-cause mortality was observed in women[7, 16]. In particular, the association was shown in postmenopausal women only, which might suggest the protective effect of endogenous female hormones on the low level of hsCRP[32]; the average hsCRP level was 0.48 and 0.68 mg/L for premenopausal and postmenopausal women in this study. The protective effect could be supported by the

4 450 proposition that estrogen or progesterone might to some extent repress the detrimental effects of chronic

⁵ 451 inflammation on tissue damage[33].

452 Inflammation has emerged as an important factor in the processes of NCD, including CVD[17], cancer[18],

453 type 2 diabetes[20], COPD[19, 34] and fracture[21]. In addition, medications that had taken to treat any specific

NCD, such as rennin-angiotensin system inhibitors[35] and statins and thiazolidinedione[36], could influence the level of hsCRP. The association between hsCRP and the mortality risk was not attenuated by NCD_{history} in either gender in this study, but the statistical significance of the association disappeared in women after sensitivity analysis (aHR_{2vear}). A dose-response relationship between hsCRP level and all-cause mortality risk was pronounced in both genders. On the other hand, the positive association of hsCRP with the risk of all-cause mortality risk was significantly observed in only men with NCD_{history} but not in women with NCD_{history}. The attenuated effect of NCD_{history} on the association between hsCRP and the risk of cancer-mortality was not observed in men, consistent with results from several studies which reported the associations among healthy men[3] or cancer patients[37, 38] only. Most studies[3, 4, 6, 7, 15, 16, 31, 39] supported that CVD mortality increased with elevated hsCRP levels, predominantly in men[4, 7, 15, 16]. Although hsCRP levels are lower in our population than in other races, the level of hsCRP was positively associated with CVD mortality in men but not in women, similar to previous studies[7, 15, 16, 31, 39]. After stratification by gender and NCD_{history}, the association between hsCRP and the risk of CVD mortality was dominant in subjects with NCD_{history} in this study.

This study has several strengths because of the large population-based prospective study; it makes possible 1) to adjust for confounders; 2) to examine sensitivity analysis after excluding death before 1 or 2 years from recruitment; 3) to assess an advanced analysis after stratification by gender and NCD_{history}; 4) to examine the association using various cut-off points of hsCRP considering low serum hsCRP levels in Asian populations; and 5) to evaluate the complex (i.e., nonlinear) hazard functions using restricted cubic splines on the association between continuous hsCRP levels and the risk of mortality. In particular, most previous studies excluded subjects with more than 10 mg/L hsCRP because of their relatively low sample size or reflecting acute phase reactions of severe inflammation, but we examined the effect of very high hsCRP concentration on the risk of mortality because it is possible to be more concerning for these subjects in the future. The hsCRP level of this study, in addition, was measured within 18 hours in a single institution to minimize measurement error/bias from institutional variation to avoid bias from measurement or long-term storage before analysis. Despite of those strengths, it is also has several limitations. First, the use of a single measurement of hsCRP at baseline could reflect the inaccurate status of blood hsCRP levels in the study participants and increase the

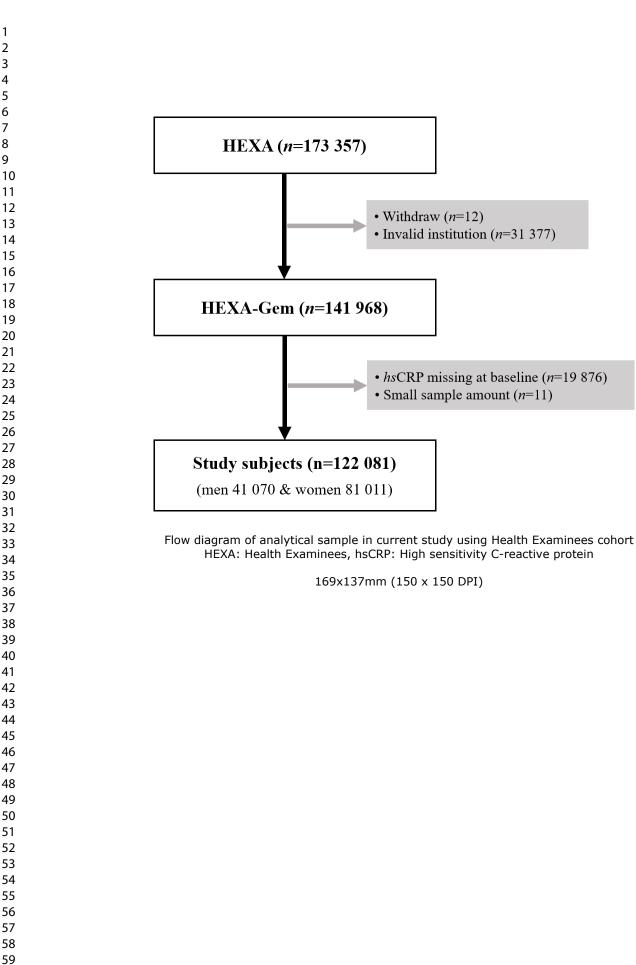
481 instability of *hs*CRP due to random fluctuations over time. Nevertheless, a report [40] on the long-term *hs*CRP

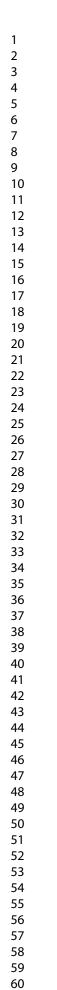
- 482 variability suggested that the *hs*CRP variability within individual is relatively small and that the variability
- 60 483 could not account for the association. Second, our study lacked information on medication use at recruitment

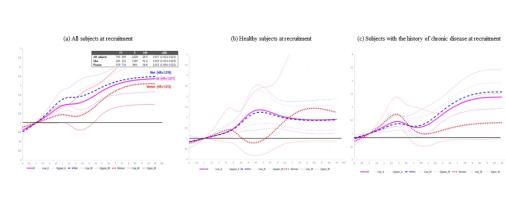
3		
4 5	484	and during the follow-up period. Several medications related to NCDs, including statins, angiotensin-converting
6 7	485	enzyme inhibitors, fibrates, niacin, thiazolidinedione and estrogen/progestogen hormone, could influence the
8	486	hsCRP level[37]; however, we tried to overcome this limitation through advanced analysis after stratification by
9 10 11	487	NCD _{history} . Third, because there is no available information on hormone-replacement therapy (HRT) among
11 12	488	women, which could not examine the influence of HRT on the association of hsCRP with the risk of hormone-
13 14	489	related cancer or CVD mortality among women, we could not suggest the effect of female hormones on the
15 16	490	association.
17 18	491	In conclusion, the association of hsCRP level is dose-responsively increased with the risk of all-cause
19 20	492	mortality in men and women (particularly postmenopausal women), which was not influenced by the association
21 22	493	was not observed in women with NCD _{history} . Otherwise, the association of hsCRP level with the risk of cancer-
23 24	494	and CVD-mortality could be attenuated by gender or NCD _{history} .
25 26	495	
27 28	496	
29 30	497	Contributors
31	498	SAL, XS and DK: designed and conducted the research, SAL and SOK: analyzed the data and performed the
32 33	499	statistical analyses; HP and JKL: managed data mining and collection; SAL: wrote the manuscript and had primary
34 35	500	responsibility for the final content of the manuscript; and all authors: read and approved the final manuscript.
36 37	501	
38 39	502	Funding None.
40 41	503	
42		
43 44	504	Competing interests None declared.
45 46	505	
47		
48 49	506	Patient consent for publication Not required.
50 51	507	
52 53	508	Ethics approval The Institutional Review Board of the Seoul National University Hospital, Seoul, Korea,
54 55	509	approved it for statistical analysis (IRB No. E-1503-103-657).
56 57	510	
58 59	511	Drevenence and near review. Not commissioned, automatic near reviews 4
60	JTT	Provenance and peer review Not commissioned; externally peer reviewed.

1 2			14
3 4	510		
5	512	Data availability statement	
6 7	513	No additional data available.	
8	514		
9 10 11	515		
12 13	516 517	REFERENCES 1Pepys MB, Hirschfield GM. C-reactive protein: a critical update. <i>The Journal of clinical</i>	
14 15	518	investigation 2003;111:1805-12.	
16	519	2 Elias-Smale SE, Kardys I, Oudkerk M, et al. C-reactive protein is related to extent and	
17 18	520	progression of coronary and extra-coronary atherosclerosis; results from the Rotterdam study.	
19 20	521	Atherosclerosis 2007;195:e195-202.	
20	522	3 Koenig W, Khuseyinova N, Baumert J, et al. Prospective study of high-sensitivity C-reactiv	ve
22 23	523	protein as a determinant of mortality: results from the MONICA/KORA Augsburg Cohort Study,	
24	524	1984-1998. Clinical chemistry 2008; 54 :335-42.	
25 26	525	4 Ahmadi-Abhari S, Luben RN, Wareham NJ, et al. Seventeen year risk of all-cause and	
27 20	526	cause-specific mortality associated with C-reactive protein, fibrinogen and leukocyte count in men	
28 29	527	and women: the EPIC-Norfolk study. <i>European journal of epidemiology</i> 2013;28:541-50.	
30 31	528	5 Kuoppamaki M, Salminen M, Vahlberg T, et al. High sensitive C-reactive protein (hsCRP)),
32	529	cardiovascular events and mortality in the aged: a prospective 9-year follow-up study. Archives of	
33 34	530	gerontology and geriatrics 2015;60:112-7.	
35	531	6 Zuo H, Ueland PM, Ulvik A, et al. Plasma Biomarkers of Inflammation, the Kynurenine	
36 37	532	Pathway, and Risks of All-Cause, Cancer, and Cardiovascular Disease Mortality: The Hordaland	
38 39	533	Health Study. American journal of epidemiology 2016;183:249-58.	
40	534	7 Nisa H, Hirata A, Kohno M, <i>et al.</i> High-Sensitivity C-Reactive Protein and Risks of All-	
41 42	535	Cause and Cause-Specific Mortality in a Japanese Population. Asian Pacific journal of cancer	
43	536	prevention : APJCP 2016;17:2643-8.	
44 45	537	8 Li Y, Zhong X, Cheng G, <i>et al.</i> Hs-CRP and all-cause, cardiovascular, and cancer mortality	y
46 47	538	risk: A meta-analysis. Atherosclerosis 2017;259:75-82.	
47 48	539	9 Vasto S, Candore G, Balistreri CR, <i>et al.</i> Inflammatory networks in ageing, age-related	
49 50	540	diseases and longevity. Mechanisms of ageing and development 2007;128:83-91.	
51	541	10 Kelley-Hedgepeth A, Lloyd-Jones DM, Colvin A, <i>et al.</i> Ethnic differences in C-reactive	
52 53	542	protein concentrations. Clinical chemistry 2008;54:1027-37.	
54	543	11 Albert MA, Glynn RJ, Buring J, et al. C-reactive protein levels among women of various	
55 56	544	ethnic groups living in the United States (from the Women's Health Study). The American journal of	f
57 58 59 60	545	<i>cardiology</i> 2004; 93 :1238-42.	

1


2 3									
4	546	12 Khera A, McGuire DK, Murphy SA, <i>et al.</i> Race and gender differences in C-reactive protein							
5 6	547	levels. Journal of the American College of Cardiology 2005;46:464-9.							
7 8 9 10 11 12 13	548	13 Lakoski SG, Cushman M, Criqui M, <i>et al.</i> Gender and C-reactive protein: data from the							
	549	Multiethnic Study of Atherosclerosis (MESA) cohort. American heart journal 2006;152:593-8.							
	550	14 Matthews KA, Sowers MF, Derby CA, <i>et al.</i> Ethnic differences in cardiovascular risk factor							
	551	burden among middle-aged women: Study of Women's Health Across the Nation (SWAN). American							
13 14	552	<i>heart journal</i> 2005; 149 :1066-73.							
15 16 17 18 19	553	15 Lee JH, Yeom H, Kim HC, <i>et al.</i> C-reactive Protein Concentration Is Associated With a							
	554	Higher Risk of Mortality in a Rural Korean Population. Journal of preventive medicine and public							
	555	health = Yebang Uihakhoe chi 2016;49:275-87.							
20	556	16 Sung KC, Ryu S, Chang Y, <i>et al.</i> C-reactive protein and risk of cardiovascular and all-cause							
21 22	557	mortality in 268 803 East Asians. European heart journal 2014;35:1809-16.							
23 24	558	17 Kengne AP, Batty GD, Hamer M, et al. Association of C-reactive protein with							
25	559	cardiovascular disease mortality according to diabetes status: pooled analyses of 25,979 participants							
26 27	560	from four U.K. prospective cohort studies. <i>Diabetes care</i> 2012;35:396-403.							
28	561	18 Heikkila K, Ebrahim S, Lawlor DA. A systematic review of the association between							
29 30	562	circulating concentrations of C reactive protein and cancer. Journal of epidemiology and community							
31 32	563	health 2007; 61 :824-33.							
33	564	19 Dahl M, Vestbo J, Lange P, <i>et al.</i> C-reactive protein as a predictor of prognosis in chronic							
34 35	565	obstructive pulmonary disease. American journal of respiratory and critical care medicine							
36	566	2007;175:250-5.							
37 38	567	20 Wang X, Bao W, Liu J, <i>et al.</i> Inflammatory markers and risk of type 2 diabetes: a systematic							
39 40	568	review and meta-analysis. <i>Diabetes care</i> 2013; 36 :166-75.							
40 41	569	21 Ishii S, Cauley JA, Greendale GA, <i>et al.</i> C-reactive protein, bone strength, and nine-year							
42 43	570	fracture risk: data from the Study of Women's Health Across the Nation (SWAN). Journal of bone							
44	571	and mineral research : the official journal of the American Society for Bone and Mineral Research							
45 46	572	2013; 28 :1688-98.							
47	573	22 Kim Y, Han BG, Ko GESg. Cohort Profile: The Korean Genome and Epidemiology Study							
48 49	574	(KoGES) Consortium. International journal of epidemiology 2017;46:1350.							
50 51	575	23 Shin S, Lee HW, Kim CE, <i>et al.</i> Egg Consumption and Risk of Metabolic Syndrome in							
52	576	Korean Adults: Results from the Health Examinees Study. Nutrients 2017;9.							
53 54	577	24 Pan WH, Yeh WT. How to define obesity? Evidence-based multiple action points for public							
55	578	awareness, screening, and treatment: an extension of Asian-Pacific recommendations. Asia Pacific							
56 57	579	journal of clinical nutrition 2008;17:370-4.							
58 59	580	25 National Cholesterol Education Program Expert Panel on Detection E, Treatment of High							
59 60	581	Blood Cholesterol in A. Third Report of the National Cholesterol Education Program (NCEP) Expert							


Page 17 of 24


BMJ Open

1 2		16
3 4	582	Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment
5 6	583	Panel III) final report. Circulation 2002;106:3143-421.
7	584	26 Heinzl H, Kaider A. Gaining more flexibility in Cox proportional hazards regression models
8 9	585	with cubic spline functions. <i>Computer methods and programs in biomedicine</i> 1997; 54 :201-8.
10 11	586	27 MacGregor AJ, Gallimore JR, Spector TD, <i>et al.</i> Genetic effects on baseline values of C-
12	587	reactive protein and serum amyloid a protein: a comparison of monozygotic and dizygotic twins.
13 14	588	<i>Clinical chemistry</i> 2004; 50 :130-4.
15	589	Ledue TB, Rifai N. Preanalytic and analytic sources of variations in C-reactive protein
16 17	590	measurement: implications for cardiovascular disease risk assessment. Clinical chemistry
18 19	591	2003;49:1258-71.
20	592	29 Emerging Risk Factors C, Kaptoge S, Di Angelantonio E, <i>et al.</i> C-reactive protein
21 22	593	concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-
23	594	analysis. <i>Lancet</i> 2010; 375 :132-40.
24 25	595	30 Lee YJ, Lee JH, Shin YH, et al. Gender difference and determinants of C-reactive protein
26 27	596	level in Korean adults. Clinical chemistry and laboratory medicine 2009;47:863-9.
28	597	31 Doran B, Zhu W, Muennig P. Gender differences in cardiovascular mortality by C-reactive
29 30	598	protein level in the United States: evidence from the National Health and Nutrition Examination
31	599	Survey III. American heart journal 2013;166:45-51.
32 33	600	32 Gaskins AJ, Wilchesky M, Mumford SL, <i>et al.</i> Endogenous reproductive hormones and C-
34 35	601	reactive protein across the menstrual cycle: the BioCycle Study. American journal of epidemiology
36	602	2012;175:423-31.
37 38	603	33 Gilliver SC. Sex steroids as inflammatory regulators. <i>The Journal of steroid biochemistry</i>
39	604	and molecular biology 2010; 120 :105-15.
40 41	605	34 Man SF, Connett JE, Anthonisen NR, <i>et al.</i> C-reactive protein and mortality in mild to
42 43	606	moderate chronic obstructive pulmonary disease. <i>Thorax</i> 2006;61:849-53.
44	607	35 Di Napoli M, Papa F. Angiotensin-converting enzyme inhibitor use is associated with
45 46	608	reduced plasma concentration of C-reactive protein in patients with first-ever ischemic stroke. Stroke
47	609	2003; 34 :2922-9.
48 49	610	36 Sidhu JS, Cowan D, Kaski JC. The effects of rosiglitazone, a peroxisome proliferator-
50	611	activated receptor-gamma agonist, on markers of endothelial cell activation, C-reactive protein, and
51 52	612	fibrinogen levels in non-diabetic coronary artery disease patients. Journal of the American College of
53 54	613	<i>Cardiology</i> 2003; 42 :1757-63.
55	614	37 Heikkila K, Ebrahim S, Rumley A, <i>et al.</i> Associations of circulating C-reactive protein and
56 57	615	interleukin-6 with survival in women with and without cancer: findings from the British Women's
58 59 60	616	Heart and Health Study. Cancer epidemiology, biomarkers & prevention : a publication of the

3		
4 5	617	American Association for Cancer Research, cosponsored by the American Society of Preventive
6	618	<i>Oncology</i> 2007; 16 :1155-9.
7 8	619	38 Marsik C, Kazemi-Shirazi L, Schickbauer T, et al. C-reactive protein and all-cause mortality
9	620	in a large hospital-based cohort. Clinical chemistry 2008;54:343-9.
10 11	621	39 Proctor MJ, McMillan DC, Horgan PG, et al. Systemic inflammation predicts all-cause
12	622	mortality: a glasgow inflammation outcome study. <i>PloS one</i> 2015;10:e0116206.
13 14	623	40 Chen TH, Gona P, Sutherland PA, et al. Long-term C-reactive protein variability and
15 16	624	prediction of metabolic risk. The American journal of medicine 2009;122:53-61.
17 18 19 20 21 22 23 25 26 27 28 20 31 23 34 35 37 39 40 41 23 45 46 47 48 90 51 52 53 55 57 58 90	625	prediction of metabolic risk. <i>The American journal of medicine</i> 2009;122:53-61.

A dose-response association between serum hsCRP level and risk of all-cause mortality by subject. PY: Person-year, E: Number of death, MR: Mortality rate (10 000 person year) aHR: Adjusted for age, gender, education, job, marital status, BMI, non-communicable disease history, smoking, alcohol consumption and exercise Low_A and Upper_A: 95%CI for all subjects

Low_M and Upper_M: 95%CI for men Low_W and Upper_W: 95%CI for women

330x97mm (96 x 96 DPI)

	PY	Е	MR	aHR	HR _{1year}	HR _{2year}
All subjects					- ,	
Continuous	781 035	2229	28.5	1.017 (1.012-1.021)	1.015 (1.010-1.020)	1.014 (1.009-1.019
1.00	539 271	1153	21.4	Reference	Reference	Reference
1.01-1.50	90 911	308	33.9	1.26 (1.10-1.45)	1.27 (1.10-1.45)	1.21 (1.04-1.40)
1.51-2.00	44 615	163	36.5	1.28 (1.08-1.53)	1.28 (1.07-1.53)	1.26 (1.04-1.52)
2.01-2.50	25 139	117	46.5	1.53 (1.25-1.89)	1.51 (1.22-1.87)	1.49 (1.19-1.87)
2.51-3.00	16 996	72	42.4	1.39 (1.08-1.80)	1.31 (1.00-1.72)	1.23 (0.92-1.65)
3.01-4.00	19 667	103	52.4	1.61 (1.29-2.01)	1.62 (1.29-2.03)	1.64 (1.30-2.08)
4.01-6.00	17 933	102	56.9	1.84 (1.48-2.28)	1.77 (1.41-2.21)	1.70 (1.34-2.16)
6.01-10.00	13 019	88	67.6	2.02 (1.59-2.56)	1.96 (1.54-2.50)	1.93 (1.49-2.51)
>10.0	13 484	123	91.2	2.59 (2.12-3.16)	2.41 (1.95-2.97)	2.26 (1.80-2.84)
P-trend				<.001	<.001	<.001
Men						
Continuous	261 321	1365	52.2	1.019 (1.014-1.025)	1.017 (1.011-1.023)	1.017 (1.010-1.023
1.00	163 068	638	39.1	Reference	Reference	Reference
1.01-1.50	36 094	190	52.6	1.27 (1.07-1.51)	1.28 (1.07-1.53)	1.22 (1.01-1.47)
1.51-2.00	17 946	103	57.4	1.34 (1.07-1.67)	1.34 (1.07-1.68)	1.35 (1.06-1.72)
2.01-2.50	10 059	77	76.5	1.56 (1.20-2.03)	1.53 (1.16-2.00)	1.47 (1.10-1.96)
2.51-3.00	6959	54	77.6	1.71 (1.27-2.29)	1.57 (1.15-2.15)	1.46 (1.04-2.05)
3.01-4.00	8177	77	94.2	1.88 (1.45-2.43)	1.94 (1.50-2.52)	1.92 (1.46-2.54)
4.01-6.00	7425	75	101.0	2.05 (1.59-2.63)	1.95 (1.49-2.53)	1.91 (1.44-2.52)
6.01-10.00	5456	59	108.1	2.03 (1.52-2.73)	1.96 (1.44-2.66)	1.85 (1.33-2.58)
>10.0	6137	92	149.9	2.84 (2.25-3.58)	2.66 (2.08-3.39)	2.58 (1.99-3.35)
<i>P</i> -trend	0157	12	149.9	<.001	<.001	<.001
Women						
Continuous	519 714	864	16.6	1.013 (1.004-1.021)	1.011(1.002-1.021)	1.010 (0.999-1.02)
1.00	376 203	515	13.7	Reference	Reference	Reference
1.01-1.50	54 817	118	21.5	1.28 (1.03-1.59)	1.27 (1.02-1.58)	1.23 (0.97-1.56)
1.51-2.00	26 669	60	22.5	1.23 (0.92-1.64)	1.21 (0.90-1.63)	1.14 (0.83-1.56)
2.01-2.50	15 080	40	26.5	1.52 (1.09-2.14)	1.52 (1.08-2.15)	1.56 (1.09-2.24)
2.51-3.00	10 037	18	17.9	0.84 (0.49-1.44)	0.87 (0.51-1.48)	0.83 (0.46-1.47)
3.01-4.00	11 490	26	22.6	1.16 (0.75-1.81)	1.09 (0.68-1.72)	1.21 (0.76-1.93)
4.01-6.00	10 508	20	25.7	1.48 (0.99-2.22)	1.47 (0.97-2.22)	1.36 (0.86-2.14)
6.01-10.00	7563	29	38.3	2.00 (1.34-2.98)	1.98 (1.32-2.98)	2.10 (1.39-3.19)
>10.0	7347	31	42.2	2.02 (1.36-3.02)	1.84 (1.21-2.81)	1.51 (0.93-2.47)
<i>P</i> -trend	/ 54 /	JI	72.2	<.001	<.001	0.001
Premenopause				<.001	<.001	0.001
1.00	141 286	96	6.8			
1.01-2.00	20 500	90 20	0.8 9.8	1.52 (0.92-2.52)	1.49 (0.89-2.50)	1.57 (0.90-2.73)
2.01-3.00			9.8 10.3			
3.01-10.0	5835	6		1.76 (0.77-4.06)	1.83 (0.79-4.22)	1.42 (0.52-3.93)
3.01-10.0 >10.0	6886 1750	6	8.7 22.7	1.51 (0.66-3.50)	1.31 (0.53-3.25) 2.63 (0.83-8.37)	1.21 (0.44-3.36)
	1759	4	22.1	2.57 (0.81-8.14)		2.09 (0.51-8.58)
<i>P</i> -trend				0.020	0.036	0.150
Postmenopause	100 164	200	10.0			
1.00	192 164	366	19.0	1.06 (1.02, 1.55)	1.05 (1.00.1.54)	1 10 (0 07 1 40)
1.01-2.00	52 897	145	27.4	1.26 (1.03-1.55)	1.25 (1.02-1.54)	1.18 (0.95-1.48)
2.01-3.00	16 943	44	26.0	1.11 (0.80-1.56)	1.12 (0.80-1.57)	1.19 (0.83-1.68)
3.01-10.0	19 687	67	34.0	1.49 (1.13-1.97)	1.47 (1.10-1.95)	1.52 (1.13-2.05)
>10.0	4828	27	55.9	2.09 (1.37-3.21)	1.88 (1.19-2.96)	1.56 (0.92-2.63)
P-trend				< 0.001	0.001 ar)	0.003

