THE LANCET Diabetes & Endocrinology

Supplementary appendix

This appendix formed part of the original submission. We post it as supplied by the authors.

Supplement to: Wilson L M, Jacobs P G, Riddell M C, et al. Opportunities and challenges in closed-loop systems in type 1 diabetes. *Lancet Diabetes Endocrinol* 2021; published online Nov 8. http://dx.doi.org/10.1016/S2213-8587(21)00289-8.

Table 1a

Automated handling of exercise	
Considerations	Current commercially available closed-loop systems may facilitate improved glucose control during and exercise, but hypoglycemia can still occur ¹⁻³ All systems allow higher glucose targets for exercise: • These should be initiated 60-90 minutes before exercise onset to allow the levels of circulating insulin to decrease ⁴ • Typically, still requires small amounts of carbohydrate (~15-30g), either just before the exercise starts, or if the glucose falls below 7.0 mmol/L
	during the activity ⁵ All forms of prolonged exercise can result in increased hypoglycemia risk over the next 6-12 hours and higher glucose targets may be needed in recovery ⁶
User actions required	For exercise within two hours of a meal, a 25-75% reduction in bolus insulin is recommended for insulin-only closed-loop systems ⁴
	Typically, only aerobic and mixed forms of physical activity lasting >30 min require higher glucose targets and reduced closed-loop insulin delivery More intense or brief forms of anaerobic exercise may require insulin administration for avoidance of post-exercise hyperglycemia ⁷
Future work	Physiologic models of various exercise types and intensities ⁸ could inform an unannounced exercise-aware model predictive controller for better handling of hormone delivery around exercise ⁹ Additional inputs may better inform exercise management (e.g., physical activity wearables, lactate, ketones)
	User specific factors (sex, muscle/fat mass, fitness levels, individual goals such as weight loss/improved performance etc.) will need to be considered

Table 1b

Multihormone closed-loop systems	
Glucagon	
Pros	Reduce exercise-induced and insulin-induced hypoglycemia while maintaining glucose time in range. 10,11
Cons	Increased system complexity and cost
	Nausea and vomiting
	Hypoglycemia - if glucagon is called for and infusion set failure occurs
	Hyperglycemia or diabetic ketoacidosis (DKA) - if glucagon is delivered in response to an inaccurate low CGM reading
Future work	Dosing strategies to reduce gastrointestinal side effects (titration up over time, micro dosing, continuous infusion)
	Evaluation for changes in insulin dose requirements with various glucagon dosing strategies
	Need for long term human trials for assessment of overall safety and potential immunogenicity of glucagon analogs
	Need for studies on stability and feasibility in pumps
Pramlintide	·
Pros	Reduces glucose excursions after a meal ¹² by slowing gastric emptying ¹³ and inhibiting endogenous post-meal glucagon release ¹⁴
	Opportunity for a fully automated closed-loop system by combining automated meal detection, ultra-fast acting insulin analogs and pramlintide
	for superior daytime glucose control ¹⁵
Cons	Nausea and vomiting
	Post-meal hypoglycemia can occur
Future work	Fixed ratio co-formulation pramlintide/insulin may soon be available 16
	Dosing strategies to reduce gastrointestinal side effects (titration up over
	time, micro dosing, continuous infusion) Need for studies on stability and feasibility in pumps
	recu for studies on stability and reasibility in pumps

References:

- 1. Eckstein ML, Weilguni B, Tauschmann M, et al. Time in range for closed-loop systems versus standard of care during physical exercise in people with type 1 diabetes: A systematic review and meta–analysis. *J Clin Med* 2021; **10**(11).
- 2. Dovc K, Macedoni M, Bratina N, et al. Closed-loop glucose control in young people with type 1 diabetes during and after unannounced physical activity: A randomised controlled crossover trial. *Diabetologia* 2017; **60**(11): 2157–67.
- 3. Sherr JL, Cengiz E, Palerm CC, et al. Reduced hypoglycemia and increased time in target using closed-loop insulin delivery during nights with or without antecedent afternoon exercise in type 1 diabetes. *Diabetes Care* 2013; **36**(10): 2909–14.
- 4. Zaharieva DP, Messer LH, Paldus B, O'Neal DN, Maahs DM, Riddell MC. Glucose control during physical activity and exercise using closed loop technology in adults and adolescents with type 1 diabetes. *Can J Diabetes* 2020; **44**(8): 740–9.
- 5. Patel NS, Van Name MA, Cengiz E, et al. Mitigating reductions in glucose during exercise on closed-loop insulin delivery: The ex-snacks study. *Diabetes Technol Ther* 2016; **18**(12): 794–9.
- 6. Riddell MC, Li Z, Beck RW, et al. More time in glucose range during exercise days than sedentary days in adults living with type 1 diabetes. *Diabetes Technol Ther* 2021; **23**(5): 376–83.
- 7. Aronson R, Brown RE, Li A, Riddell MC. Optimal insulin correction factor in post-high-intensity exercise hyperglycemia in adults with type 1 diabetes: The fit study. *Diabetes Care* 2019; **42**(1): 10–6.
- 8. Nguyen TP, Jacobs PG, Castle JR, et al. Separating insulin-mediated and non-insulin-mediated glucose uptake during and after aerobic exercise in type 1 diabetes. *Am J Physiol Endocrinol Metab* 2021; **320**(3): E425–E37.
- 9. Resalat N, El Youssef J, Reddy R, Jacobs PG. Design of a dual-hormone model predictive control for artificial pancreas with exercise model. *Annu Int Conf IEEE Eng Med Biol Soc* 2016; **2016**: 2270–3.
- 10. Castellanos LE, Balliro CA, Sherwood JS, et al. Performance of the insulin-only ilet bionic pancreas and the bihormonal iLet using dasiglucagon in adults with type 1 diabetes in a home-use setting. *Diabetes Care* 2021.
- 11. Wilson LM, Jacobs PG, Ramsey KL, et al. Dual-hormone closed-loop system using a liquid stable glucagon formulation versus insulin-only closed-loop system compared with a predictive low glucose suspend system: An open-label, outpatient, single-center, crossover, randomized controlled trial. *Diabetes Care* 2020; **43**(11): 2721–9.
- 12. Riddle MC, Nahra R, Han J, et al. Control of postprandial hyperglycemia in type 1 diabetes by 24-hour fixed-dose coadministration of pramlintide and regular human insulin: A randomized, two-way crossover study. *Diabetes Care* 2018; **41**(11): 2346–52.
- 13. Vella A, Lee JS, Camilleri M, et al. Effects of pramlintide, an amylin analogue, on gastric emptying in type 1 and 2 diabetes mellitus. *Neurogastroenterol Motil* 2002; **14**(2): 123–31.
- 14. Nyholm B, Orskov L, Hove KY, et al. The amylin analog pramlintide improves glycemic control and reduces postprandial glucagon concentrations in patients with type 1 diabetes mellitus. *Metabolism* 1999; **48**(7): 935–41.
- 15. Tsoukas MA, Cohen E, Legault L, et al. Alleviating carbohydrate counting with a fiasp-plus-pramlintide closed-loop delivery system (artificial pancreas): Feasibility and pilot studies. *Diabetes Obes Metab* 2021; **23**(9): 2090–8.
- 16. Meiffren G, Andersen G, Eloy R, et al. 112-lB: ADO09, a coformulation of pramlintide (pram) and insulin A21G, improves postprandial glucose vs. Novolog in type 1 diabetes (T1D). *Diabetes* 2020; **69**(Supplement 1): 112-LB.