Supplement 1. The association of serum hsCRP level with the risk of all-cause mortality

aHR: Adjusted for age, gender, education, job, marital status, BMI, non-communicable disease history, smoking, alcohol consumption and exercise

HR_{1year}: aHR after exclude subjects who died within 1 yr f/u time

HR_{2year}: aHR after exclude subjects who died within 2 yr f/u time

<text>

	Healthy subjects at recruitment				ent	Subjects with NCD _{history} at recruitment				
	E	MR	aHR	HR _{1year}	HR _{2year}	Е	MR	aHR	HR _{1year}	HR _{2yea}
All										
1.00	517	15.1	Ref	Ref	Ref	636	32.3	Ref	Ref	Re
1.01-2.00	145	22.9	1.20	1.19	1.16	326	45.1	1.20	1.19	1.10
2.01-3.00	53	29.3	1.38	1.37	1.32	136	56.6	1.51	1.46	1.41
3.01-10.0	102	46.8	2.22	2.15	2.15	191	66.3	1.62	1.60	1.58
>10.0	40	61.3	2.38	2.23	2.27	83	118.9	2.74	2.54	2.29
P-trend			<.001	<.001	<.001			<.001	<.001	<.00
Men										
1.00	270	29.5	Ref	Ref	Ref	368	51.4	Ref	Ref	Re
1.01-2.00	89	35.8	1.11	1.11	1.13	204	70.0	1.40	1.41	1.33
2.01-3.00	33	46.3	1.22	1.17	1.15	98	99.0	1.82	1.73	1.61
3.01-10.0	70	76.8	2.14	2.08	2.03	141	118.1	1.92	1.90	1.83
>10.0	31	110.0	2.60	2.49	2.73	61	183.1	3.05	2.83	2.58
P-trend			<.001	<.001	<.001			<.001	<.001	<.001
Women										
1.00	247	9.8	Ref	Ref	Ref	268	21.4	Ref	Ref	Re
1.01-2.00	56	14.6	1.35	1.32	1.20	122	28.3	1.19	1.20	1.19
2.01-3.00	20	18.2	1.61	1.66	1.60	38	26.9	1.06	1.06	1.1
3.01-10.0	32	25.2	2.31	2.23	2.37	50	29.7	1.16	1.14	1.17
>10.0	9	24.3	1.69	1.49	1.12	22	60.3	2.15	1.99	1.68
P-trend			<.001	<.001	0.001			0.018	0.043	0.08

Supplement 2. The association between serum hsCRP level and all-cause mortality by gender and noncommunicable disease history (NCD_{*history*}) at recruitment

E: Number of death, MR: Mortality rate (10 000 person year)

aHR: Adjusted for age, gender, education, job, marital status, BMI, non-communicable disease history, smoking, alcohol consumption and exercise

 HR_{1year} : aHR after exclude subjects who died within 1 yr f/u time

HR_{2year}: aHR after exclude subjects who died within 2 yr f/u time

Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	1-2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any pre-specified hypotheses	3
Methods			
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4-5
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants 	4
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	-
Variables 7		Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5
Data sources/ measurement 8		For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	.0 Explain how the study size was arrived at	
Quantitative variables 11		Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	5-6
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	5-6
		(b) Describe any methods used to examine subgroups and interactions	5-6
		(c) Explain how missing data were addressed	4
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed	4

CTRORE 2007 (...4) she shills a fit stienel studies in enidemieles.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

		Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	6
Results	·		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	4
		(b) Give reasons for non-participation at each stage	4
		(c) Consider use of a flow diagram	4
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	6-7
		(b) Indicate number of participants with missing data for each variable of interest	4
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	6
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	6-10
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	6-10
		(b) Report category boundaries when continuous variables were categorized	5
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	8
Discussion	·	•	
Key results	18	Summarise key results with reference to study objectives	11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	11-12
Generalisability	21	Discuss the generalisability (external validity) of the study results	11-12
Other information	·	·	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	13

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. **Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

The association of serum high sensitivity C-reactive protein with the risk of mortality in Asian: the Health Examinees cohort

Journal:	BMJ Open				
Manuscript ID	bmjopen-2021-052630.R1				
Article Type:	Original research				
Date Submitted by the Author:	27-Oct-2021				
Complete List of Authors:	Lee, Sang-Ah; Kangwon National University School of Medicine, Preventive Medicine; Vanderbilt University Medical Center Kwon, Sung Ok; Kangwon National University School of Medicine, Preventive Medicine Park, Hyerim; Kangwon National University School of Medicine, Preventive Medicine Shu, Xiao-Ou ; Vanderbilt University Medical Center Lee, Jong-Koo; JW LEE Center for Global Medicine Kang, Daehee; Seoul National University College of Medicine, Preventive Medicine				
Primary Subject Heading :	Epidemiology				
Secondary Subject Heading:	Epidemiology, Cardiovascular medicine				
Keywords:	PREVENTIVE MEDICINE, EPIDEMIOLOGY, Cardiac Epidemiology < CARDIOLOGY				

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		1
3 4	100	
5	196	The association of serum high sensitivity C-reactive protein with the risk of mortality in
6 7	197	Asian: the Health Examinees cohort
8	198	
9 10	199	
10 11	200	Sang-Ah Lee ^{1,2 *} , Sung Ok Kwon ¹ , Hyerim Park ¹ , Xiao-Ou Shu ² , Jong-Koo Lee ³ , Daehee Kang ⁴
12	201	
13 14	202	
15	203	¹ Department of Preventive Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic
16 17	204	of Korea.
18	205	² Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville,
19 20	206	TN, USA.
20 21	207	³ JW Lee Center for Global Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea.
22	208	⁴ Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea.
23 24	209	
25	210	
26 27	211	ABSTRACT
27	212	Objectives This study aimed to examine the association of <i>hs</i> CRP with mortality risk and the attenuated effect
29	213	of non-communicable disease history (NCD _{history}) on the association.
30 31	214	Design Prospective cohort study.
32	215	Setting the Health Examinees (HEXA) cohort.
33 34	216	Participants A total of 41 070 men and 81 011 women aged ≥40 years were involved (follow-up: 6.8 years).
35	217	Outcome measures The data and cause of death occurring until December 31, 2015, were confirmed by death
36 37	218	statistics from the National Statistical Office. We conducted the advanced analysis after stratification by
38	219	NCD _{history} and the sensitivity analysis after excluding death before 1 or 2 years from recruitment. Cox
39 40	220	proportional hazard and restricted cubic spline models were used to assess the association.
40 41	221	Results The association between serum <i>hs</i> CRP and the risk of all-cause mortality was observed with strong
42	222	linearity in both genders, which was not influenced by NCD _{history} . Otherwise, the association of serum hsCRP
43 44	223	with cancer-mortality risk was not observed in women with NCD _{history} , but the association with the risk of
45	224	cardiovascular disease (CVD) mortality was predominantly observed in men with NCD _{history} .
46 47	225	Conclusions This study suggested the dose-response association of <i>hs</i> CRP with mortality risk, including
48	226	cancer and CVD mortality, in Korean with low serum hsCRP, although the association with cancer and CVD-
49 50	227	mortality risk could be influenced by gender and NCD _{history} .
51	228	
52	229	
53 54	230	Strengths and limitations of this study
55 56	231	• This is the large population-based prospective study.
57 58 59	232	• We examined the effect of very high <i>hs</i> CRP concentration on mortality risk.
60	233	• The <i>hs</i> CRP level of present study was measured within 18 hours in a single institution to minimize error/bias.

2 3		
4 5	234	• Due to random fluctuations of hs CRP, using the single measurement of hs CRP at baseline could reflect the
6 7	235	inaccurate status of blood hsCRP levels in the study participants and increase the instability of hsCRP.
, 8 9	236	· This study lacked information on medication use at recruitment and during the follow-up period, and
10	237	information on hormone-replacement therapy (HRT) among women.
11 12	238	
13	239	
14 15	240	*Correspondence to: Sang-Ah Lee, Ph.D.
16	241	Department of Preventive Medicine, School of Medicine, Kangwon National University,
17 18	242	Chuncheon, Gangwon, Republic of Korea.
18 19	243	Tel: +82 33 250 8871
20	244	E-mail: sangahlee@kangwon.ac.kr
21 22	245	
23 24	246	E-mail: sangahlee@kangwon.ac.kr
25 26	247	
27 28	248	
29 30	249	
31 32	250	
33 34	251	
35 36	252	
37	253	
38 39	254	
40 41	255	
42 43	256	
44 45	257	
46 47	258	
48 49	259	
50 51	260	
52 53	261	
54 55	262	
56 57	263	
58 59	264	
60	265	

266 INTRODUCTION

High sensitivity C-reactive protein (hsCRP) is an acute-phase response protein synthesized by the liver and the most sensitive and dynamic marker of inflammation[1]. Since hsCRP has been reported as a candidate marker for generalized atherosclerosis and cardiovascular disease (CVD)[2], many studies[3-7] have investigated the role of hsCRP levels as a predictor of mortality risk. A recent meta-analysis[8] reported the predictable role of serum hsCRP on all-cause and CVD mortality in the general population. Nevertheless, it is controversial whether the predictable role of hsCRP could be applied to the risk of mortality in Asians, whose hsCRP levels are lower than those in individuals in Western countries.

Serum *hs*CRP represents a low-grade inflammation state that is generally involved in the process of aging[9]. Several large cohorts, including Study of Women's Health Across the Nation (SWAN)[10], the Women's Health Study[11] and the Dallas Heart Study[12], reported significant differences in hsCRP levels by race and gender. In two studies of multiethnic populations residing in the USA[10, 13], the median hsCRP level in East Asians was less than half the concentration in Caucasians. Even among East Asian populations, the geometric mean of hsCRP levels varied depending on ethnic background[14]. In addition, a meta-analysis[11] reported the hsCRP levels among women of various ethnic groups living in the United States (from the Women's Health Study) on the association between hsCRP and the mortality risk; the association was observed in only men supported by the results from two cohort studies [15, 16] reported in Korea. On the other hand, the increased hsCRP may be influenced by comorbidity itself because inflammation has emerged as an important factor in the progression of non-communicable diseases (NCDs), including CVD[17], cancer[18], chronic obstructive pulmonary disease (COPD)[19], type 2 diabetes[20] and fractures[21], which contribute to increased morbidity and mortality.

This study aimed to examine the association of serum hsCRP with the risk of mortality in Koreans with low serum hsCRP and to evaluate the attenuated effect of non-communicable disease history (NCD_{history}) on the association.

METHODS

Study population

Details on the main objectives, rationale, study design and baseline characteristics of the Health Examinees (HEXA) study have been published elsewhere[22]. Considering the homogeneity and comparability of participants, we created a qualified dataset called HEXA-G (Health Examinees-Gem) from previously published HEXA studies[23]. In the new HEXA-G data, a total of 141 968 participants remained after the exclusion of withdrawers (n=12). In addition, 19 887 were excluded due to missing information (n=19 876) or small sample size (n=11) on any hsCRP components at the baseline survey. Ultimately, 122 081 subjects, including 41 070 men and 81 011 women, remained in the final analysis (Fig. 1). All study participants provided informed consent prior to entering the study. The Institutional Review Board of the Seoul National University Hospital, Seoul, Korea, approved it for statistical analysis (IRB No. E-1503-103-657).

Laboratory measurements

After at least 10 hours of overnight fasting, blood samples were obtained in the morning. Bio-specimens included fasting blood samples that were collected in a serum separator tube and two ethylenediaminetetraacetic acid (EDTA) tubes. All samples were then transported to the National Biobank of Korea and stored for future research purposes within 18 hours. hsCRP was measured using a turbidimetric immunoassay (ADVIA 1650 and ADVIA 1800; Siemens Healthineers).

Follow-up and ascertainment of mortality

All-cause mortality was confirmed by death statistics from the National Statistical Office, which provided the data and causes of all deaths occurring through December 31, 2015. We added the mortality data from Statistics Korea to our dataset using each participant's unique identifier. Information on death and causes of death was obtained from a record link with the national death certificate files in Korea. The main outcome of interest was all-cause mortality (defined as death from any cause), including cancers and CVD mortality. The cause of death was classified according to the International Classification of Diseases, 10th revision (ICD-10). Deaths were coded as C00-C97 for cancer and I00-I99 for CVD.

323 Baseline variables

Trained interviewers collected information on demographic, socioeconomic and lifestyle factors. Anthropometric measurements were obtained using standardized methods. Body mass index (BMI) was calculated, and all participants were defined into four classes based on the World Health Organization classification of BMI for Asian adults[24]: underweight (BMI <18.5 kg/m²), normal (18.5 BMI <23.0 kg/m²), overweight (23.0 \leq BMI <25.0 kg/m²), obesity (25.0 \leq BMI <29.9 kg/m²), and severe obesity (BMI \geq 30.0 kg/m²). The current study defined metabolic syndrome using the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III)[25], modified for the Asian guideline for waist circumference (WC ≥90 and \geq 80 cm for men and women, respectively). Nonsmokers were defined as those who had smoked less than 400 cigarettes over the course of their lifetime. Participants who had smoked were categorized into two groups: noncurrent (never/former) and current smoker. Noncurrent drinkers were defined as those who had never consumed an alcoholic drink over the course of their lifetime or those who had not consumed alcohol at recruitment, while current drinkers were defined as those who persisted in consuming alcohol. Regular exercise was classified into two groups (ves/no) as follows: "Do you currently engage in regular exercise strenuous enough to cause you to break into a sweat at least once per week?" Furthermore, considering the attenuated effect of the NCD_{history} on the association between serum hsCRP and the risk of mortality, we performed advanced analysis after stratification by NCD_{history}. We considered six main non-communicable diseases (hypertension, diabetes, hyperlipidemia, cancer, cardiovascular and cerebrovascular diseases, and respiratory disease) to classify healthy subjects vs. subjects with NCD_{history}.

¹⁰ 342

343 Statistical analysis

For the categorical analysis, we created nine categories based on the distribution of *hs*CRP levels in our population: ≤ 1.00 (reference group), 1.01-1.50, 1.51-2.00, 2.01-2.50, 2.51-3.00, 3.01-4.00, 4.01-6.00, 6.01-10.0, and ≥ 10.0 mg/L. For the advanced analysis after stratification by the NCD_{*history*}, the *hs*CRP levels were categorized as ≤ 1.00 , 1.01-2.00, 2.01-3.00, 3.01-10.0, and ≥ 10.0 mg/L because of the reduced sample size in each subgroup. The concentrations of *hs*CRP were log-transformed for analyses because of the skewed distribution.

We calculated a follow-up time for each subject starting from the date of interview until the date of death or
 We calculated a follow-up time for each subject starting from the date of interview until the date of death or
 December 31, 2015, whichever came first. Using age as the time scale, subjects enter the risk set at the age at
 which they completed the baseline questionnaire and exit at their event/censoring age. The associations of

BMJ Open

2 3		U
5 4 5	353	hsCRP and all-cause mortality, as well as cancer and CVD mortality, were analyzed by Cox proportional hazard
6 7	354	models (aHR) and included adjustment for age, gender, demographic factors (education, marital status, job, BMI
, 8 9	355	and NCD _{history}), and lifestyle factors (smoking, alcohol consumption and exercise). We used Wald tests to test
10	356	for heterogeneity of risk between serum hsCRP level groups. The proportional hazards assumption was assessed
11 12	357	on the basis of Schoenfeld residuals, and was not violated for the variables of interest in the adjusted model for
13 14	358	either cancer-mortality or cardiovascular disease mortality (P>0.05 for all categories). In addition, we conducted
15 16	359	a sensitivity analysis to avoid latent period bias after excluding death before 1 year (aHR _{1year}) or 2 years
17 18	360	(aHR _{2year}) since recruitment. Based on the Cox proportional hazard models, we made Kaplan-Meier curves and
19 20	361	log-rank analysis. We employed restricted cubic splines (RCSs) to evaluate the possibility of complex (i.e.,
21 22	362	nonlinear) hazard functions[26] using continuous values of hsCRP (aHR _{continuous}). We selected five hsCRP
23 24	363	concentration values as knots based on hsCRP concentration percentiles, tested the linear and nonlinear associa-
25 26	364	tions between knots using a cubic function, and presented the integrated graph smoothly. All statistical analyses
27 28 29 30 31 32	365	were performed using SAS version 9.3 (SAS Institute Inc., Cary, NC, USA) and RCS analysis was carried out
	366	using the SAS LGTPHCURV9 macro. Two-sided <i>p</i> -values < 0.05 were defined as indicating statistical
	367	significance.
33 34	368	significance. Patient and public involvement
35 36	369	Patient and public involvement
37	370	No patients and public were involved in the design, conducting, reporting, and dissemination plans of the present
38 39	371	study.
40 41	372	
42 43	373	PESIII TS
44 45	374	RESULTS
46 47 48	375	The association of demographic and lifestyle factors with the risk of all-cause mortality is presented in Table
49	376	1. During the follow-up period (average 6.8 years), 1 365 men and 864 women died. The median levels of
50 51	377	hsCRP were 0.77 and 0.59 mg/L for men and women, respectively. The risk of all-cause mortality was inversely
52 53	378	associated with female gender (aHR=0.38), high educated (aHR=0.65), overweight (aHR=0.81) or obesity
54 55	379	(aHR=0.83), current alcohol consumption (aHR=0.81) and regular exercise (aHR=0.83), but was positively
56 57	380	associated with single marital status (aHR=1.23), NCD _{history} (aHR=1.57), underweight (aHR=2.05) and current
58 59	381	smoking (aHR=1.97).

		All	Death	All-cause m	ortality
		(<i>n</i> =122 081)	(<i>n</i> =2229)	Age,gender adjusted	adj HR ^a
	Age	53.1 ± 8.3	59.7 ± 8.8		
	Female	66.4	38.8	0.40 (0.36-0.43)	0.38 (0.33-0.44)
	Education (≥10 year, %)	68.2	55.4	0.67 (0.60-0.75)	0.65 (0.56-0.75)
	Blue-colored worker ^b (%)	32.3	33.8	1.46 (1.26-1.68)	1.16 (0.99-1.35)
	Marital status (single, %)	11.0	13.3	1.35 (1.19-1.54)	1.23 (1.07-1.40)
	NCD _{history} (yes, %)	32.4	53.6	1.51 (1.39-1.65)	1.57 (1.42-1.72)
	Hypertension	18.9	31.5	1.18 (1.08-1.30)	1.22 (1.11-1.35
	Diabete	6.5	17.1	1.81 (1.62-2.03)	1.77 (1.57-2.00)
	Hyperlipidemia	9.2	7.6	0.73 (0.62-0.86)	0.78 (0.66-0.92
	Cancer	3.2	8.8	2.69 (2.31-3.12)	2.66 (2.27-3.11)
	Cerebral & cardiovascular disease	3.7	10.2	1.50 (1.30-1.73)	1.43 (1.23-1.66
	Respiratory disease	2.4	4.3	1.37 (1.12-1.68)	1.32 (1.06-1.64
	Body mass index (%)			× ,	× .
	<18.5	1.8	3.7	2.14 (1.69-2.69)	2.05 (1.61-2.62
	18.5-22.9	38.1	34.9	1.00 (ref.)	1.00 (ref.)
	23.0-24.9	27.8	26.0	0.82 (0.73-0.91)	0.81 (0.72-0.91
	25.0-29.9	29.5	32.5	0.90 (0.81-1.00)	0.83 (0.74-0.93
	\geq 30.0	2.8	2.9	1.08 (0.83-1.39)	0.81 (0.61-1.08
	P-trend			0.0118	<.0001
	Metabolic syndrome (yes, %)	22.0	28.4	1.13 (1.03-1.24)	1.07 (0.96-1.19
	Current smoker (%)	11.7	22.7	2.04 (1.79-2.33)	1.97 (1.71-2.27
	Current drinker (%)	44.0	43.8	0.86 (0.77-0.95)	0.81 (0.73-0.91
383 384 385 386	Regular exercise (yes, %)	53.4	49.1	0.76 (0.70-0.83)	0.83 (0.76-0.91
	Regular exercise (yes, %) NCD _{history:} Non-communicable diseas ^a Adjusted for age, gender, education, ^b Compared to white-colored worker	e history			`
387					
388					
389					
390					
391					
392					
393					

Table 1 Baseline characteristics of participants by all-cause mortality

The risk of all-cause mortality was inclined with a dose-dependent pattern as increased serum hsCRP level (Ptrend<0.001, Supplement 1), regardless of gender (Ptrend<0.001 in both genders), even in the sensitivity analysis $(P_{trend} < 0.001 \text{ for aHR}_{1\text{ver}} \text{ in both genders})$. The increased risk of female mortality with increased hsCRP levels was observed in both premenopausal ($P_{trend}=0.020$) and postmenopausal women ($P_{trend} < 0.001$), although the statistical significance in premenopausal women disappeared after sensitivity analysis (P_{trend} =0.150 for aHR_{2year}, Supplement 1). The integrated graph, based on the restricted cubic spline analyses, indicated a strong and linear association of serum hsCRP level with all-cause mortality in both genders (aHR_{continuous}=1.019 and 1.013 in men and women, respectively, Fig. 2).

The dose-response association between hsCRP level and the risk of all-cause mortality was not influenced by NCD_{history} (Supplement 2). After stratification by gender, however, the attenuated effect by NCD_{history} on the association was observed only in women; the linearity of the relationship was observed in healthy women $(P_{trend}=0.001 \text{ for aHR}_{2\text{vear}})$ but disappeared in women with NCD_{history}, particularly after sensitivity analysis with the exclusion of a 2-year follow-up time ($P_{trend}=0.084$ for aHR_{2vear}). Based on the restricted cubic spline analyses, otherwise, the pattern of increase in the association was different depending on the NCD_{history} (Fig. 3.4). In the healthy subjects, the risk of all-cause mortality was increased with a gradual slope (strength) until 3.0 mg/L hsCRP, with a very steep slope until 4.5 mg/L and finally with a reduced and flattened slope after 4.5 mg/L (Fig. 3). On the other hand, the slope of the association fluctuated as the hsCRP level increased in the subjects with NCD_{history}; the slope increased up to 3.0 mg/L hsCRP but decreased until 4.5 mg/L and rapidly increased after 4.5 mg/L (Fig. 4).

The association of serum hsCRP with the risk of cancer-mortality was not influenced by NCD_{history} (Ptrend<0.001 regardless of NCDhistory) (Table 2 and Fig. 5-9). Otherwise, after stratification by gender, the association was not observed in women with NCD_{history} ($P_{trend} = 0.856$); however, the association was not influenced by NCD_{history} in men (P_{trend}<0.001 and 0.002 for aHR in both healthy and NCD_{history}) (Table 2). Although the risk of CVD mortality was linearly associated with increasing hsCRP levels, the association was dominant in men (Ptrend=0.002) and in subjects with NCDhistory (Ptrend=0.001, Table 3) after stratified by gender and NCD_{history}, respectively (Fig. 10-14). After stratification by gender and NCD_{history}, otherwise, the association only appeared in individuals of both genders with NCD_{history} (P_{trend}=0.015 and 0.035 in men and women with NCD_{history}, respectively); no association between hsCRP level and CVD mortality risk was found in either healthy men or women.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Cancer-mortality					Healthy subjects at recruitment				Subjects with NCD _{history} at recruitment					
	E	MR	aHR	HR _{1year}	HR _{2year}	E	MR	aHR	HR _{1year}	HR _{2year}	 Е	MR	aHR	HR_{1year}	HR _{2year}
Total															
≤1.00	590	10.9	Ref	Ref	Ref	270	7.9	Ref	Ref	Ref	320	16.3	Ref	Ref	Ret
1.01-2.00	232	17.1	1.25	1.23	1.17	85	13.4	1.43	1.40	1.31	147	20.3	1.19	1.13	1.09
2.01-3.00	86	20.4	1.32	1.24	1.19	29	16.0	1.38	1.34	1.35	57	23.7	1.35	1.18	1.10
3.01-10.0	149	29.4	1.83	1.76	1.72	54	24.8	2.22	2.07	2.01	95	33.0	1.75	1.59	1.55
>10.0	66	48.9	2.69	2.28	1.96	20	30.6	1.85	1.59	1.57	46	65.9	3.25	2.64	2.16
P-trend			<.001	<.001	<.001			<.001	<.001	<.001			<.001	<.001	<.001
Men						2									
≤1.00	302	18.5	Ref	Ref	Ref	169	23.6	Ref	Ref	Ref	133	14.5	Ref	Ref	Ret
1.01-2.00	144	26.6	1.36	1.36	1.32	95	32.6	1.40	1.38	1.34	49	19.7	1.31	1.34	1.31
2.01-3.00	59	34.7	1.45	1.31	1.19	40	40.4	1.54	1.37	1.16	19	26.7	1.29	1.22	1.26
3.01-10.0	111	52.7	2.17	2.10	2.00	77	64.5	2.26	2.24	2.12	34	37.3	1.98	1.80	1.70
>10.0	50	82.9	3.13	2.66	2.34	38	114.1	4.07	3.42	2.79	13	46.1	1.58	1.40	1.56
P-trend			<.001	<.001	<.001			<.001	<.001	<.001			0.002	0.009	0.015
Women										O,					
≤1.00	288	7.7	Ref	Ref	Ref	137	5.5	Ref	Ref	Ref	151	12.1	Ref	Ref	Re
1.01-2.00	88	10.8	1.13	1.08	0.99	36	9.4	1.60	1.48	1.31	52	12.1	0.86	0.86	0.81
2.01-3.00	27	10.7	1.16	1.17	1.2	10	9.1	1.48	1.50	1.47	17	12.0	0.96	0.98	1.03
3.01-10.0	38	12.9	1.31	1.24	1.29	20	15.8	2.58	2.48	2.57	18	10.7	0.75	0.71	0.74
>10.0	15	20.4	1.89	1.61	1.28	7	18.9	2.16	1.75	1.42	8	21.9	1.66	1.47	1.17
P-trend			0.019	0.074	0.161			<.001	0.001	0.002			0.856	0.635	0.538

E: Number of death, MR: Mortality rate (10 000 person year), Ref: Reference

aHR: Adjusted for age, gender, education, job, marital status, BMI, non-communicable disease history, smoking, alcohol consumption and exercise

HR_{1year}: aHR after exclude subjects who died within 1 yr f/u time

 HR_{2year}: aHR after exclude subjects who died within 2 yr f/u time

Total

≤1.00

1.01-2.00

2.01-3.00

3.01-10.0

>10.0

Men

≤1.00

1.01-2.00

2.01-3.00

3.01-10.0

>10.0

P-trend

Women

1.01-2.00

2.01-3.00

3.01-10.0

>10.0

P-trend

≤1.00

P-trend

1

6

7 8

9

10 11

12

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29

30

31

32

33

34

35

36

44 45 46

BMJ Open

Cardiovascular disease mortality					Healthy subjects at recruitment					Subjects with NCD _{history} at recruitment				
Е	MR	aHR	HR_{1year}	HR _{2year}	E	MR	aHR	HR_{1year}	HR _{2year}	E	MR	aHR	HR_{1year}	HR _{2year}
67	3.1	Ref	Ref	Ref	58	1.7	Ref	Ref	Ref	109	5.5	Ref	Ref	Ref
79	5.8	1.35	1.37	1.23	18	2.8	1.19	1.15	0.94	64	8.4	1.42	1.46	1.36
42	10.0	2.06	2.05	2.02	6	3.3	1.47	1.54	1.46	36	15.0	2.28	2.25	2.26
39	7.7	1.45	1.38	1.44	8	3.7	1.44	1.50	1.70	31	1.08	1.48	1.37	1.40
13	9.6	1.81	1.76	1.59	3	4.6	2.02	2.10	1.58	10	14.3	1.85	1.74	1.68
		0.001	0.002	0.004			0.130	0.100	0.162			0.001	0.006	0.009
					20									
89	5.5	Ref	Ref	Ref	25	2.7	Ref	Ref	Ref	64	8.9	Ref	Ref	Ref
45	8.3	1.33	1.32	1.25	12	4.8	1.30	1.22	1.22	33	11.3	1.31	1.33	1.33
30	17.6	2.70	2.67	2.53	3	4.2	1.31	1.37	1.37	27	27.3	3.05	2.99	2.99
24	11.4	1.43	1.36	1.46	6	6.6	1.70	1.79	1.79	18	15.1	1.42	1.21	1.21
8	13.0	1.90	2.02	1.70	3	10.6	3.42	3.61	3.61	5	15.0	1.59	1.62	1.62
		0.002	0.003	0.009			0.053	0.038	0.062			0.015	0.027	0.047
78	2.1	Ref	Ref	Ref	33	1.3	Ref	Ref	Ref	45	6.3	Ref	Ref	Ref
34	4.2	1.41	1.46	1.25	6	1.6	1.09	1.13	0.62	28	9.6	1.60	1.66	1.58

Table 3. The association between serum hsCRP level and cardiovascular disease mortality by gender and non-communicable disease history (NCD _{history}) at recruit	itment
---	--------

E: Number of death, MR: Mortality rate (10 000 person year), Ref: Reference

1.26

1.51

1.72

0.092

1.30

1.45

1.35

0.177

1.44

1.44

1.45

0.168

aHR: Adjusted for age, gender, education, job, marital status, BMI, non-communicable disease history, smoking, alcohol consumption and exercise

3

2

0

2.7

1.6

1.65

1.06

0.940

_

1.70

1.07

0.998

1.86

1.14

0.922

9

13

5

9.1

10.9

15.0

1.17

1.75

2.51

0.035

1.20

1.64

1.91

0.092

1.39

1.65

2.07

0.078

HR_{1vear}: aHR after exclude subjects who died within 1 yr f/u time

167

79

42

39

13

89

45

30

24

78

34

12

15

5

4.8

5.1

6.8

HR_{2vear}: aHR after exclude subjects who died within 2 yr f/u time

DISCUSSION

This study suggests that the risk of all-cause mortality was associated with elevated hsCRP levels with a dose-response manner in both gender among Asian who have reported low hsCRP levels compared to other races, and was not influenced by NCD_{*history*}. Otherwise, the association was influenced by gender and NCD_{*history*} although a dose-response association of hsCRP with the risk of cancer- and CVD-mortality was also observed in this population. The level of hsCRP was not associated with the risk of cancer- mortality among women with NCD_{*history*}. The risk effect of high hsCRP level on CVD mortality was predominantly observed in men with NCD_{*history*}.

Several large cohorts [10-12, 14] have suggested that serum hsCRP levels may differ according to ethnic background, with the highest concentrations seen in African Americans, followed by Hispanic, White, Chinese and Japanese individuals. Although the reason for this ethnic difference is not clearly resolved, genetic diversity[27], the relatively low BMI in Asian populations and ethnic differences in diet and lifestyle[28] have been suggested. Although the extent to which these findings adopt to Asian populations has been unclear, several recent studies [11, 16] conducted in Asia reported a positive association of *hs*CRP with mortality risk. In this population, the hsCRP level was associated with the risk of all-cause mortality in a dose-dependent manner, even though the level of hsCRP was lower than that in the western population. A meta-analysis[29] and large cohort studies[3-6] supported the robustness of the association regardless of adjusted confounders, the cut-off point of CRP level and exclusion deaths within the first 2 years of follow-up. The reason for the discrepancy in *hs*CRP levels with respect to gender is not clearly resolved, although several studies suggested different lifestyle and metabolic risk factors between men and women[30] and genetic diversity[27]. A high level of serum hsCRP in our population was positively related to the increased risk of all-cause mortality in both genders, supported by several previous studies[8, 16, 31]. Nevertheless, several studies reported no association of hsCRP levels with all-cause mortality was observed in women[7, 16]. In particular, the association was shown in postmenopausal women only, which might suggest the protective effect of endogenous female hormones on the low level of hsCRP[32]; the average hsCRP level was 0.48 and 0.68 mg/L

2 449 for premenopausal and postmenopausal women in this study. The protective effect could be supported by the

4 450 proposition that estrogen or progesterone might to some extent repress the detrimental effects of chronic

⁵ 451 inflammation on tissue damage[33].

452 Inflammation has emerged as an important factor in the processes of NCD, including CVD[17], cancer[18],

453 type 2 diabetes[20], COPD[19, 34] and fracture[21]. In addition, medications that had taken to treat any specific

BMJ Open

NCD, such as rennin-angiotensin system inhibitors[35] and statins and thiazolidinedione[36], could influence the level of hsCRP. The association between hsCRP and the mortality risk was not attenuated by NCD_{history} in either gender in this study, but the statistical significance of the association disappeared in women after sensitivity analysis (aHR_{2vear}). A dose-response relationship between hsCRP level and all-cause mortality risk was pronounced in both genders. On the other hand, the positive association of hsCRP with the risk of all-cause mortality risk was significantly observed in only men with NCD_{history} but not in women with NCD_{history}. The attenuated effect of NCD_{history} on the association between hsCRP and the risk of cancer-mortality was not observed in men, consistent with results from several studies which reported the associations among healthy men[3] or cancer patients[37, 38] only. Most studies[3, 4, 6, 7, 15, 16, 31, 39] supported that CVD mortality increased with elevated hsCRP levels, predominantly in men[4, 7, 15, 16]. Although hsCRP levels are lower in our population than in other races, the level of hsCRP was positively associated with CVD mortality in men but not in women, similar to previous studies[7, 15, 16, 31, 39]. After stratification by gender and NCD_{history}, the association between hsCRP and the risk of CVD mortality was dominant in subjects with NCD_{history} in this study. Although many interventional studies have been conducted recently on anti-inflammatory drugs for the prevention of cardiovascular disease, the results are controversial. According to the results of our study, elevated inflammatory markers in people with chronic disease were associated with an increased risk of CVD mortality. This suggests that CVD-mortality in people with chronic diseases might be reduced by use of anti-inflammatory medication. This study has several strengths because of the large population-based prospective study; it makes possible 1) to adjust for confounders; 2) to examine sensitivity analysis after excluding death before 1 or 2 years from recruitment; 3) to assess an advanced analysis after stratification by gender and NCD_{history}; 4) to examine the association using various cut-off points of hsCRP considering low serum hsCRP levels in Asian populations; and 5) to evaluate the complex (i.e., nonlinear) hazard functions using restricted cubic splines on the association between continuous hsCRP levels and the risk of mortality. In particular, most previous studies excluded subjects with more than 10 mg/L hsCRP because of their relatively low sample size or reflecting acute phase reactions of severe inflammation, but we examined the effect of very high hsCRP concentration on the risk of mortality because it is possible to be more concerning for these subjects in the future. The hsCRP level of this study, in addition, was measured within 18 hours in a single institution to minimize measurement error/bias from institutional variation to avoid bias from measurement or long-term storage before analysis.

2		
3		
4 5	483	Despite of those strengths, it is also several limitations. First, the use of a single measurement of <i>hs</i> CRP at
6 7	484	baseline could reflect the inaccurate status of blood hsCRP levels in the study participants and increase the
8 9	485	instability of hsCRP due to random fluctuations over time. Nevertheless, a report [40] on the long-term hsCRP
10	486	variability suggested that the hsCRP variability within individual is relatively small and that the variability
11 12	487	could not account for the association. Second, our study lacked information on medication use at recruitment
13 14	488	and during the follow-up period. Several medications related to NCDs, including statins, angiotensin-converting
15 16	489	enzyme inhibitors, fibrates, niacin, thiazolidinedione and estrogen/progestogen hormone, could influence the
17 18	490	hsCRP level[37]; however, we tried to overcome this limitation through advanced analysis after stratification by
19 20	491	NCD _{history} . Third, because there is no available information on hormone-replacement therapy (HRT) among
21 22	492	women, which could not examine the influence of HRT on the association of hsCRP with the risk of hormone-
23 24	493	related cancer or CVD mortality among women, we could not suggest the effect of female hormones on the
25 26	494	association. In addition, further studies are needed on the effects of obesity although the inverse relationship
27 28	495	between all-cause mortality with obesity in our population was consistent to Wei's report in Asian[41]. On the
29 30	496	other hand, the inverse association of alcohol drinking with all-cause mortality couldn't interpret directly
31 32	497	because our report wasn't separated the distinguish between mild drinkers and abuse alcohol drinker, which
33 34	498	requires additional research for our population in the future.
35	499	In conclusion, the association of hsCRP level is dose-responsively increased with the risk of all-cause
36 37	500	mortality in men and women (particularly postmenopausal women), which was not influenced by the association
38 39	501	was not observed in women with NCD _{history} . Otherwise, the association of hsCRP level with the risk of cancer-
40 41	502	and CVD-mortality could be attenuated by gender or NCD _{history} .
42 43	503	
44 45	504	
46 47	505	Figure 1 Flow diagram of analytical sample in current study using Health Examinees cohort.
48 49	506	Figure 2 A dose-response association between serum <i>hs</i> CRP level and risk of all-cause mortality in all
50 51	507	subjects at recruitment.
52 53	508	Figure 3 A dose-response association between serum <i>hs</i> CRP level and risk of all-cause mortality in healthy
54 55	509	subjects at recruitment.
56 57	510	Figure 4 A dose-response association between serum <i>hs</i> CRP level and risk of all-cause mortality in subjects
58 59 60	511	with non-communicable disease history (NCD _{history}) at recruitment.

1 2		14
3 4	512	Figure 5 Kaplan-Meier crude survival curves for cancer-mortality according to serum <i>hs</i> CRP level in all
5 6	513	subjects at recruitment.
7 8	514	Figure 6 Kaplan-Meier crude survival curves for cancer-mortality according to serum <i>hs</i> CRP level in men at
9 10	515	recruitment.
11 12	516	Figure 7 Kaplan-Meier crude survival curves for cancer-mortality according to serum <i>hs</i> CRP level in women
13 14	517	at recruitment.
15 16	518	Figure 8 Kaplan-Meier crude survival curves for cancer-mortality according to serum <i>hs</i> CRP level in healthy
17 18	519	subjects at recruitment.
19 20	520	Figure 9 Kaplan-Meier crude survival curves for cancer-mortality according to serum <i>hs</i> CRP level in subjects
21 22	521	with non-communicable disease history (NCD _{history}) at recruitment.
23 24	522	Figure 10 Kaplan-Meier crude survival curves for cardiovascular disease mortality according to serum hsCRP
25 26	523	level in all subjects at recruitment.
27 28	524	Figure 11 Kaplan-Meier crude survival curves for cardiovascular disease mortality according to serum <i>hs</i> CRP
29 30	525	level in men at recruitment.
31 32	526	Figure 12 Kaplan-Meier crude survival curves for cardiovascular disease mortality according to serum <i>hs</i> CRP
33 34	527	level in women at recruitment.
34 35 36	528	Figure 13 Kaplan-Meier crude survival curves for cardiovascular disease mortality according to serum <i>hs</i> CRP
37	529	level in healthy subjects at recruitment.
38 39	530	Figure 14 Kaplan-Meier crude survival curves for cardiovascular disease mortality according to serum <i>hs</i> CRP
40 41	531	level in subjects with non-communicable disease history (NCD _{history}) at recruitment.
42 43	532	
44 45	533	
46 47	534	Contributors
48 49	535	SAL, XS and DK: designed and conducted the research, SAL and SOK: analyzed the data and performed the
50 51	536	statistical analyses; HP and JKL: managed data mining and collection; SAL: wrote the manuscript and had primary
52	537	responsibility for the final content of the manuscript; and all authors: read and approved the final manuscript.
53 54 55	538	
56 57	539	Funding None.
58 59	540	
60	541	Competing interests None declared.

1 2		15
3 4 5	542	Patient consent for publication Not required.
6 7	543	Ethics approval The Institutional Review Board of the Seoul National University Hospital, Seoul, Korea,
8 9	544	approved it for statistical analysis (IRB No. E-1503-103-657).
10 11	545	
12 13	546	Provenance and peer review Not commissioned; externally peer reviewed.
13 14 15	547	Data availability statement
16	548	No additional data available.
17 18		
19	549	
20 21	550	
22 23 24	551 552	REFERENCES 1Pepys MB, Hirschfield GM. C-reactive protein: a critical update. <i>The Journal of clinical</i>
25	553	investigation 2003;111:1805-12.
26 27	554	2 Elias-Smale SE, Kardys I, Oudkerk M, et al. C-reactive protein is related to extent and
28	555	progression of coronary and extra-coronary atherosclerosis; results from the Rotterdam study.
29 30	556	Atherosclerosis 2007;195:e195-202.
31 22	557	3 Koenig W, Khuseyinova N, Baumert J, <i>et al.</i> Prospective study of high-sensitivity C-reactive
32 33	558	protein as a determinant of mortality: results from the MONICA/KORA Augsburg Cohort Study,
34 35	559	1984-1998. Clinical chemistry 2008; 54 :335-42.
36	560	4 Ahmadi-Abhari S, Luben RN, Wareham NJ, et al. Seventeen year risk of all-cause and
37 38	561	cause-specific mortality associated with C-reactive protein, fibrinogen and leukocyte count in men
39	562	and women: the EPIC-Norfolk study. European journal of epidemiology 2013;28:541-50.
40 41	563	5 Kuoppamaki M, Salminen M, Vahlberg T, <i>et al.</i> High sensitive C-reactive protein (hsCRP),
42 43	564	cardiovascular events and mortality in the aged: a prospective 9-year follow-up study. Archives of
44	565	gerontology and geriatrics 2015;60:112-7.
45 46	566	6 Zuo H, Ueland PM, Ulvik A, et al. Plasma Biomarkers of Inflammation, the Kynurenine
47	567	Pathway, and Risks of All-Cause, Cancer, and Cardiovascular Disease Mortality: The Hordaland
48 49	568	Health Study. American journal of epidemiology 2016;183:249-58.
50 51	569	7 Nisa H, Hirata A, Kohno M, <i>et al.</i> High-Sensitivity C-Reactive Protein and Risks of All-
52	570	Cause and Cause-Specific Mortality in a Japanese Population. Asian Pacific journal of cancer
53 54	571	prevention : APJCP 2016;17:2643-8.
55	572	8 Li Y, Zhong X, Cheng G, <i>et al.</i> Hs-CRP and all-cause, cardiovascular, and cancer mortality
56 57	573	risk: A meta-analysis. Atherosclerosis 2017;259:75-82.
58	574	9 Vasto S, Candore G, Balistreri CR, <i>et al.</i> Inflammatory networks in ageing, age-related
59 60	575	diseases and longevity. Mechanisms of ageing and development 2007;128:83-91.

Page 17 of 37

1 2 BMJ Open

3								
4 5	576	10 Kelley-Hedgepeth A, Lloyd-Jones DM, Colvin A, <i>et al.</i> Ethnic differences in C-reactive						
6	577	protein concentrations. Clinical chemistry 2008;54:1027-37.						
7 8	578	11 Albert MA, Glynn RJ, Buring J, et al. C-reactive protein levels among women of various						
9 10	579	ethnic groups living in the United States (from the Women's Health Study). The American journal of						
10 11	580	<i>cardiology</i> 2004; 93 :1238-42.						
12 13	581	12 Khera A, McGuire DK, Murphy SA, <i>et al.</i> Race and gender differences in C-reactive protein						
14	582	levels. Journal of the American College of Cardiology 2005;46:464-9.						
15 16	583	13 Lakoski SG, Cushman M, Criqui M, et al. Gender and C-reactive protein: data from the						
17	584	Multiethnic Study of Atherosclerosis (MESA) cohort. American heart journal 2006;152:593-8.						
18 19	585	14 Matthews KA, Sowers MF, Derby CA, <i>et al.</i> Ethnic differences in cardiovascular risk factor						
20	586	burden among middle-aged women: Study of Women's Health Across the Nation (SWAN). American						
21 22	587	heart journal 2005; 149 :1066-73.						
23 24	588	15 Lee JH, Yeom H, Kim HC, <i>et al.</i> C-reactive Protein Concentration Is Associated With a						
24 25	589	Higher Risk of Mortality in a Rural Korean Population. Journal of preventive medicine and public						
26 27	590	health = Yebang Uihakhoe chi 2016;49:275-87.						
28	591	16 Sung KC, Ryu S, Chang Y, <i>et al.</i> C-reactive protein and risk of cardiovascular and all-cause						
29 30	592	mortality in 268 803 East Asians. European heart journal 2014;35:1809-16.						
31	593	17 Kengne AP, Batty GD, Hamer M, et al. Association of C-reactive protein with						
32 33	594	cardiovascular disease mortality according to diabetes status: pooled analyses of 25,979 participants						
34 35	595	from four U.K. prospective cohort studies. <i>Diabetes care</i> 2012;35:396-403.						
36	596	18 Heikkila K, Ebrahim S, Lawlor DA. A systematic review of the association between						
37 38	597	circulating concentrations of C reactive protein and cancer. Journal of epidemiology and community						
39	598	health 2007; 61 :824-33.						
40 41	599	19 Dahl M, Vestbo J, Lange P, <i>et al.</i> C-reactive protein as a predictor of prognosis in chronic						
42	600	obstructive pulmonary disease. American journal of respiratory and critical care medicine						
43 44	601	2007;175:250-5.						
45 46	602	20 Wang X, Bao W, Liu J, et al. Inflammatory markers and risk of type 2 diabetes: a systematic						
47	603	review and meta-analysis. Diabetes care 2013;36:166-75.						
48 49	604	Ishii S, Cauley JA, Greendale GA, <i>et al.</i> C-reactive protein, bone strength, and nine-year						
50	605	fracture risk: data from the Study of Women's Health Across the Nation (SWAN). Journal of bone						
51 52	606	and mineral research : the official journal of the American Society for Bone and Mineral Research						
53 54	607	2013; 28 :1688-98.						
54 55	608	22 Kim Y, Han BG, Ko GESg. Cohort Profile: The Korean Genome and Epidemiology Study						
56 57	609	(KoGES) Consortium. International journal of epidemiology 2017;46:1350.						
58	610	23 Shin S, Lee HW, Kim CE, <i>et al.</i> Egg Consumption and Risk of Metabolic Syndrome in						
59 60	611	Korean Adults: Results from the Health Examinees Study. Nutrients 2017;9.						

1

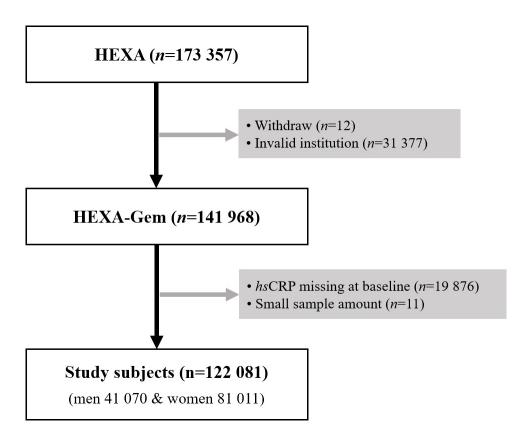
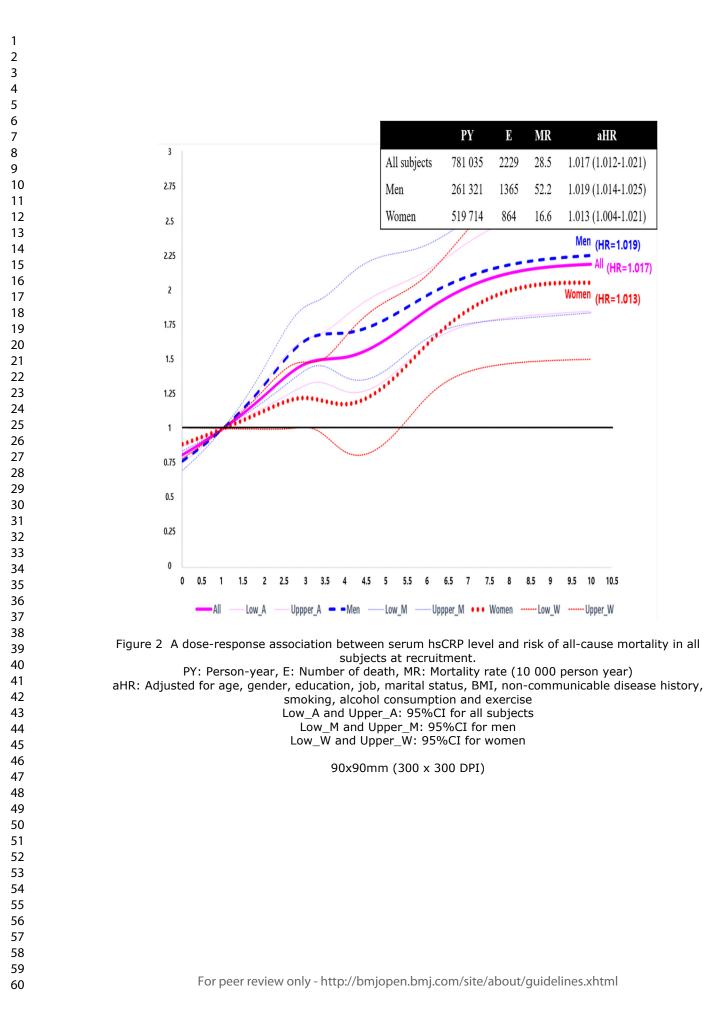
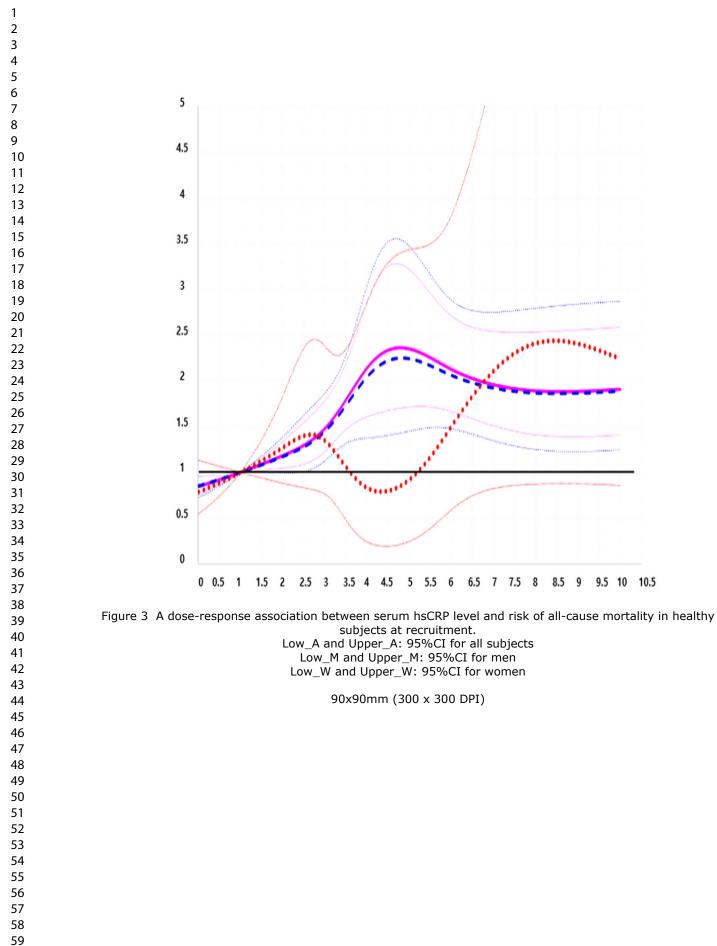
2 3		17
4 5	612	24 Pan WH, Yeh WT. How to define obesity? Evidence-based multiple action points for public
6	613	awareness, screening, and treatment: an extension of Asian-Pacific recommendations. Asia Pacific
7 8	614	journal of clinical nutrition 2008;17:370-4.
9	615	25 National Cholesterol Education Program Expert Panel on Detection E, Treatment of High
10 11	616	Blood Cholesterol in A. Third Report of the National Cholesterol Education Program (NCEP) Expert
12 13	617	Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment
14	618	Panel III) final report. Circulation 2002;106:3143-421.
15 16	619	26 Heinzl H, Kaider A. Gaining more flexibility in Cox proportional hazards regression models
17	620	with cubic spline functions. Computer methods and programs in biomedicine 1997;54:201-8.
18 19	621	27 MacGregor AJ, Gallimore JR, Spector TD, <i>et al</i> . Genetic effects on baseline values of C-
20 21	622	reactive protein and serum amyloid a protein: a comparison of monozygotic and dizygotic twins.
22	623	Clinical chemistry 2004;50:130-4.
23 24	624	28 Ledue TB, Rifai N. Preanalytic and analytic sources of variations in C-reactive protein
25	625	measurement: implications for cardiovascular disease risk assessment. Clinical chemistry
26 27	626	2003;49:1258-71.
28	627	29 Emerging Risk Factors C, Kaptoge S, Di Angelantonio E, et al. C-reactive protein
29 30	628	concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-
31 32	629	analysis. <i>Lancet</i> 2010; 375 :132-40.
33	630	30 Lee YJ, Lee JH, Shin YH, <i>et al.</i> Gender difference and determinants of C-reactive protein
34 35	631	level in Korean adults. Clinical chemistry and laboratory medicine 2009;47:863-9.
36	632	31 Doran B, Zhu W, Muennig P. Gender differences in cardiovascular mortality by C-reactive
37 38	633	protein level in the United States: evidence from the National Health and Nutrition Examination
39 40	634	Survey III. American heart journal 2013;166:45-51.
40 41	635	32 Gaskins AJ, Wilchesky M, Mumford SL, <i>et al.</i> Endogenous reproductive hormones and C-
42 43	636	reactive protein across the menstrual cycle: the BioCycle Study. American journal of epidemiology
44	637	2012;175:423-31.
45 46	638	33 Gilliver SC. Sex steroids as inflammatory regulators. <i>The Journal of steroid biochemistry</i>
47 49	639	<i>and molecular biology</i> 2010; 120 :105-15.
48 49	640	34 Man SF, Connett JE, Anthonisen NR, <i>et al.</i> C-reactive protein and mortality in mild to
50 51	641	moderate chronic obstructive pulmonary disease. <i>Thorax</i> 2006;61:849-53.
52	642	35 Di Napoli M, Papa F. Angiotensin-converting enzyme inhibitor use is associated with
53 54	643	reduced plasma concentration of C-reactive protein in patients with first-ever ischemic stroke. Stroke
55	644	2003; 34 :2922-9.
56 57	645	36 Sidhu JS, Cowan D, Kaski JC. The effects of rosiglitazone, a peroxisome proliferator-
58 59 60	646	activated receptor-gamma agonist, on markers of endothelial cell activation, C-reactive protein, and

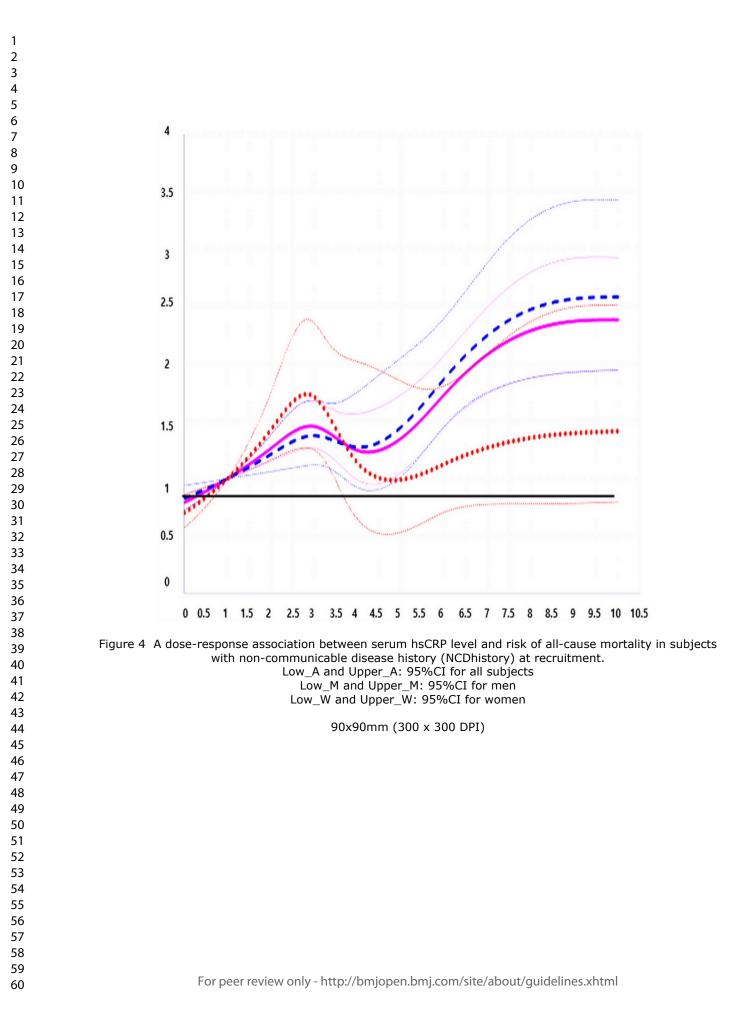
18
fibrinogen levels in non-diabetic coronary artery disease patients. Journal of the American College of
Cardiology 2003; 42 :1757-63.
Heikkila K, Ebrahim S, Rumley A, <i>et al.</i> Associations of circulating C-reactive protein and
interleukin-6 with survival in women with and without cancer: findings from the British Women's
Heart and Health Study. Cancer epidemiology, biomarkers & prevention : a publication of the
American Association for Cancer Research, cosponsored by the American Society of Preventive
Oncology 2007; 16 :1155-9.

- Marsik C, Kazemi-Shirazi L, Schickbauer T, et al. C-reactive protein and all-cause mortality in a large hospital-based cohort. Clinical chemistry 2008;54:343-9.
- Proctor MJ, McMillan DC, Horgan PG, et al. Systemic inflammation predicts all-cause

mortality: a glasgow inflammation outcome study. *PloS one* 2015;10:e0116206.

- Chen TH, Gona P, Sutherland PA, et al. Long-term C-reactive protein variability and
- prediction of metabolic risk. The American journal of medicine 2009;122:53-61.
 - Zheng W, McLerran DF, Rolland B, et al. Association between Body-Mass Index and Risk of Death in More Than 1 Million Asians, N Engl J Med 2011; 364:719-729.


Figure 1 Flow diagram of analytical sample in current study using Health Examinees cohort. HEXA: Health Examinees, hsCRP: High sensitivity C-reactive protein

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

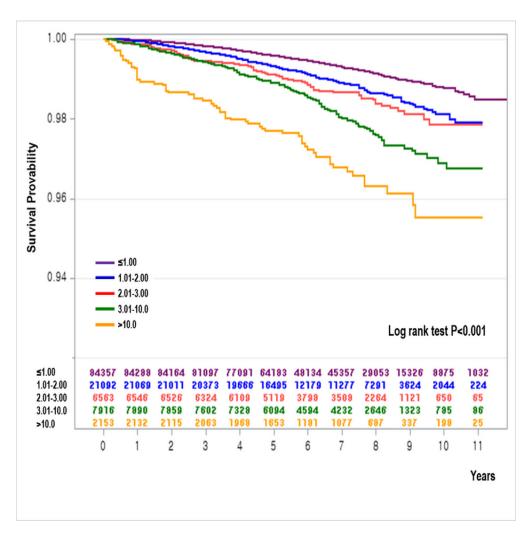
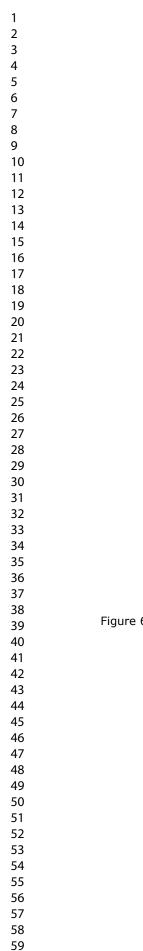



Figure 5 Kaplan-Meier crude survival curves for cancer-mortality according to serum hsCRP level in all subjects at recruitment.

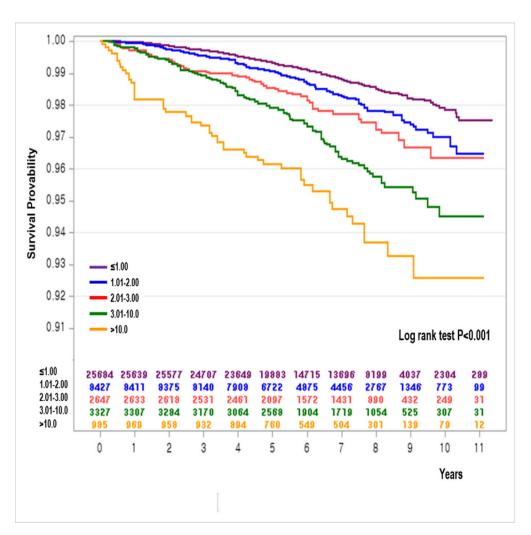
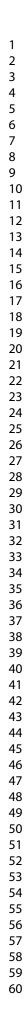



Figure 6 Kaplan-Meier crude survival curves for cancer-mortality according to serum hsCRP level in men at recruitment.

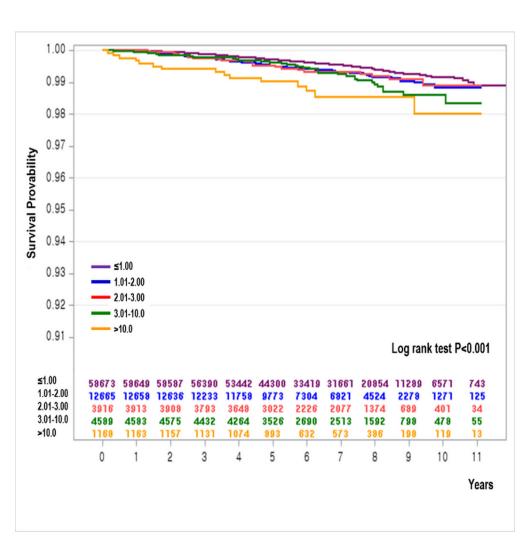


Figure 7 Kaplan-Meier crude survival curves for cancer-mortality according to serum hsCRP level in women at recruitment.

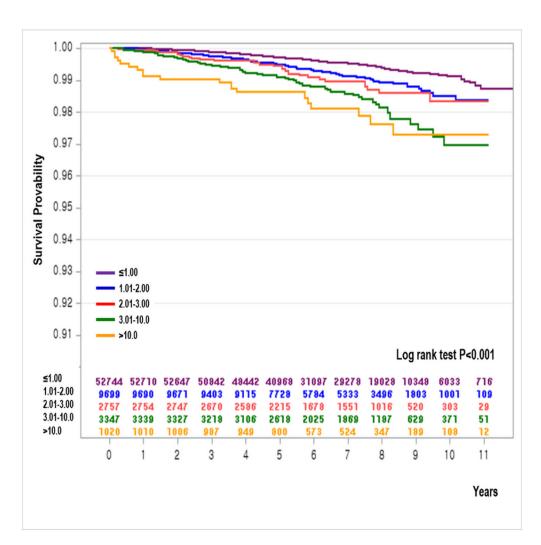
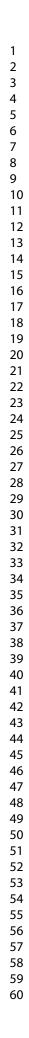



Figure 8 Kaplan-Meier crude survival curves for cancer-mortality according to serum hsCRP level in healthy subjects at recruitment.

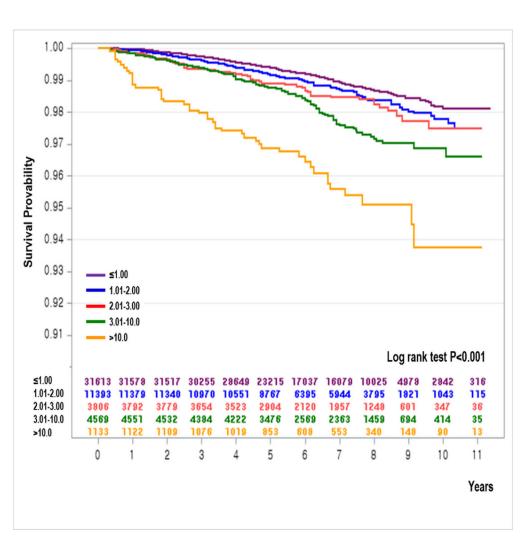


Figure 9 Kaplan-Meier crude survival curves for cancer-mortality according to serum hsCRP level in subjects with non-communicable disease history (NCDhistory) at recruitment.

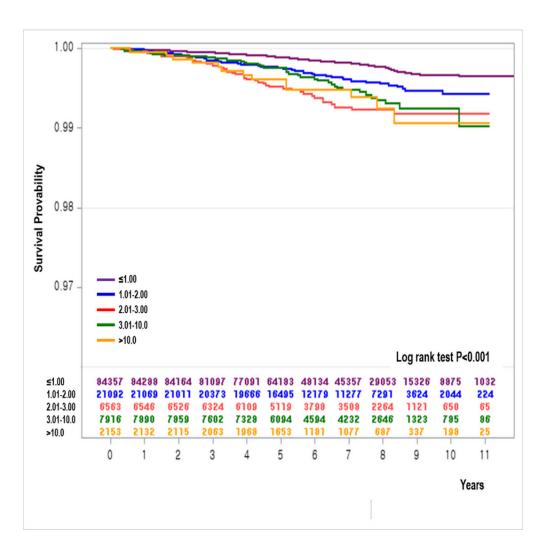


Figure 10 Kaplan-Meier crude survival curves for cardiovascular disease mortality according to serum hsCRP level in all subjects at recruitment.

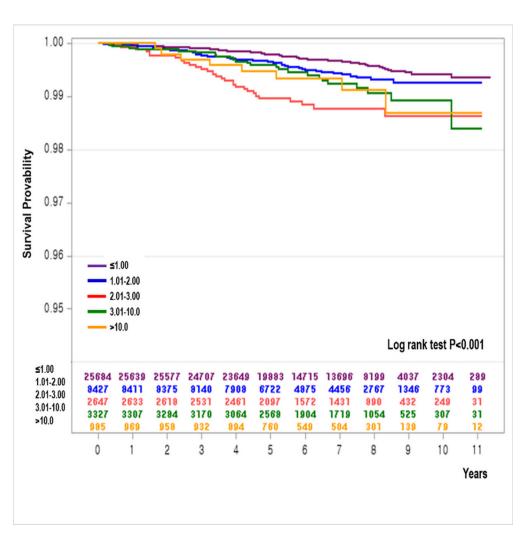


Figure 11 Kaplan-Meier crude survival curves for cardiovascular disease mortality according to serum hsCRP level in men at recruitment.

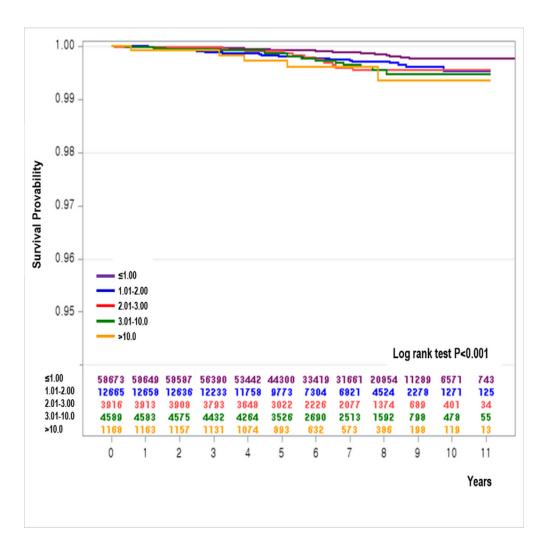
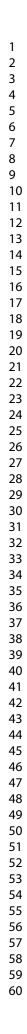



Figure 12 Kaplan-Meier crude survival curves for cardiovascular disease mortality according to serum hsCRP level in women at recruitment.

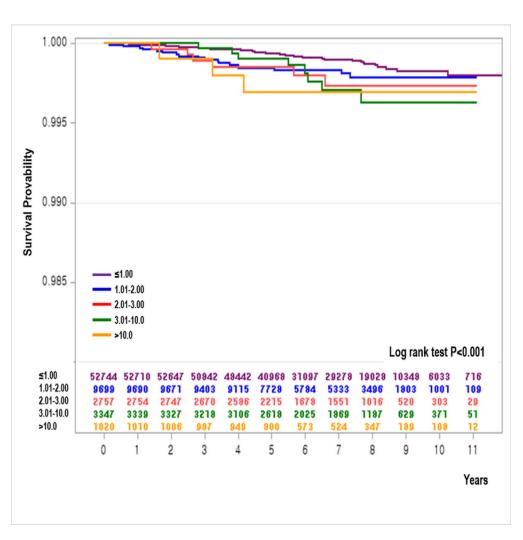


Figure 13 Kaplan-Meier crude survival curves for cardiovascular disease mortality according to serum hsCRP level in healthy subjects at recruitment.

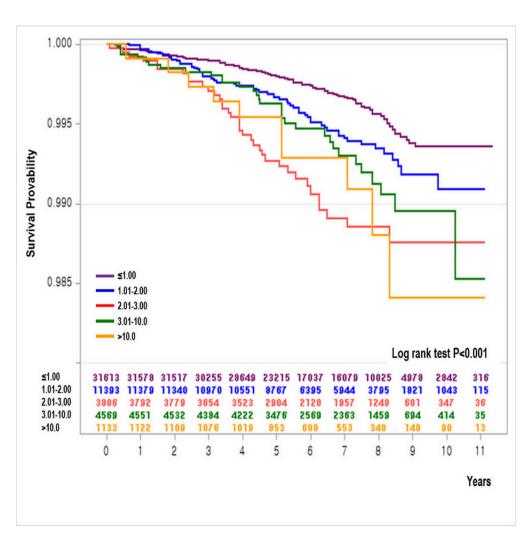


Figure 14 Kaplan-Meier crude survival curves for cardiovascular disease mortality according to serum hsCRP level in subjects with non-communicable disease history (NCDhistory) at recruitment.

	4
	I
	I

	PY	Е	MR	aHR	HR _{1year}	HR _{2year}
All subjects					•	-
Continuous	781 035	2229	28.5	1.017 (1.012-1.021)	1.015 (1.010-1.020)	1.014 (1.009-1.019
≤1.00	539 271	1153	21.4	Reference	Reference	Reference
1.01-1.50	90 911	308	33.9	1.26 (1.10-1.45)	1.27 (1.10-1.45)	1.21 (1.04-1.40)
1.51-2.00	44 615	163	36.5	1.28 (1.08-1.53)	1.28 (1.07-1.53)	1.26 (1.04-1.52)
2.01-2.50	25 139	117	46.5	1.53 (1.25-1.89)	1.51 (1.22-1.87)	1.49 (1.19-1.87)
2.51-3.00	16 996	72	42.4	1.39 (1.08-1.80)	1.31 (1.00-1.72)	1.23 (0.92-1.65)
3.01-4.00	19 667	103	52.4	1.61 (1.29-2.01)	1.62 (1.29-2.03)	1.64 (1.30-2.08)
4.01-6.00	17 933	102	56.9	1.84 (1.48-2.28)	1.77 (1.41-2.21)	1.70 (1.34-2.16)
6.01-10.00	13 019	88	67.6	2.02 (1.59-2.56)	1.96 (1.54-2.50)	1.93 (1.49-2.51)
>10.0	13 484	123	91.2	2.59 (2.12-3.16)	2.41 (1.95-2.97)	2.26 (1.80-2.84)
P-trend				<.001	<.001	<.001
Men						
Continuous	261 321	1365	52.2	1.019 (1.014-1.025)	1.017 (1.011-1.023)	1.017 (1.010-1.023
≤1.00	163 068	638	39.1	Reference	Reference	Reference
1.01-1.50	36 094	190	52.6	1.27 (1.07-1.51)	1.28 (1.07-1.53)	1.22 (1.01-1.47)
1.51-2.00	17 946	103	57.4	1.34 (1.07-1.67)	1.34 (1.07-1.68)	1.35 (1.06-1.72)
2.01-2.50	10 059	77	76.5	1.56 (1.20-2.03)	1.53 (1.16-2.00)	1.47 (1.10-1.96)
2.51-3.00	6959	54	77.6	1.71 (1.27-2.29)	1.57 (1.15-2.15)	1.46 (1.04-2.05)
3.01-4.00	8177	77	94.2	1.88 (1.45-2.43)	1.94 (1.50-2.52)	1.92 (1.46-2.54)
4.01-6.00	7425	75	101.0	2.05 (1.59-2.63)	1.95 (1.49-2.53)	1.91 (1.44-2.52)
6.01-10.00	5456	59	108.1	2.03 (1.52-2.73)	1.96 (1.44-2.66)	1.85 (1.33-2.58)
>10.0	6137	92	149.9	2.84 (2.25-3.58)	2.66 (2.08-3.39)	2.58 (1.99-3.35)
P-trend				<.001	<.001	<.001
Women						
Continuous	519 714	864	16.6	1.013 (1.004-1.021)	1.011(1.002-1.021)	1.010 (0.999-1.02)
≤1.00	376 203	515	13.7	Reference	Reference	Reference
1.01-1.50	54 817	118	21.5	1.28 (1.03-1.59)	1.27 (1.02-1.58)	1.23 (0.97-1.56)
1.51-2.00	26 669	60	22.5	1.23 (0.92-1.64)	1.21 (0.90-1.63)	1.14 (0.83-1.56)
2.01-2.50	15 080	40	26.5	1.52 (1.09-2.14)	1.52 (1.08-2.15)	1.56 (1.09-2.24)
2.51-3.00	10 037	18	17.9	0.84 (0.49-1.44)	0.87 (0.51-1.48)	0.83 (0.46-1.47)
3.01-4.00	11 490	26	22.6	1.16 (0.75-1.81)	1.09 (0.68-1.72)	1.21 (0.76-1.93)
4.01-6.00	10 508	27	25.7	1.48 (0.99-2.22)	1.47 (0.97-2.22)	1.36 (0.86-2.14)
6.01-10.00	7563	29	38.3	2.00 (1.34-2.98)	1.98 (1.32-2.98)	2.10 (1.39-3.19)
>10.0	7347	31	42.2	2.02 (1.36-3.02)	1.84 (1.21-2.81)	1.51 (0.93-2.47)
P-trend				<.001	<.001	0.001
Premenopause						
≤1.00	141 286	96	6.8			
1.01-2.00	20 500	20	9.8	1.52 (0.92-2.52)	1.49 (0.89-2.50)	1.57 (0.90-2.73)
2.01-3.00	5835	6	10.3	1.76 (0.77-4.06)	1.83 (0.79-4.22)	1.42 (0.52-3.93)
3.01-10.0	6886	6	8.7	1.51 (0.66-3.50)	1.31 (0.53-3.25)	1.21 (0.44-3.36)
>10.0	1759	4	22.7	2.57 (0.81-8.14)	2.63 (0.83-8.37)	2.09 (0.51-8.58)
<i>P</i> -trend		·		0.020	0.036	0.150
Postmenopause						
≤1.00	192 164	366	19.0			
1.01-2.00	52 897	145	27.4	1.26 (1.03-1.55)	1.25 (1.02-1.54)	1.18 (0.95-1.48)
2.01-3.00	16 943	44	26.0	1.11 (0.80-1.56)	1.12 (0.80-1.57)	1.19 (0.83-1.68)
3.01-10.0	19 687	67	34.0	1.49 (1.13-1.97)	1.47 (1.10-1.95)	1.52 (1.13-2.05)
>10.0	4828	27	55.9	2.09 (1.37-3.21)	1.88 (1.19-2.96)	1.56 (0.92-2.63)
<i>P</i> -trend	-020	21	55.7	<0.001	0.001	0.003

Supplement 1 The association of ser m hsCRP level with the risk of all-cause mortality

PY: Person-year, E: Number of death, MR: Mortality rate (10,000 person year)

1
4
5
6
7
8
q
10
10
11
12
13
14
15
16
10
17
18
19
20
21
22
5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 9 30 31 23 34 35 36 37 89 40
∠⊃ 2.4
24
25
26
27
28
20
29
30
31
32
33
34
35
20
30
37
38
39
40
41
42
42 43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58 59 60

- aHR: Adjusted for age, gender, education, job, marital status, BMI, non-communicable disease history, smoking, alcohol consumption and exercise
 - HR_{1year} : aHR after exclude subjects who died within 1 yr f/u time
 - HR_{2year}: aHR after exclude subjects who died within 2 yr f/u time

For peer teries only

	Healthy subjects at recruitment				Sub	Subjects with NCD _{history} at recruitment				
	E	MR	aHR	HR_{1year}	HR _{2year}	E	MR	aHR	HR_{1year}	HR _{2yea}
All										
≤ 1.00	517	15.1	Ref	Ref	Ref	636	32.3	Ref	Ref	Re
1.01-2.00	145	22.9	1.20	1.19	1.16	326	45.1	1.20	1.19	1.1
2.01-3.00	53	29.3	1.38	1.37	1.32	136	56.6	1.51	1.46	1.4
3.01-10.0	102	46.8	2.22	2.15	2.15	191	66.3	1.62	1.60	1.5
>10.0	40	61.3	2.38	2.23	2.27	83	118.9	2.74	2.54	2.2
P-trend			<.001	<.001	<.001			<.001	<.001	<.00
Men										
≤ 1.00	270	29.5	Ref	Ref	Ref	368	51.4	Ref	Ref	Re
1.01-2.00	89	35.8	1.11	1.11	1.13	204	70.0	1.40	1.41	1.3
2.01-3.00	33	46.3	1.22	1.17	1.15	98	99.0	1.82	1.73	1.6
3.01-10.0	70	76.8	2.14	2.08	2.03	141	118.1	1.92	1.90	1.8
>10.0	31	110.0	2.60	2.49	2.73	61	183.1	3.05	2.83	2.5
P-trend			<.001	<.001	<.001			<.001	<.001	<.00
Women										
≤ 1.00	247	9.8	Ref	Ref	Ref	268	21.4	Ref	Ref	Re
1.01-2.00	56	14.6	1.35	1.32	1.20	122	28.3	1.19	1.20	1.1
2.01-3.00	20	18.2	1.61	1.66	1.60	38	26.9	1.06	1.06	1.1
3.01-10.0	32	25.2	2.31	2.23	2.37	50	29.7	1.16	1.14	1.1
>10.0	9	24.3	1.69	1.49	1.12	22	60.3	2.15	1.99	1.6
P-trend			<.001	<.001	0.001			0.018	0.043	0.08

Supplement 2. The association between serum *hs*CRP level and all-cause mortality by gender and noncommunicable disease history (NCD_{*history*}) at recruitment

E: Number of death, MR: Mortality rate (10 000 person year)

aHR: Adjusted for age, gender, education, job, marital status, BMI, non-communicable disease history, smoking, alcohol consumption and exercise

 $HR_{1year}\!\!:aHR$ after exclude subjects who died within 1 yr f/u time

HR_{2year}: aHR after exclude subjects who died within 2 yr f/u time

 BMJ Open

Section/Topic	Item #	Recommendation	Reported on page
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	1-2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any pre-specified hypotheses	3
Methods			
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4-5
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants 	4
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	Not Applicable
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	4
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	5-6
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	5-6
		(b) Describe any methods used to examine subgroups and interactions	5-6
		(c) Explain how missing data were addressed	4
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed	4

		Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	6
Results	•		
Participants	13*	3* (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	4
		(c) Consider use of a flow diagram	4
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	6-7
		(b) Indicate number of participants with missing data for each variable of interest	4
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	6
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	6-10
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	Not Applicable
		Cross-sectional study—Report numbers of outcome events or summary measures	Not Applicable
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	6-10
		(b) Report category boundaries when continuous variables were categorized	5
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	Not Applicable
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	8
Discussion		·	
Key results	18	Summarise key results with reference to study objectives	11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	12-13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	11-13
Generalisability	21	Discuss the generalisability (external validity) of the study results	11-12
Other information		•	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	14

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. **Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

The association of serum high sensitivity C-reactive protein with the risk of mortality in an Asian population: the Health Examinees cohort

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-052630.R2
Article Type:	Original research
Date Submitted by the Author:	28-Mar-2022
Complete List of Authors:	Lee, Sang-Ah; Kangwon National University School of Medicine, Preventive Medicine; Vanderbilt University Medical Center Kwon, Sung Ok; Kangwon National University School of Medicine, Preventive Medicine Park, Hyerim; Kangwon National University School of Medicine, Preventive Medicine Shu, Xiao-Ou ; Vanderbilt University Medical Center Lee, Jong-Koo; JW LEE Center for Global Medicine Kang, Daehee; Seoul National University College of Medicine, Preventive Medicine
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Epidemiology, Cardiovascular medicine
Keywords:	PREVENTIVE MEDICINE, EPIDEMIOLOGY, Cardiac Epidemiology < CARDIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

tellez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4 5	196	The association of serum high sensitivity C-reactive protein with the risk of mortality in
6	197	an Asian population: the Health Examinees cohort
7 8	198	
9	199	
10 11	200	Sang-Ah Lee ^{1,2} *, Sung Ok Kwon ¹ , Hyerim Park ¹ , Xiao-Ou Shu ² , Jong-Koo Lee ³ , Daehee Kang ⁴
12	201	
13 14	202	
14 15	203	¹ Department of Preventive Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic
16	204	of Korea.
17 18	205	² Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville,
19	206	TN, USA.
20 21	207	³ JW Lee Center for Global Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea.
22	208	⁴ Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea.
23 24	209	
25	210	
26 27	211	ABSTRACT
28	212	Objectives This study aimed to examine the association of <i>hs</i> CRP with mortality risk and the attenuated effect
29	213	of non-communicable disease history (NCD _{history}) on the association.
30 31 32 33 34 35	214	Design Prospective cohort study.
	215	Setting the Health Examinees (HEXA) cohort.
	216	Participants A total of 41 070 men and 81 011 women aged \geq 40 years were involved (follow-up: 6.8 years).
	217	Outcome measures The data and cause of death occurring until December 31, 2015, were confirmed by death
36 37	218	statistics from the National Statistical Office. We conducted the advanced analysis after stratification by
38	219	NCD _{history} and the sensitivity analysis after excluding death before 1 or 2 years from recruitment. Cox
39 40 41 42 43 44	220	proportional hazard and restricted cubic spline models were used to assess the association.
	221	Results The association between serum <i>hs</i> CRP and the risk of all-cause mortality was observed with strong
	222	linearity in both genders, which was not influenced by NCD _{history} . Otherwise, the association of serum hsCRP
	223	with cancer-mortality risk was not observed in women with NCD _{history} , but the association with the risk of
45 46	224	cardiovascular disease (CVD) mortality was predominantly observed in men with NCD _{history} .
46 47	225	Conclusions This study suggested the dose-response association of <i>hs</i> CRP with mortality risk, including
48	226	cancer and CVD mortality, in Korean with low serum hsCRP, although the association with cancer and CVD-
49 50 51 52 53 54 55 56 57 58	227	mortality risk could be influenced by gender and NCD _{history} .
	228	
	229	
	230	Strengths and limitations of this study
	231	This is the large population-based prospective study.
	232	• We examined the effect of very high <i>hs</i> CRP concentration on mortality risk.
59 60	233	• The hs CRP level of present study was measured within 18 hours in a single institution to minimize error/bias.

2 3		
4 5	234	• Due to random fluctuations of hs CRP, using the single measurement of hs CRP at baseline could reflect the
6 7	235	inaccurate status of blood hsCRP levels in the study participants and increase the instability of hsCRP.
, 8 9	236	· This study lacked information on medication use at recruitment and during the follow-up period, and
10	237	information on hormone-replacement therapy (HRT) among women.
11 12	238	
13	239	
14 15	240	*Correspondence to: Sang-Ah Lee, Ph.D.
15 16	241	Department of Preventive Medicine, School of Medicine, Kangwon National University,
17 18	242	Chuncheon, Gangwon, Republic of Korea.
18 19	243	Tel: +82 33 250 8871
20	244	E-mail: sangahlee@kangwon.ac.kr
21 22	245	
23 24	246	E-mail: sangahlee@kangwon.ac.kr
25 26 27 28 29 30 31 32 33 34	247	
	248	
	249	
	250	
	251	
35 36	252	
37	253	
38 39	254	
40 41	255	
42 43	256	
44 45	257	
46 47	258	
48 49 50 51 52 53 54 55 56 57	259	
	260	
	261	
	262	
	263	
58 59	264	
60	265	

266 INTRODUCTION

High sensitivity C-reactive protein (hsCRP) is an acute-phase response protein synthesized by the liver and the most sensitive and dynamic marker of inflammation[1]. Since hsCRP has been reported as a candidate marker for generalized atherosclerosis and cardiovascular disease (CVD)[2], many studies[3-7] have investigated the role of hsCRP levels as a predictor of mortality risk. A recent meta-analysis[8] reported the predictable role of serum hsCRP on all-cause and CVD mortality in the general population. Nevertheless, it is controversial whether the predictable role of hsCRP could be applied to the risk of mortality in Asians, whose hsCRP levels are lower than those in individuals in Western countries.

Serum *hs*CRP represents a low-grade inflammation state that is generally involved in the process of aging[9]. Several large cohorts, including Study of Women's Health Across the Nation (SWAN)[10], the Women's Health Study[11] and the Dallas Heart Study[12], reported significant differences in hsCRP levels by race and gender. In two studies of multiethnic populations residing in the USA[10, 13], the median hsCRP level in East Asians was less than half the concentration in Caucasians. Even among East Asian populations, the geometric mean of hsCRP levels varied depending on ethnic background[14]. In addition, a meta-analysis[11] reported the hsCRP levels among women of various ethnic groups living in the United States (from the Women's Health Study) on the association between hsCRP and the mortality risk; the association was observed in only men supported by the results from two cohort studies [15, 16] reported in Korea. On the other hand, the increased hsCRP may be influenced by comorbidity itself because inflammation has emerged as an important factor in the progression of non-communicable diseases (NCDs), including CVD[17], cancer[18], chronic obstructive pulmonary disease (COPD)[19], type 2 diabetes[20] and fractures[21], which contribute to increased morbidity and mortality.

This study aimed to examine the association of serum hsCRP with the risk of mortality in Koreans with low serum hsCRP and to evaluate the attenuated effect of non-communicable disease history (NCD_{history}) on the association.

METHODS

Study population

Details on the main objectives, rationale, study design and baseline characteristics of the Health Examinees (HEXA) study have been published elsewhere[22]. Considering the homogeneity and comparability of participants, we created a qualified dataset called HEXA-G (Health Examinees-Gem) from previously published HEXA studies[23]. In the new HEXA-G data, a total of 141 968 participants remained after the exclusion of withdrawers (n=12). In addition, 19 887 were excluded due to missing information (n=19 876) or small sample size (n=11) on any hsCRP components at the baseline survey. Ultimately, 122 081 subjects, including 41 070 men and 81 011 women, remained in the final analysis (Fig. 1). All study participants provided informed consent prior to entering the study. The Institutional Review Board of the Seoul National University Hospital, Seoul, Korea, approved it for statistical analysis (IRB No. E-1503-103-657).

Laboratory measurements

After at least 10 hours of overnight fasting, blood samples were obtained in the morning. Bio-specimens included fasting blood samples that were collected in a serum separator tube and two ethylenediaminetetraacetic acid (EDTA) tubes. All samples were then transported to the National Biobank of Korea and stored for future research purposes within 18 hours. hsCRP was measured using a turbidimetric immunoassay (ADVIA 1650 and ADVIA 1800; Siemens Healthineers).

Follow-up and ascertainment of mortality

All-cause mortality was confirmed by death statistics from the National Statistical Office, which provided the data and causes of all deaths occurring through December 31, 2015. We added the mortality data from Statistics Korea to our dataset using each participant's unique identifier. Information on death and causes of death was obtained from a record link with the national death certificate files in Korea. The main outcome of interest was all-cause mortality (defined as death from any cause), including cancers and CVD mortality. The cause of death was classified according to the International Classification of Diseases, 10th revision (ICD-10). Deaths were coded as C00-C97 for cancer and I00-I99 for CVD.

BMJ Open

323 Baseline variables

Trained interviewers collected information on demographic, socioeconomic and lifestyle factors. Anthropometric measurements were obtained using standardized methods. Body mass index (BMI) was calculated, and all participants were defined into four classes based on the World Health Organization classification of BMI for Asian adults[24]: underweight (BMI <18.5 kg/m²), normal (18.5 BMI <23.0 kg/m²), overweight (23.0 \leq BMI <25.0 kg/m²), obesity (25.0 \leq BMI <29.9 kg/m²), and severe obesity (BMI \geq 30.0 kg/m²). The current study defined metabolic syndrome using the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III)[25], modified for the Asian guideline for waist circumference (WC ≥90 and \geq 80 cm for men and women, respectively). Nonsmokers were defined as those who had smoked less than 400 cigarettes over the course of their lifetime. Participants who had smoked were categorized into two groups: noncurrent (never/former) and current smoker. Noncurrent drinkers were defined as those who had never consumed an alcoholic drink over the course of their lifetime or those who had not consumed alcohol at recruitment, while current drinkers were defined as those who persisted in consuming alcohol. Regular exercise was classified into two groups (ves/no) as follows: "Do you currently engage in regular exercise strenuous enough to cause you to break into a sweat at least once per week?" Furthermore, considering the attenuated effect of the NCD_{history} on the association between serum hsCRP and the risk of mortality, we performed advanced analysis after stratification by NCD_{history}. We considered six main non-communicable diseases (hypertension, diabetes, hyperlipidemia, cancer, cardiovascular and cerebrovascular diseases, and respiratory disease) to classify healthy subjects vs. subjects with NCD_{history}.

¹⁰ 342

343 Statistical analysis

For the categorical analysis, we created nine categories based on the distribution of *hs*CRP levels in our population: ≤ 1.00 (reference group), 1.01-1.50, 1.51-2.00, 2.01-2.50, 2.51-3.00, 3.01-4.00, 4.01-6.00, 6.01-10.0, and ≥ 10.0 mg/L. For the advanced analysis after stratification by the NCD_{*history*}, the *hs*CRP levels were categorized as ≤ 1.00 , 1.01-2.00, 2.01-3.00, 3.01-10.0, and ≥ 10.0 mg/L because of the reduced sample size in each subgroup. The concentrations of *hs*CRP were log-transformed for analyses because of the skewed distribution.

We calculated a follow-up time for each subject starting from the date of interview until the date of death or
 We calculated a follow-up time for each subject starting from the date of interview until the date of death or
 December 31, 2015, whichever came first. Using age as the time scale, subjects enter the risk set at the age at
 which they completed the baseline questionnaire and exit at their event/censoring age. The associations of

BMJ Open

2		
3 4 5	353	hsCRP and all-cause mortality, as well as cancer and CVD mortality, were analyzed by Cox proportional hazard
5 6 7	354	models (aHR) and included adjustment for age, gender, demographic factors (education, marital status, job, BMI
7 8	355	and NCD _{history}), and lifestyle factors (smoking, alcohol consumption and exercise). We used Wald tests to test
9 10	356	for heterogeneity of risk between serum hsCRP level groups. The proportional hazards assumption was assessed
11 12	357	on the basis of Schoenfeld residuals, and was not violated for the variables of interest in the adjusted model for
13 14	358	either cancer-mortality or cardiovascular disease mortality (P>0.05 for all categories). In addition, we conducted
15 16	359	a sensitivity analysis to avoid latent period bias after excluding death before 1 year (aHR _{1year}) or 2 years
17 18	360	(aHR _{2year}) since recruitment. Based on the Cox proportional hazard models, we made Kaplan-Meier curves and
19 20	361	log-rank analysis after adjustment for age, gender, demographic factors (education, marital status, job, BMI and
21 22	362	NCD _{history}), and lifestyle factors (smoking, alcohol consumption and exercise). We employed restricted cubic
23 24	363	splines (RCSs) to evaluate the possibility of complex (i.e., nonlinear) hazard functions[26] using continuous
25 26	364	values of hsCRP (aHR _{continuous}). We selected five hsCRP concentration values as knots based on hsCRP concen-
27 28	365	tration percentiles, tested the linear and nonlinear associations between knots using a cubic function, and
29 30	366	presented the integrated graph smoothly. All statistical analyses were performed using SAS version 9.3 (SAS
31	367	Institute Inc., Cary, NC, USA) and RCS analysis was carried out using the SAS LGTPHCURV9 macro. Two-
32 33 34 35	368	sided <i>p</i> -values <0.05 were defined as indicating statistical significance.
	369	
36 37	370	Patient and public involvement
38 39	371	No patients and public were involved in the design, conducting, reporting, and dissemination plans of the present
40 41	372	study.
42 43	373	sudy.
44 45	374	
46 47	375	
48 49 50 51 52 53 54 55 56	376	
	377	
	378	
	379	
	380	
57 58	381	
59 60	382	

RESULTS

384	The association of demographic and lifestyle factors with the risk of all-cause mortality is presented in Table
385	1. During the follow-up period (average 6.8 years), 1 365 men and 864 women died. The median levels of
386	hsCRP were 0.77 and 0.59 mg/L for men and women, respectively. The risk of all-cause mortality was inversely
387	associated with female gender (aHR=0.38), high educated (aHR=0.65), overweight (aHR=0.81) or obesity
388	(aHR=0.83), current alcohol consumption (aHR=0.81) and regular exercise (aHR=0.83), but was positively
389	associated with single marital status (aHR=1.23), NCD _{history} (aHR=1.57), underweight (aHR=2.05) and current
390	smoking (aHR=1.97).
391	
392	
393	
394	
395	
396	
397	associated with single market status (arite=1.2.5), ite <i>D_{history}</i> (arite=1.57), under weight (arite=2.05) and eariest smoking (aHR=1.97).
398	
399	
400	
401	
402	
403	
404	
405	
406	
407	
408 409	
409 410	
410	
411	

		All	Death	All-cause m	ortality
		(<i>n</i> =122 081)	(<i>n</i> =2229)	Age,gender adjusted	adj HRª
	Age	53.1 ± 8.3	59.7 ± 8.8		
	Female	66.4	38.8	0.40 (0.36-0.43)	0.38 (0.33-0.44)
	Education (≥ 10 year, %)	68.2	55.4	0.67 (0.60-0.75)	0.65 (0.56-0.75)
	Blue-colored worker ^b (%)	32.3	33.8	1.46 (1.26-1.68)	1.16 (0.99-1.35)
	Marital status (single, %)	11.0	13.3	1.35 (1.19-1.54)	1.23 (1.07-1.40)
	NCD _{history} (yes, %)	32.4	53.6	1.51 (1.39-1.65)	1.57 (1.42-1.72)
	Hypertension	18.9	31.5	1.18 (1.08-1.30)	1.22 (1.11-1.35)
	Diabete	6.5	17.1	1.81 (1.62-2.03)	1.77 (1.57-2.00)
	Hyperlipidemia	9.2	7.6	0.73 (0.62-0.86)	0.78 (0.66-0.92)
	Cancer	3.2	8.8	2.69 (2.31-3.12)	2.66 (2.27-3.11)
	Cerebral & cardiovascular disease	3.7	10.2	1.50 (1.30-1.73)	1.43 (1.23-1.66)
	Respiratory disease	2.4	4.3	1.37 (1.12-1.68)	1.32 (1.06-1.64)
	Body mass index (%)				
	<18.5	1.8	3.7	2.14 (1.69-2.69)	2.05 (1.61-2.62)
	18.5-22.9	38.1	34.9	1.00 (ref.)	1.00 (ref.)
	23.0-24.9	27.8	26.0	0.82 (0.73-0.91)	0.81 (0.72-0.91)
	25.0-29.9	29.5	32.5	0.90 (0.81-1.00)	0.83 (0.74-0.93)
	\geq 30.0	2.8	2.9	1.08 (0.83-1.39)	0.81 (0.61-1.08)
	P-trend			0.0118	<.0001
	Metabolic syndrome (yes, %)	22.0	28.4	1.13 (1.03-1.24)	1.07 (0.96-1.19)
	Current smoker (%)	11.7	22.7	2.04 (1.79-2.33)	1.97 (1.71-2.27)
	Current drinker (%)	44.0	43.8	0.86 (0.77-0.95)	0.81 (0.73-0.91)
	Regular exercise (yes, %)	53.4	49.1	0.76 (0.70-0.83)	0.83 (0.76-0.91)
413 414	NCD _{<i>history:</i>} Non-communicable diseas ^a Adjusted for age, gender, education.	-	tus BMI and n	on-communicable diseas	e history
415	^b Compared to white-colored worker	, job, maritar sta	tus, Divir and I		e mstory
416	r				
417					
418					
419					
420					
421					
422					
423					
424					

412
 Table 1. Baseline characteristics of participants by all-cause mortality.

BMJ Open

The risk of all-cause mortality was inclined with a dose-dependent pattern as increased serum hsCRP level (Ptrend<0.001, Supplement 1), regardless of gender (Ptrend<0.001 in both genders), even in the sensitivity analysis $(P_{trend} < 0.001 \text{ for aHR}_{1\text{ver}} \text{ in both genders})$. The increased risk of female mortality with increased hsCRP levels was observed in both premenopausal ($P_{trend}=0.020$) and postmenopausal women ($P_{trend} < 0.001$), although the statistical significance in premenopausal women disappeared after sensitivity analysis (P_{trend} =0.150 for aHR_{2year}, Supplement 1). The integrated graph, based on the restricted cubic spline analyses, indicated a strong and linear association of serum hsCRP level with all-cause mortality in both genders (aHR_{continuous}=1.019 and 1.013 in men and women, respectively, Fig. 2 (a)).

The dose-response association between hsCRP level and the risk of all-cause mortality was not influenced by NCD_{history} (Supplement 2). After stratification by gender, however, the attenuated effect by NCD_{history} on the association was observed only in women; the linearity of the relationship was observed in healthy women $(P_{trend}=0.001 \text{ for aHR}_{2\text{vear}})$ but disappeared in women with NCD_{history}, particularly after sensitivity analysis with the exclusion of a 2-year follow-up time ($P_{trend}=0.084$ for aHR_{2vear}). Based on the restricted cubic spline analyses, otherwise, the pattern of increase in the association was different depending on the NCD_{history} (Fig. 2 (b), (c)). In the healthy subjects, the risk of all-cause mortality was increased with a gradual slope (strength) until 3.0 mg/L hsCRP, with a very steep slope until 4.5 mg/L and finally with a reduced and flattened slope after 4.5 mg/L (Fig. 2 (b)). On the other hand, the slope of the association fluctuated as the hsCRP level increased in the subjects with NCD_{history}; the slope increased up to 3.0 mg/L hsCRP but decreased until 4.5 mg/L and rapidly increased after 4.5 mg/L (Fig. 2 (c)).

The association of serum hsCRP with the risk of cancer-mortality was not influenced by NCD_{history} (Ptrend<0.001 regardless of NCDhistory) (Table 2 and Fig. 3 (a-e)). Otherwise, after stratification by gender, the association was not observed in women with NCD_{history} ($P_{trend} = 0.856$); however, the association was not influenced by NCD_{history} in men (P_{trend}<0.001 and 0.002 for aHR in both healthy and NCD_{history}) (Table 2). Although the risk of CVD mortality was linearly associated with increasing hsCRP levels, the association was dominant in men (Ptrend=0.002) and in subjects with NCDhistory (Ptrend=0.001, Table 3) after stratified by gender and NCD_{history}, respectively (Fig. 4 (a-e)). After stratification by gender and NCD_{history}, otherwise, the association only appeared in individuals of both genders with NCD_{history} (P_{trend}=0.015 and 0.035 in men and women with NCD_{history}, respectively); no association between hsCRP level and CVD mortality risk was found in either healthy men or women.

Page 11 of 37

BMJ Open

1	Λ
<u>т</u>	υ

		C	ancer-mo	ortality		Н	Subjects with NCD _{history} at recruitment								
	Е	MR	aHR	HR _{1year}	HR _{2year}	E	MR	aHR	HR_{1year}	HR _{2year}	Е	MR	aHR	HR_{1year}	HR _{2year}
Total															
≤1.00	590	10.9	Ref	Ref	Ref	270	7.9	Ref	Ref	Ref	320	16.3	Ref	Ref	Ref
1.01-2.00	232	17.1	1.25	1.23	1.17	85	13.4	1.43	1.40	1.31	147	20.3	1.19	1.13	1.09
2.01-3.00	86	20.4	1.32	1.24	1.19	29	16.0	1.38	1.34	1.35	57	23.7	1.35	1.18	1.10
3.01-10.0	149	29.4	1.83	1.76	1.72	54	24.8	2.22	2.07	2.01	95	33.0	1.75	1.59	1.55
>10.0	66	48.9	2.69	2.28	1.96	20	30.6	1.85	1.59	1.57	46	65.9	3.25	2.64	2.16
P-trend			<.001	<.001	<.001			<.001	<.001	<.001			<.001	<.001	<.001
Men						RL									
≤1.00	302	18.5	Ref	Ref	Ref	169	23.6	Ref	Ref	Ref	133	14.5	Ref	Ref	Ref
1.01-2.00	144	26.6	1.36	1.36	1.32	95	32.6	1.40	1.38	1.34	49	19.7	1.31	1.34	1.31
2.01-3.00	59	34.7	1.45	1.31	1.19	40	40.4	1.54	1.37	1.16	19	26.7	1.29	1.22	1.26
3.01-10.0	111	52.7	2.17	2.10	2.00	77	64.5	2.26	2.24	2.12	34	37.3	1.98	1.80	1.70
>10.0	50	82.9	3.13	2.66	2.34	38	114.1	4.07	3.42	2.79	13	46.1	1.58	1.40	1.56
P-trend			<.001	<.001	<.001			<.001	<.001	<.001			0.002	0.009	0.015
Women															
≤1.00	288	7.7	Ref	Ref	Ref	137	5.5	Ref	Ref	Ref	151	12.1	Ref	Ref	Ref
1.01-2.00	88	10.8	1.13	1.08	0.99	36	9.4	1.60	1.48	1.31	52	12.1	0.86	0.86	0.81
2.01-3.00	27	10.7	1.16	1.17	1.2	10	9.1	1.48	1.50	1.47	17	12.0	0.96	0.98	1.03
3.01-10.0	38	12.9	1.31	1.24	1.29	20	15.8	2.58	2.48	2.57	18	10.7	0.75	0.71	0.74
>10.0	15	20.4	1.89	1.61	1.28	7	18.9	2.16	1.75	1.42	8	21.9	1.66	1.47	1.17
P-trend			0.019	0.074	0.161			<.001	0.001	0.002			0.856	0.635	0.538

E: Number of death, MR: Mortality rate (10 000 person year), Ref: Reference

aHR: Adjusted for age, gender, education, job, marital status, BMI, non-communicable disease history, smoking, alcohol consumption and exercise

HR_{1vear}: aHR after exclude subjects who died within 1 yr f/u time

 HR_{2year} : aHR after exclude subjects who died within 2 yr f/u time

	Car	rdiovascu	ılar disea	se mortali	ty	Н	Healthy subjects at recruitment						Subjects with NCD _{history} at recruitment					
	E	MR	aHR	HR_{1year}	HR _{2year}	E	MR	aHR	HR _{1year}	HR _{2year}	E	MR	aHR	HR_{1year}	HR _{2yea}			
Total																		
≤1.00	167	3.1	Ref	Ref	Ref	58	1.7	Ref	Ref	Ref	109	5.5	Ref	Ref	Ret			
1.01-2.00	79	5.8	1.35	1.37	1.23	18	2.8	1.19	1.15	0.94	64	8.4	1.42	1.46	1.36			
2.01-3.00	42	10.0	2.06	2.05	2.02	6	3.3	1.47	1.54	1.46	36	15.0	2.28	2.25	2.26			
3.01-10.0	39	7.7	1.45	1.38	1.44	8	3.7	1.44	1.50	1.70	31	1.08	1.48	1.37	1.40			
>10.0	13	9.6	1.81	1.76	1.59	3	4.6	2.02	2.10	1.58	10	14.3	1.85	1.74	1.68			
P-trend			0.001	0.002	0.004			0.130	0.100	0.162			0.001	0.006	0.009			
Men						Co												
≤1.00	89	5.5	Ref	Ref	Ref	25	2.7	Ref	Ref	Ref	64	8.9	Ref	Ref	Ret			
1.01-2.00	45	8.3	1.33	1.32	1.25	12	4.8	1.30	1.22	1.22	33	11.3	1.31	1.33	1.33			
2.01-3.00	30	17.6	2.70	2.67	2.53	3	4.2	1.31	1.37	1.37	27	27.3	3.05	2.99	2.99			
3.01-10.0	24	11.4	1.43	1.36	1.46	6	6.6	1.70	1.79	1.79	18	15.1	1.42	1.21	1.21			
>10.0	8	13.0	1.90	2.02	1.70	3	10.6	3.42	3.61	3.61	5	15.0	1.59	1.62	1.62			
P-trend			0.002	0.003	0.009			0.053	0.038	0.062			0.015	0.027	0.047			
Women																		
≤1.00	78	2.1	Ref	Ref	Ref	33	1.3	Ref	Ref	Ref	45	6.3	Ref	Ref	Re			
1.01-2.00	34	4.2	1.41	1.46	1.25	6	1.6	1.09	1.13	0.62	28	9.6	1.60	1.66	1.58			
2.01-3.00	12	4.8	1.26	1.30	1.44	3	2.7	1.65	1.70	1.86	9	9.1	1.17	1.20	1.39			
3.01-10.0	15	5.1	1.51	1.45	1.44	2	1.6	1.06	1.07	1.14	13	10.9	1.75	1.64	1.65			
>10.0	5	6.8	1.72	1.35	1.45	0	-	-	-	-	5	15.0	2.51	1.91	2.07			
P-trend			0.092	0.177	0.168			0.940	0.998	0.922			0.035	0.092	0.078			

Table 3. The association between serum hsCRP level and cardiovascular disease mortality by gender and non-communicable disease history (NCD _{history}) at	recruitment.
---	--------------

E: Number of death, MR: Mortality rate (10 000 person year), Ref: Reference aHR: Adjusted for age, gender, education, job, marital status, BMI, non-communicable disease history, smoking, alcohol consumption and exercise HR_{1year}: aHR after exclude subjects who died within 1 yr f/u time HR_{2year}: aHR after exclude subjects who died within 2 yr f/u time

BMJ Open

DISCUSSION

This study suggests that the risk of all-cause mortality was associated with elevated hsCRP levels with a dose-response manner in both gender among Asian who have reported low hsCRP levels compared to other races, and was not influenced by NCD_{history}. Otherwise, the association was influenced by gender and NCD_{history} although a dose-response association of hsCRP with the risk of cancer- and CVD-mortality was also observed in this population. The level of hsCRP was not associated with the risk of cancer- mortality among women with NCD_{history}. The risk effect of high hsCRP level on CVD mortality was predominantly observed in men with NCD_{history}.

Several large cohorts [10-12, 14] have suggested that serum hsCRP levels may differ according to ethnic background, with the highest concentrations seen in African Americans, followed by Hispanic, White, Chinese and Japanese individuals. Although the reason for this ethnic difference is not clearly resolved, genetic diversity[27], the relatively low BMI in Asian populations and ethnic differences in diet and lifestyle[28] have been suggested. Although the extent to which these findings adopt to Asian populations has been unclear, several recent studies [11, 16] conducted in Asia reported a positive association of *hs*CRP with mortality risk. In this population, the hsCRP level was associated with the risk of all-cause mortality in a dose-dependent manner, even though the level of hsCRP was lower than that in the western population. A meta-analysis[29] and large cohort studies[3-6] supported the robustness of the association regardless of adjusted confounders, the cut-off point of CRP level and exclusion deaths within the first 2 years of follow-up. The reason for the discrepancy in *hs*CRP levels with respect to gender is not clearly resolved, although several studies suggested different lifestyle and metabolic risk factors between men and women[30] and genetic diversity[27]. A high level of serum hsCRP in our population was positively related to the increased risk of all-cause mortality in both genders, supported by several previous studies[8, 16, 31]. Nevertheless, several studies reported no association of hsCRP levels with all-cause mortality was observed in women[7, 16]. In particular, the association was shown in postmenopausal women only, which might suggest the protective effect of endogenous female hormones on the low level of hsCRP[32]; the average hsCRP level was 0.48 and 0.68 mg/L for premenopausal and postmenopausal women in this study. The protective effect could be supported by the proposition that estrogen or progesterone might to some extent repress the detrimental effects of chronic inflammation on tissue damage[33].

BMJ Open

Inflammation has emerged as an important factor in the processes of NCD, including CVD[17], cancer[18],

type 2 diabetes[20], COPD[19, 34] and fracture[21]. In addition, medications that had taken to treat any specific NCD, such as rennin-angiotensin system inhibitors[35] and statins and thiazolidinedione[36], could influence the level of hsCRP. The association between hsCRP and the mortality risk was not attenuated by NCD_{history} in either gender in this study, but the statistical significance of the association disappeared in women after sensitivity analysis (aHR_{2vear}). A dose-response relationship between hsCRP level and all-cause mortality risk was pronounced in both genders. On the other hand, the positive association of hsCRP with the risk of all-cause mortality risk was significantly observed in only men with NCD_{history} but not in women with NCD_{history}. The attenuated effect of NCD_{history} on the association between hsCRP and the risk of cancer-mortality was not observed in men, consistent with results from several studies which reported the associations among healthy men[3] or cancer patients[37, 38] only. Most studies[3, 4, 6, 7, 15, 16, 31, 39] supported that CVD mortality increased with elevated hsCRP levels, predominantly in men[4, 7, 15, 16]. Although hsCRP levels are lower in our population than in other races, the level of hsCRP was positively associated with CVD mortality in men but not in women, similar to previous studies [7, 15, 16, 31, 39]. After stratification by gender and NCD_{history}, the association between hsCRP and the risk of CVD mortality was dominant in subjects with NCD_{history} in this study. Although many interventional studies have been conducted recently on anti-inflammatory drugs for the prevention of cardiovascular disease, the results are controversial. According to the results of our study, elevated inflammatory markers in people with chronic disease were associated with an increased risk of CVD mortality. This suggests that CVD-mortality in people with chronic diseases might be reduced by use of anti-inflammatory medication. This study has several strengths because of the large population-based prospective study; it makes possible 1) to adjust for confounders; 2) to examine sensitivity analysis after excluding death before 1 or 2 years from recruitment; 3) to assess an advanced analysis after stratification by gender and NCD_{bistory}; 4) to examine the association using various cut-off points of hsCRP considering low serum hsCRP levels in Asian populations; and 5) to evaluate the complex (i.e., nonlinear) hazard functions using restricted cubic splines on the association between continuous hsCRP levels and the risk of mortality. In particular, most previous studies excluded subjects with more than 10 mg/L hsCRP because of their relatively low sample size or reflecting acute phase reactions of severe inflammation, but we examined the effect of very high hsCRP concentration on the risk of mortality because it is possible to be more concerning for these subjects in the future. The hsCRP level of this

BMJ Open

3		
4 5	511	study, in addition, was measured within 18 hours in a single institution to minimize measurement error/bias
6 7	512	from institutional variation to avoid bias from measurement or long-term storage before analysis.
8 9	513	Despite of those strengths, it is also several limitations. First, the use of a single measurement of hsCRP at
10 11	514	baseline could reflect the inaccurate status of blood hsCRP levels in the study participants and increase the
12	515	instability of hsCRP due to random fluctuations over time. Nevertheless, a report [40] on the long-term hsCRP
13 14	516	variability suggested that the hsCRP variability within individual is relatively small and that the variability
15 16	517	could not account for the association. Second, our study lacked information on medication use at recruitment
17 18	518	and during the follow-up period. Several medications related to NCDs, including statins, angiotensin-converting
19 20	519	enzyme inhibitors, fibrates, niacin, thiazolidinedione and estrogen/progestogen hormone, could influence the
21 22	520	hsCRP level[37]; however, we tried to overcome this limitation through advanced analysis after stratification by
23 24	521	NCD _{history} . Third, because there is no available information on hormone-replacement therapy (HRT) among
25 26	522	women, which could not examine the influence of HRT on the association of hsCRP with the risk of hormone-
27 28	523	related cancer or CVD mortality among women, we could not suggest the effect of female hormones on the
29	524	association. In addition, further studies are needed on the effects of obesity although the inverse relationship
30 31	525	between all-cause mortality with obesity in our population was consistent to Wei's report in Asian[41]. On the
32 33	526	other hand, the inverse association of alcohol drinking with all-cause mortality couldn't interpret directly
34 35	527	because our report wasn't separated the distinguish between mild drinkers and abuse alcohol drinker, which
36 37	528	requires additional research for our population in the future.
38 39	529	In conclusion, the association of hsCRP level is dose-responsively increased with the risk of all-cause
40 41	530	mortality in men and women (particularly postmenopausal women), which was not influenced by the association
42 43	531	was not observed in women with NCD _{history} . Otherwise, the association of hsCRP level with the risk of cancer-
44 45	532	and CVD-mortality could be attenuated by gender or NCD _{history} .
46 47	533	
48	534	
49 50	535	Figure 1 Flow diagram of analytical sample in current study using Health Examinees cohort.
51 52	536	Figure 2 A dose-response association between serum <i>hs</i> CRP level and risk of all-cause mortality in all (a),
53 54	537	healthy subjects at recruitment (b), and subjects with non-communicable disease history (NCD _{history}) at
55 56	538	recruitment (c).
57 58	539	Figure 3 Kaplan-Meier crude survival curves for cancer-mortality according to serum <i>hs</i> CRP level in all (a)
59 60		

BMJ Open

3 4	540	men (b), women (c), healthy subjects at recruitment (d), and subjects with non-communicable disease history
5 6	541	(NCD _{<i>history</i>}) at recruitment (e).
7 8	542	Figure 4 Kaplan-Meier crude survival curves for cardiovascular disease mortality according to serum <i>hs</i> CRP
9 10	543	level in all (a), men (b), women (c), healthy subjects at recruitment (d), and subjects with non-communicable
11 12	544	disease history (NCD _{history}) at recruitment (e).
13 14	545	
15	546	
16 17	547	Contributors
18 19		
20	548	SAL, XS and DK: designed and conducted the research, SAL and SOK: analyzed the data and performed the
21 22	549	statistical analyses; HP and JKL: managed data mining and collection; SAL: wrote the manuscript and had primary
23 24	550	responsibility for the final content of the manuscript; and all authors: read and approved the final manuscript.
25 26	551	
27 28	552	Funding None.
29 30	553	
31 32 33	554	Competing interests None declared.
33 34 35	555	Patient consent for publication Not required.
36 37	556	Ethics approval The Institutional Review Board of the Seoul National University Hospital, Seoul, Korea,
38 39	557	approved it for statistical analysis (IRB No. E-1503-103-657).
40 41	558	
42 43	559	Provenance and peer review Not commissioned; externally peer reviewed.
44 45	560	Data availability statement
46 47	561	No additional data available.
48 49	562	
50	563	
51 52	564	REFERENCES
53 54	565	1 Pepys MB, Hirschfield GM. C-reactive protein: a critical update. <i>The Journal of clinical</i>
55	566	investigation 2003;111:1805-12.
56 57	567	2 Elias-Smale SE, Kardys I, Oudkerk M, et al. C-reactive protein is related to extent and
58	568	progression of coronary and extra-coronary atherosclerosis; results from the Rotterdam study.
59 60	569	Atherosclerosis 2007;195:e195-202.

Page 17 of 37

1

BMJ Open

2		10
3 4	530	
5	570	3 Koenig W, Khuseyinova N, Baumert J, <i>et al.</i> Prospective study of high-sensitivity C-reactive
6 7	571	protein as a determinant of mortality: results from the MONICA/KORA Augsburg Cohort Study,
8 9 10 11 12 13 14 15 16	572	1984-1998. <i>Clinical chemistry</i> 2008; 54 :335-42.
	573	4 Ahmadi-Abhari S, Luben RN, Wareham NJ, <i>et al.</i> Seventeen year risk of all-cause and
	574	cause-specific mortality associated with C-reactive protein, fibrinogen and leukocyte count in men
	575	and women: the EPIC-Norfolk study. <i>European journal of epidemiology</i> 2013;28:541-50.
	576	5 Kuoppamaki M, Salminen M, Vahlberg T, <i>et al.</i> High sensitive C-reactive protein (hsCRP),
	577	cardiovascular events and mortality in the aged: a prospective 9-year follow-up study. Archives of
17	578	gerontology and geriatrics 2015;60:112-7.
18 19	579	6 Zuo H, Ueland PM, Ulvik A, <i>et al.</i> Plasma Biomarkers of Inflammation, the Kynurenine
20 21	580	Pathway, and Risks of All-Cause, Cancer, and Cardiovascular Disease Mortality: The Hordaland
22	581	Health Study. American journal of epidemiology 2016;183:249-58.
23 24	582	7 Nisa H, Hirata A, Kohno M, et al. High-Sensitivity C-Reactive Protein and Risks of All-
25	583	Cause and Cause-Specific Mortality in a Japanese Population. Asian Pacific journal of cancer
26 27	584	prevention : APJCP 2016;17:2643-8.
28	585	8 Li Y, Zhong X, Cheng G, <i>et al.</i> Hs-CRP and all-cause, cardiovascular, and cancer mortality
29 30	586	risk: A meta-analysis. Atherosclerosis 2017;259:75-82.
31	587	9 Vasto S, Candore G, Balistreri CR, <i>et al.</i> Inflammatory networks in ageing, age-related
32 33 34 35	588	diseases and longevity. Mechanisms of ageing and development 2007;128:83-91.
	589	10 Kelley-Hedgepeth A, Lloyd-Jones DM, Colvin A, et al. Ethnic differences in C-reactive
36	590	protein concentrations. <i>Clinical chemistry</i> 2008; 54 :1027-37.
37 38	591	11 Albert MA, Glynn RJ, Buring J, et al. C-reactive protein levels among women of various
39	592	ethnic groups living in the United States (from the Women's Health Study). The American journal of
40 41	593	cardiology 2004; 93 :1238-42.
42	594	12 Khera A, McGuire DK, Murphy SA, <i>et al.</i> Race and gender differences in C-reactive protein
43 44	595	levels. Journal of the American College of Cardiology 2005; 46 :464-9.
45 46	596	13 Lakoski SG, Cushman M, Criqui M, et al. Gender and C-reactive protein: data from the
47	597	Multiethnic Study of Atherosclerosis (MESA) cohort. American heart journal 2006;152:593-8.
48 49	598	14 Matthews KA, Sowers MF, Derby CA, <i>et al.</i> Ethnic differences in cardiovascular risk factor
50	599	burden among middle-aged women: Study of Women's Health Across the Nation (SWAN). American
51 52	600	<i>heart journal</i> 2005; 149 :1066-73.
53 54 55 56 57 58	601	15 Lee JH, Yeom H, Kim HC, <i>et al.</i> C-reactive Protein Concentration Is Associated With a
	602	Higher Risk of Mortality in a Rural Korean Population. Journal of preventive medicine and public
	603	health = Yebang Uihakhoe chi 2016;49:275-87.
	604	16 Sung KC, Ryu S, Chang Y, <i>et al.</i> C-reactive protein and risk of cardiovascular and all-cause
59 60	605	mortality in 268 803 East Asians. European heart journal 2014;35:1809-16.

Page 18 of 37

BMJ Open

1

2 3									
4 5	606	17 Kengne AP, Batty GD, Hamer M, et al. Association of C-reactive protein with							
6 7 8 9 10 11	607	cardiovascular disease mortality according to diabetes status: pooled analyses of 25,979 participants							
	608	from four U.K. prospective cohort studies. <i>Diabetes care</i> 2012;35:396-403.							
	609	18 Heikkila K, Ebrahim S, Lawlor DA. A systematic review of the association between							
	610	circulating concentrations of C reactive protein and cancer. Journal of epidemiology and community							
12	611	health 2007; 61 :824-33.							
13 14 15 16 17 18 19	612	Dahl M, Vestbo J, Lange P, <i>et al.</i> C-reactive protein as a predictor of prognosis in chronic							
	613	obstructive pulmonary disease. American journal of respiratory and critical care medicine							
	614	2007;175:250-5.							
	615	20 Wang X, Bao W, Liu J, <i>et al.</i> Inflammatory markers and risk of type 2 diabetes: a systematic							
20	616	review and meta-analysis. <i>Diabetes care</i> 2013; 36 :166-75.							
21 22	617	21 Ishii S, Cauley JA, Greendale GA, <i>et al.</i> C-reactive protein, bone strength, and nine-year							
23	618	fracture risk: data from the Study of Women's Health Across the Nation (SWAN). Journal of bone							
24 25	619	and mineral research : the official journal of the American Society for Bone and Mineral Research							
26 27	620	2013; 28 :1688-98.							
28 29 30 31	621	22 Kim Y, Han BG, Ko GESg. Cohort Profile: The Korean Genome and Epidemiology Study							
	622	(KoGES) Consortium. International journal of epidemiology 2017;46:1350.							
	623	23 Shin S, Lee HW, Kim CE, <i>et al.</i> Egg Consumption and Risk of Metabolic Syndrome in							
32 33	624	Korean Adults: Results from the Health Examinees Study. Nutrients 2017;9.							
34 35	625	Pan WH, Yeh WT. How to define obesity? Evidence-based multiple action points for public							
36	626	awareness, screening, and treatment: an extension of Asian-Pacific recommendations. Asia Pacific							
37 38	627	journal of clinical nutrition 2008;17:370-4.							
39	628	25 National Cholesterol Education Program Expert Panel on Detection E, Treatment of High							
40 41	629	Blood Cholesterol in A. Third Report of the National Cholesterol Education Program (NCEP) Expert							
42	630	Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment							
43 44	631	Panel III) final report. Circulation 2002;106:3143-421.							
45 46	632	26 Heinzl H, Kaider A. Gaining more flexibility in Cox proportional hazards regression models							
40 47	633	with cubic spline functions. Computer methods and programs in biomedicine 1997;54:201-8.							
48 49	634	27 MacGregor AJ, Gallimore JR, Spector TD, et al. Genetic effects on baseline values of C-							
50	635	reactive protein and serum amyloid a protein: a comparison of monozygotic and dizygotic twins.							
51 52	636	Clinical chemistry 2004;50:130-4.							
53 54 55 56 57 58	637	28 Ledue TB, Rifai N. Preanalytic and analytic sources of variations in C-reactive protein							
	638	measurement: implications for cardiovascular disease risk assessment. Clinical chemistry							
	639	2003; 49 :1258-71.							
59 60									

BMJ Open

2 3		18
4	640	29 Emerging Risk Factors C, Kaptoge S, Di Angelantonio E, et al. C-reactive protein
5 6	641	concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-
7 8	642	analysis. <i>Lancet</i> 2010; 375 :132-40.
9	643	30 Lee YJ, Lee JH, Shin YH, <i>et al.</i> Gender difference and determinants of C-reactive protein
10 11	644	level in Korean adults. Clinical chemistry and laboratory medicine 2009;47:863-9.
12	645	31 Doran B, Zhu W, Muennig P. Gender differences in cardiovascular mortality by C-reactive
13 14	646	protein level in the United States: evidence from the National Health and Nutrition Examination
15 16	647	Survey III. American heart journal 2013;166:45-51.
17	648	32 Gaskins AJ, Wilchesky M, Mumford SL, et al. Endogenous reproductive hormones and C-
18 19	649	reactive protein across the menstrual cycle: the BioCycle Study. American journal of epidemiology
20 21	650	2012;175:423-31.
22	651	33 Gilliver SC. Sex steroids as inflammatory regulators. <i>The Journal of steroid biochemistry</i>
23 24	652	and molecular biology 2010; 120 :105-15.
25	653	34 Man SF, Connett JE, Anthonisen NR, <i>et al.</i> C-reactive protein and mortality in mild to
26 27	654	moderate chronic obstructive pulmonary disease. Thorax 2006;61:849-53.
28 29	655	35 Di Napoli M, Papa F. Angiotensin-converting enzyme inhibitor use is associated with
30 31 32	656	reduced plasma concentration of C-reactive protein in patients with first-ever ischemic stroke. Stroke
	657	2003; 34 :2922-9.
33	658	36 Sidhu JS, Cowan D, Kaski JC. The effects of rosiglitazone, a peroxisome proliferator-
34 35	659	activated receptor-gamma agonist, on markers of endothelial cell activation, C-reactive protein, and
36	660	fibrinogen levels in non-diabetic coronary artery disease patients. Journal of the American College of
37 38	661	<i>Cardiology</i> 2003; 42 :1757-63.
39 40	662	37 Heikkila K, Ebrahim S, Rumley A, <i>et al.</i> Associations of circulating C-reactive protein and
41	663	interleukin-6 with survival in women with and without cancer: findings from the British Women's
42 43	664	Heart and Health Study. Cancer epidemiology, biomarkers & prevention : a publication of the
44	665	American Association for Cancer Research, cosponsored by the American Society of Preventive
45 46	666	<i>Oncology</i> 2007; 16 :1155-9.
47 48	667	38 Marsik C, Kazemi-Shirazi L, Schickbauer T, <i>et al.</i> C-reactive protein and all-cause mortality
49	668	in a large hospital-based cohort. Clinical chemistry 2008;54:343-9.
50 51	669	39 Proctor MJ, McMillan DC, Horgan PG, <i>et al.</i> Systemic inflammation predicts all-cause
52	670	mortality: a glasgow inflammation outcome study. <i>PloS one</i> 2015;10:e0116206.
53 54	671	40 Chen TH, Gona P, Sutherland PA, <i>et al.</i> Long-term C-reactive protein variability and
55 56	672	prediction of metabolic risk. The American journal of medicine 2009;122:53-61.
57 58	673	41 Zheng W, McLerran DF, Rolland B, <i>et al.</i> Association between Body-Mass Index and Risk
59	674	of Death in More Than 1 Million Asians, N Engl J Med 2011; 364:719-729.
60	675	

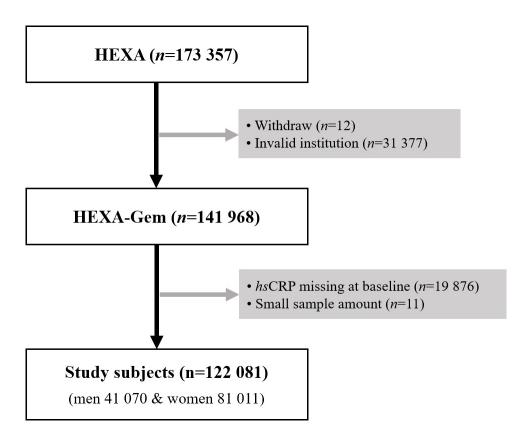


Figure 1 Flow diagram of analytical sample in current study using Health Examinees cohort. HEXA: Health Examinees, hsCRP: High sensitivity C-reactive protein

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

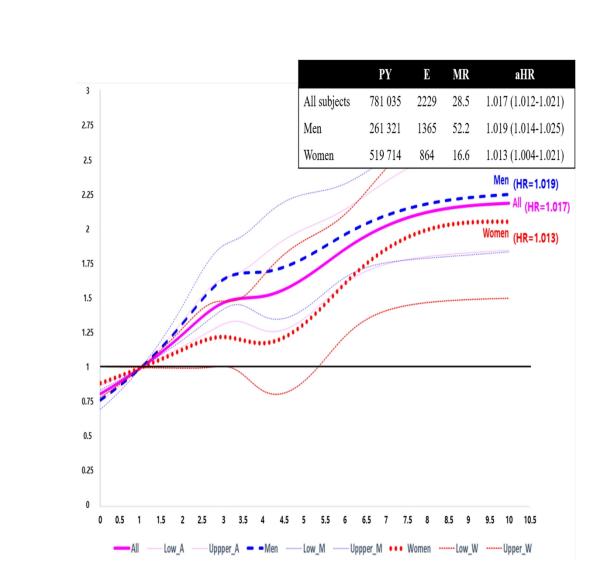


Figure 2 (a) A dose-response association between serum hsCRP level and risk of all-cause mortality in all subjects at recruitment.PY: Person-year, E: Number of death, MR: Mortality rate (10 000 person year)aHR: Adjusted for age, gender, education, job, marital status, BMI, non-communicable disease history, smoking, alcohol consumption and exerciseLow_A and Upper_A: 95%CI for all subjectsLow_M and Upper_M: 95%CI for menLow_W and Upper_W: 95%CI for women

BMJ Open

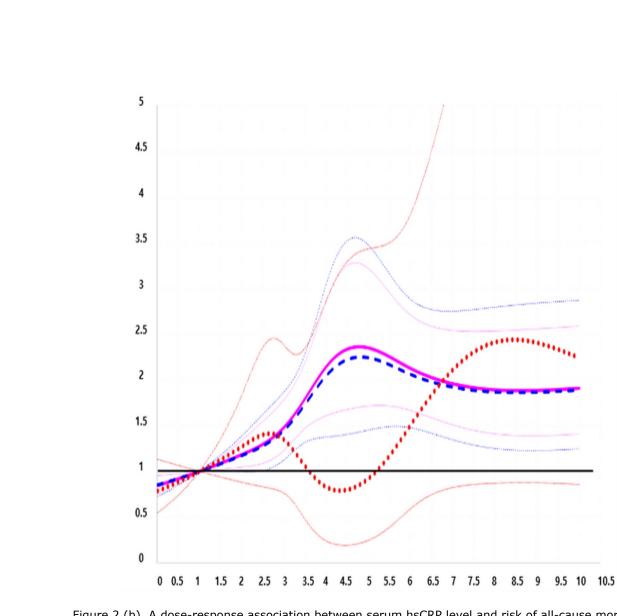


Figure 2 (b) A dose-response association between serum hsCRP level and risk of all-cause mortality in healthy subjects at recruitment.Low_A and Upper_A: 95%CI for all subjects Low_M and Upper_M: 95%CI for menLow_W and Upper_W: 95%CI for women

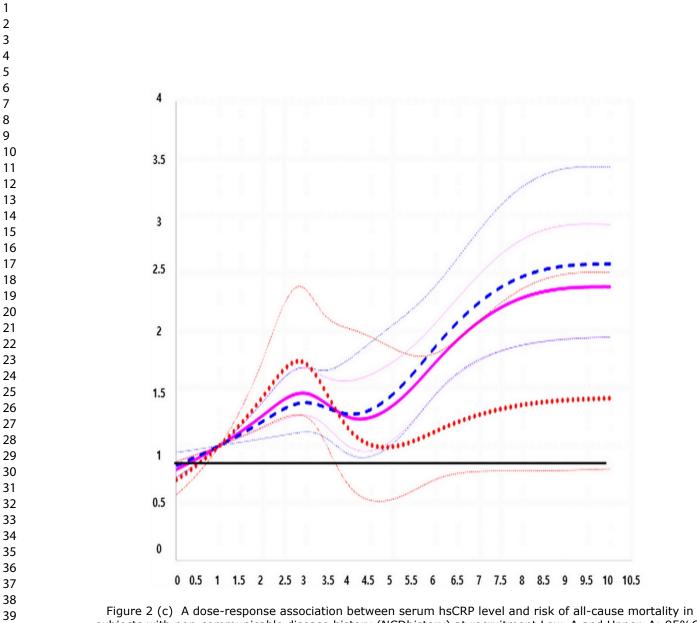


Figure 2 (c) A dose-response association between serum hsCRP level and risk of all-cause mortality in subjects with non-communicable disease history (NCDhistory) at recruitment.Low_A and Upper_A: 95%CI for all subjectsLow_M and Upper_M: 95%CI for menLow_W and Upper_W: 95%CI for women

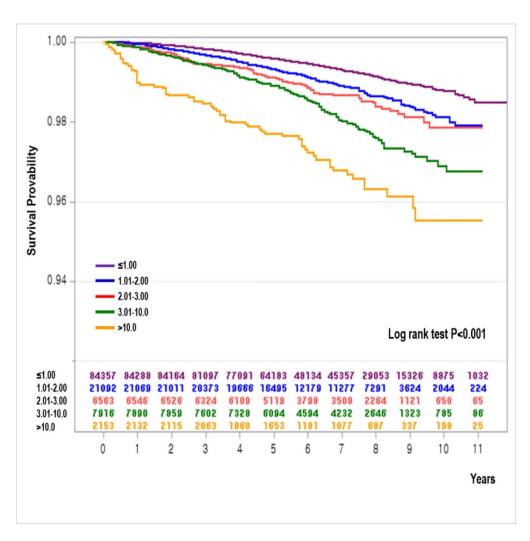
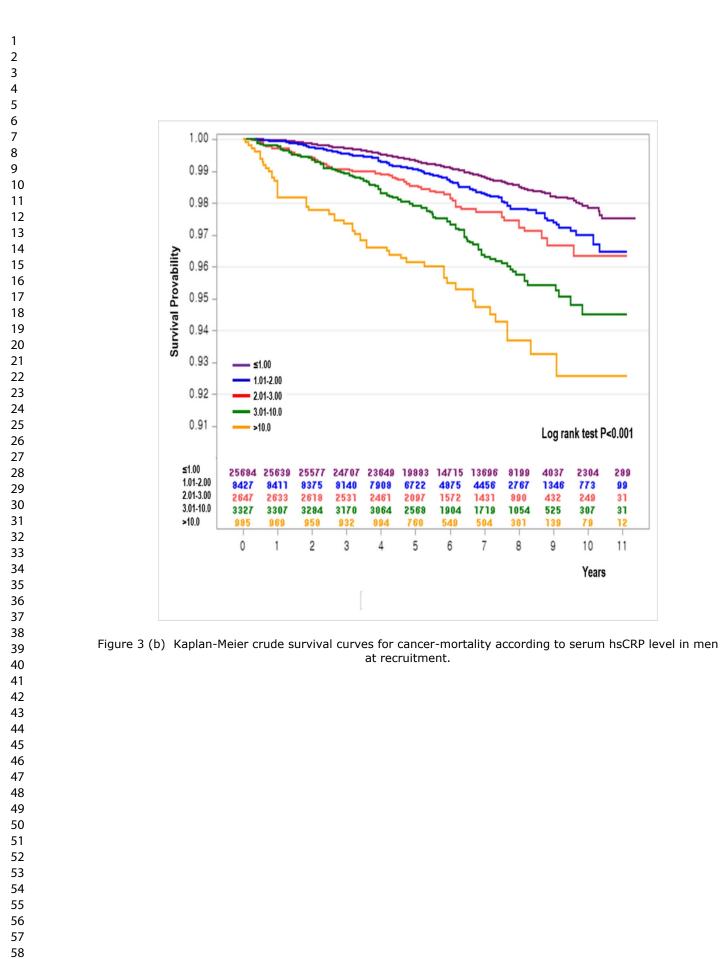



Figure 3 (a) Kaplan-Meier crude survival curves for cancer-mortality according to serum hsCRP level in all subjects at recruitment.

19883 14715 13696

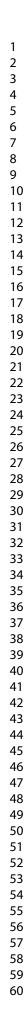
Log rank test P<0.001

Years

≤1.00

1.01-2.00

2.01-3.00


3.01-10.0

>10.0

25684 25639

25577 24707 23649

at recruitment.

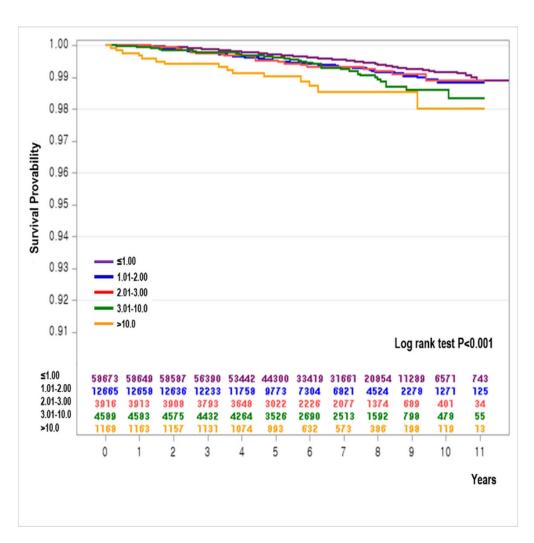


Figure 3 (c) Kaplan-Meier crude survival curves for cancer-mortality according to serum hsCRP level in women at recruitment.

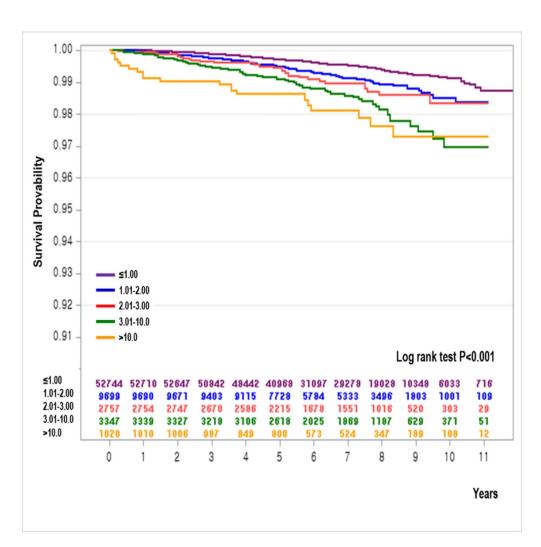
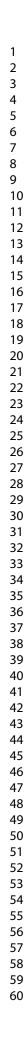



Figure 3 (d) Kaplan-Meier crude survival curves for cancer-mortality according to serum hsCRP level in healthy subjects at recruitment.

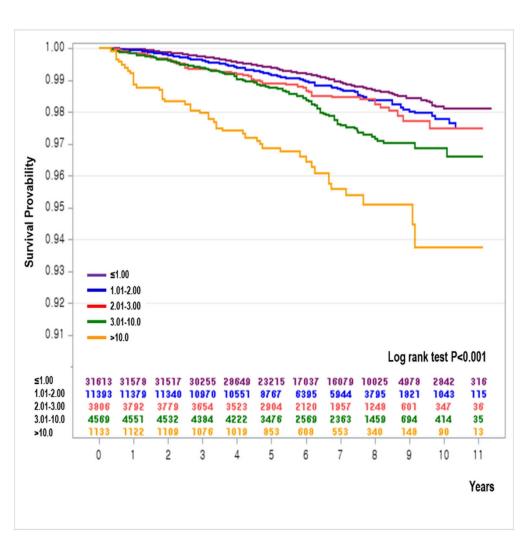


Figure 3 (e) Kaplan-Meier crude survival curves for cancer-mortality according to serum hsCRP level in subjects with non-communicable disease history (NCDhistory) at recruitment.

Figure 4 (a) Kaplan-Meier crude survival curves for cardiovascular disease mortality according to serum hsCRP level in all subjects at recruitment.

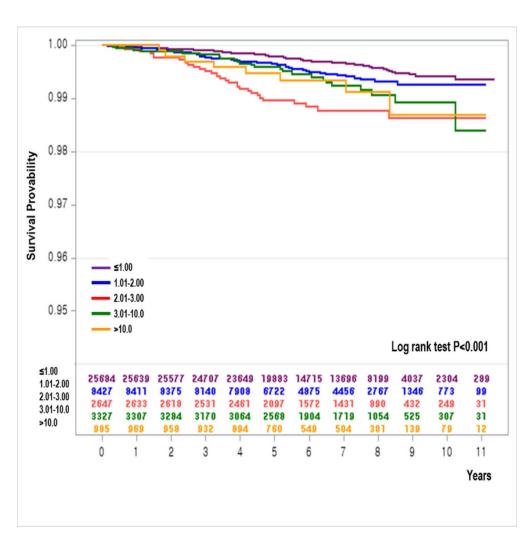


Figure 4 (b) Kaplan-Meier crude survival curves for cardiovascular disease mortality according to serum hsCRP level in men at recruitment.

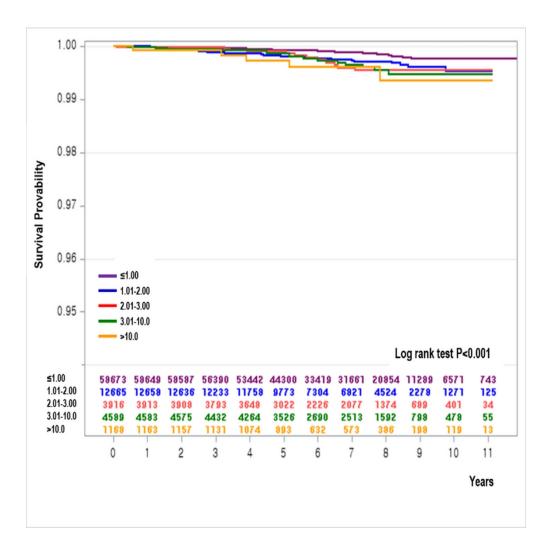
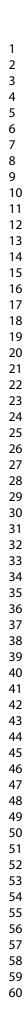



Figure 4 (c) Kaplan-Meier crude survival curves for cardiovascular disease mortality according to serum hsCRP level in women at recruitment.

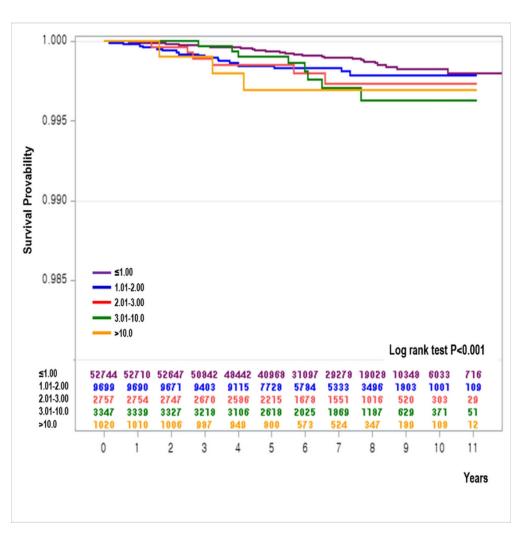


Figure 4 (d) Kaplan-Meier crude survival curves for cardiovascular disease mortality according to serum hsCRP level in healthy subjects at recruitment.

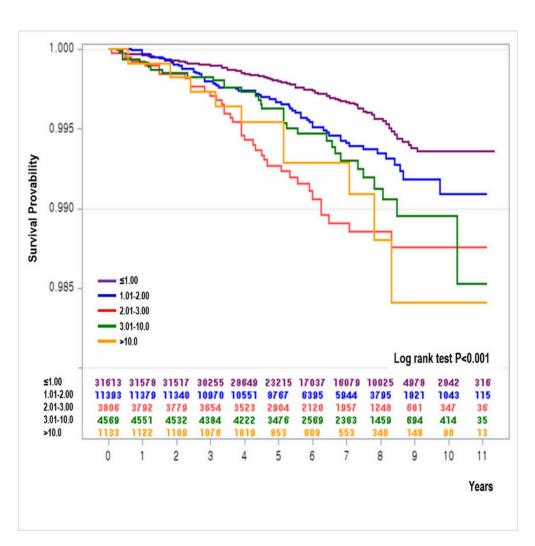


Figure 4 (e) Kaplan-Meier crude survival curves for cardiovascular disease mortality according to serum hsCRP level in subjects with non-communicable disease history (NCDhistory) at recruitment.

	4
	I
	I

	PY	Е	MR	aHR	HR _{1year}	HR _{2year}
All subjects					-	
Continuous	781 035	2229	28.5	1.017 (1.012-1.021)	1.015 (1.010-1.020)	1.014 (1.009-1.019
≤1.00	539 271	1153	21.4	Reference	Reference	Reference
1.01-1.50	90 911	308	33.9	1.26 (1.10-1.45)	1.27 (1.10-1.45)	1.21 (1.04-1.40)
1.51-2.00	44 615	163	36.5	1.28 (1.08-1.53)	1.28 (1.07-1.53)	1.26 (1.04-1.52)
2.01-2.50	25 139	117	46.5	1.53 (1.25-1.89)	1.51 (1.22-1.87)	1.49 (1.19-1.87)
2.51-3.00	16 996	72	42.4	1.39 (1.08-1.80)	1.31 (1.00-1.72)	1.23 (0.92-1.65)
3.01-4.00	19 667	103	52.4	1.61 (1.29-2.01)	1.62 (1.29-2.03)	1.64 (1.30-2.08)
4.01-6.00	17 933	102	56.9	1.84 (1.48-2.28)	1.77 (1.41-2.21)	1.70 (1.34-2.16)
6.01-10.00	13 019	88	67.6	2.02 (1.59-2.56)	1.96 (1.54-2.50)	1.93 (1.49-2.51)
>10.0	13 484	123	91.2	2.59 (2.12-3.16)	2.41 (1.95-2.97)	2.26 (1.80-2.84)
P-trend				<.001	<.001	<.001
Men						
Continuous	261 321	1365	52.2	1.019 (1.014-1.025)	1.017 (1.011-1.023)	1.017 (1.010-1.023
≤1.00	163 068	638	39.1	Reference	Reference	Reference
1.01-1.50	36 094	190	52.6	1.27 (1.07-1.51)	1.28 (1.07-1.53)	1.22 (1.01-1.47)
1.51-2.00	17 946	103	57.4	1.34 (1.07-1.67)	1.34 (1.07-1.68)	1.35 (1.06-1.72)
2.01-2.50	10 059	77	76.5	1.56 (1.20-2.03)	1.53 (1.16-2.00)	1.47 (1.10-1.96)
2.51-3.00	6959	54	77.6	1.71 (1.27-2.29)	1.57 (1.15-2.15)	1.46 (1.04-2.05)
3.01-4.00	8177	77	94.2	1.88 (1.45-2.43)	1.94 (1.50-2.52)	1.92 (1.46-2.54)
4.01-6.00	7425	75	101.0	2.05 (1.59-2.63)	1.95 (1.49-2.53)	1.91 (1.44-2.52)
6.01-10.00	5456	59	108.1	2.03 (1.52-2.73)	1.96 (1.44-2.66)	1.85 (1.33-2.58)
>10.0	6137	92	149.9	2.84 (2.25-3.58)	2.66 (2.08-3.39)	2.58 (1.99-3.35)
P-trend				<.001	<.001	<.001
Women						
Continuous	519 714	864	16.6	1.013 (1.004-1.021)	1.011(1.002-1.021)	1.010 (0.999-1.02)
≤1.00	376 203	515	13.7	Reference	Reference	Reference
1.01-1.50	54 817	118	21.5	1.28 (1.03-1.59)	1.27 (1.02-1.58)	1.23 (0.97-1.56)
1.51-2.00	26 669	60	22.5	1.23 (0.92-1.64)	1.21 (0.90-1.63)	1.14 (0.83-1.56)
2.01-2.50	15 080	40	26.5	1.52 (1.09-2.14)	1.52 (1.08-2.15)	1.56 (1.09-2.24)
2.51-3.00	10 037	18	17.9	0.84 (0.49-1.44)	0.87 (0.51-1.48)	0.83 (0.46-1.47)
3.01-4.00	11 490	26	22.6	1.16 (0.75-1.81)	1.09 (0.68-1.72)	1.21 (0.76-1.93)
4.01-6.00	10 508	27	25.7	1.48 (0.99-2.22)	1.47 (0.97-2.22)	1.36 (0.86-2.14)
6.01-10.00	7563	29	38.3	2.00 (1.34-2.98)	1.98 (1.32-2.98)	2.10 (1.39-3.19)
>10.0	7347	31	42.2	2.02 (1.36-3.02)	1.84 (1.21-2.81)	1.51 (0.93-2.47)
P-trend				<.001	<.001	0.001
Premenopause						
≤1.00	141 286	96	6.8			
1.01-2.00	20 500	20	9.8	1.52 (0.92-2.52)	1.49 (0.89-2.50)	1.57 (0.90-2.73)
2.01-3.00	5835	6	10.3	1.76 (0.77-4.06)	1.83 (0.79-4.22)	1.42 (0.52-3.93)
3.01-10.0	6886	6	8.7	1.51 (0.66-3.50)	1.31 (0.53-3.25)	1.21 (0.44-3.36)
>10.0	1759	4	22.7	2.57 (0.81-8.14)	2.63 (0.83-8.37)	2.09 (0.51-8.58)
<i>P</i> -trend		·		0.020	0.036	0.150
Postmenopause						
≤1.00	192 164	366	19.0			
1.01-2.00	52 897	145	27.4	1.26 (1.03-1.55)	1.25 (1.02-1.54)	1.18 (0.95-1.48)
2.01-3.00	16 943	44	26.0	1.11 (0.80-1.56)	1.12 (0.80-1.57)	1.19 (0.83-1.68)
3.01-10.0	19 687	67	34.0	1.49 (1.13-1.97)	1.47 (1.10-1.95)	1.52 (1.13-2.05)
>10.0	4828	27	55.9	2.09 (1.37-3.21)	1.88 (1.19-2.96)	1.56 (0.92-2.63)
<i>P</i> -trend	1020			<0.001	0.001	0.003

Supplement 1 The association of ser m hsCRP level with the risk of all-cause mortality

PY: Person-year, E: Number of death, MR: Mortality rate (10,000 person year)

ر ۸	
4	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
10	
16	
17	
18	
19	
20	
21	
י <u>-</u> רר	
22	
5 6 7 8 9 10 11 2 13 14 15 16 7 8 9 10 11 20 21 22 24 25 6 7 8 9 10 11 21 31 4 15 16 17 8 9 20 21 22 23 24 25 6 7 8 9 30 32 33 33 33 33 33 33 34 35 36 9 10 11 20 31 20 20 20 20 20 20 20 20 20 20 20 20 20	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
21	
24	
35	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
46	
40	
48	
49	
50	
51	
52	
53	
Г Л	
54	
54 55	

58 59 60

- aHR: Adjusted for age, gender, education, job, marital status, BMI, non-communicable disease history, smoking, alcohol consumption and exercise
 - HR_{1year} : aHR after exclude subjects who died within 1 yr f/u time
 - HR_{2year}: aHR after exclude subjects who died within 2 yr f/u time

For peer teries only

		Healthy subjects at recruitment					Subjects with NCD _{history} at recruitment				
	E	MR	aHR	HR_{1year}	HR _{2year}	E	MR	aHR	HR_{1year}	HR _{2yea}	
All											
≤ 1.00	517	15.1	Ref	Ref	Ref	636	32.3	Ref	Ref	Re	
1.01-2.00	145	22.9	1.20	1.19	1.16	326	45.1	1.20	1.19	1.1	
2.01-3.00	53	29.3	1.38	1.37	1.32	136	56.6	1.51	1.46	1.4	
3.01-10.0	102	46.8	2.22	2.15	2.15	191	66.3	1.62	1.60	1.5	
>10.0	40	61.3	2.38	2.23	2.27	83	118.9	2.74	2.54	2.2	
P-trend			<.001	<.001	<.001			<.001	<.001	<.00	
Men											
≤ 1.00	270	29.5	Ref	Ref	Ref	368	51.4	Ref	Ref	Re	
1.01-2.00	89	35.8	1.11	1.11	1.13	204	70.0	1.40	1.41	1.3	
2.01-3.00	33	46.3	1.22	1.17	1.15	98	99.0	1.82	1.73	1.6	
3.01-10.0	70	76.8	2.14	2.08	2.03	141	118.1	1.92	1.90	1.8	
>10.0	31	110.0	2.60	2.49	2.73	61	183.1	3.05	2.83	2.5	
P-trend			<.001	<.001	<.001			<.001	<.001	<.00	
Women											
≤ 1.00	247	9.8	Ref	Ref	Ref	268	21.4	Ref	Ref	Re	
1.01-2.00	56	14.6	1.35	1.32	1.20	122	28.3	1.19	1.20	1.1	
2.01-3.00	20	18.2	1.61	1.66	1.60	38	26.9	1.06	1.06	1.1	
3.01-10.0	32	25.2	2.31	2.23	2.37	50	29.7	1.16	1.14	1.1	
>10.0	9	24.3	1.69	1.49	1.12	22	60.3	2.15	1.99	1.6	
P-trend			<.001	<.001	0.001			0.018	0.043	0.08	

Supplement 2. The association between serum *hs*CRP level and all-cause mortality by gender and noncommunicable disease history (NCD_{*history*}) at recruitment

E: Number of death, MR: Mortality rate (10 000 person year)

aHR: Adjusted for age, gender, education, job, marital status, BMI, non-communicable disease history, smoking, alcohol consumption and exercise

 $HR_{1year}\!\!:aHR$ after exclude subjects who died within 1 yr f/u time

HR_{2year}: aHR after exclude subjects who died within 2 yr f/u time

 BMJ Open

Section/Topic	Item #	Recommendation					
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract					
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	1-2				
Introduction							
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported					
Objectives	3	State specific objectives, including any pre-specified hypotheses					
Methods							
Study design	4	Present key elements of study design early in the paper	4				
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection					
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants 	4				
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	Not Applicable				
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable					
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group					
Bias	9	Describe any efforts to address potential sources of bias	6				
Study size	10	Explain how the study size was arrived at	4				
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why					
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	5-6				
		(b) Describe any methods used to examine subgroups and interactions	5-6				
		(c) Explain how missing data were addressed	4				
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed	4				

		Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	6
Results	•		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	4
		(c) Consider use of a flow diagram	4
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	6-7
		(b) Indicate number of participants with missing data for each variable of interest	4
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	6
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	6-10
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	Not Applicable
		Cross-sectional study—Report numbers of outcome events or summary measures	Not Applicable
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	7-11
		(b) Report category boundaries when continuous variables were categorized	5
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	Not Applicable
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	9
Discussion		·	
Key results	18	Summarise key results with reference to study objectives	12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	14
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	12-14
Generalisability	21	Discuss the generalisability (external validity) of the study results	12-14
Other information		•	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	15

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. **Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.