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Materials and Methods 
 
Mice. Experiments in this study were approved by the Institutional Animal Care and Use 
Committee at Boston University, approved by the Allen Institute Animal Care and Use Committee, 
and conform to NIH guidelines.  Behavior experiments were performed using C57BL/6J mice 
(The Jackson Laboratory). Input mapping experiments were performed using SST-IRES-Cre and 
VIP-IRES-Cre mice(42). Bilateral whisker deprivation experiments were performed using 
B6.CgTg(Fos/EGFP)1-3Brth/J mice(30).  All animals were 6-8 weeks of age at time of surgery.  
Mice used for behavior were housed individually in reverse 12-hour light cycle conditions. All 
handling and behavior occurred under simulated night time conditions. 
 
Single cell RNA sequencing analysis. Single cell RNA sequencing data in this study were 
previously acquired.  S1 excitatory and inhibitory subclasses and cell types obtained were 
identified using an iterative clustering R package hicat (https://github.com/AllenInstitute/hicat) as 
previously described(1).  To understand the cell type and area differences of L2/3 neurons 
among S1, V1, and ALM, differentially expressed genes (DEG) were identified between all pairs 
of cell types, all pairs of areas, and all pairs of cell type and area groups (fold change > 4, FDR 
0.01, and expressed in >= 40% cells in one group). The average counts per million reads mapped 
(CPM) values of each DEG within each group were scaled across all the groups to between 0 and 
1. A DEG was categorized as cell type specific if its normalized values were greater than 0.5 in at 
least two areas (or one region if the cluster is specific to one area) within a given cell type, and 
area-specific if its scaled values were greater than 0.5 in at least two cell types within a given area. 
DEGs specific to both cell type and area were defined as genes with scaled value greater than 0.5 
in only one area and cell type.  Immediate early genes enriched in Baz1a neurons were identified 
as those with statistically higher CPM values compared to Adamts2 and Agmat neurons.  
 
Animal imaging preparation.  For behavior and bilateral whisker deprivation experiments, the 
genetically encoded calcium indicator RCaMP1.07(20) was expressed by stereotaxic injection of 
AAV2/PHP.eb-RCaMP1.07 into S1 (600 nL, ~1 × 109 vg/ml per virus). L2/3 was targeted at 1.1 
mm posterior to bregma, 3.3 mm lateral, 300 µm below the pial surface. A 4mm cranial window 
was implanted over S1 to obtain optical access(31). A metal headpost was implanted on the skull 
adjacent to the window to allow for head fixation. One week after window implantation and 
injections, animals were handled and acclimated to head fixation. In order to identify regions of 
S1 that correspond to specific whiskers, functional mapping was performed using intrinsic signal 
imaging.  
 
Behavioral task.  Animals were trained on a head-fixed, whisker-based delayed non-match to 
sample task using equipment and training protocol previously described(24).  Whiskers were 
trimmed to a single row corresponding to the selected imaging region for high-speed videography.  
Animals were water deprived throughout training and imaging and only received water by 
performing the task. Their weight was monitored daily to ensure body weight did not drop below 
80% of initial weight.  In the task, a motorized rotor was used to deflect whiskers in either an 
anterior or posterior direction.  During the delay period and inter-trial interval, the rotor was 
withdrawn to prevent whisker-rotor contact.  Behavior was reported as ‘go/no-go’ in which 
animals licked on ‘go’ trials for a water reward (‘hit’) when the presented sample and test stimulus 
were non-matching and withheld licking on ‘no-go’ trials (‘correct rejection’) when the presented 
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sample and test stimulus were matching.  Misses on go trials were not rewarded, and false alarms 
on no-go trials were punished with an air puff and a time-out period.   
 
Bilateral whisker deprivation. Awake, head-fixed animals were subjected to passive whisker 
deflection. Each trial had the following structure: baseline (3s), rotor approach, anterior rotation 
and whisker deflection (1s), posterior rotation and whisker deflection (1s).  The rotor was 
positioned 1-2mm from the face to provide consistent whisker stimulation before and after bilateral 
deprivation.  For baseline activity and fosGFP measurements, neurons were imaged for two days 
prior to deprivation (Day -2 and -1). Whiskers were trimmed bilaterally and imaged immediately 
afterwards (Day 0).  The principle whisker was trimmed to a stub ~1-2 mm in length, so that it 
would not provide sensory information to the animal but could still be deflected by the rotor. 
Whiskers were re-trimmed every other day. During deprivation, activity measurements were 
acquired at Day 1 and 5 while fosGFP measurements were acquired at Day 1, 3, and 5. 
 
Two-photon imaging.  Two-photon calcium imaging in expert animals was performed with a 
custom-built resonant-scanning multi-area two-photon microscope with 16x/0.8NA water 
immersion objective (Nikon) using custom-written Scope software as previously described.  A 
31.25 MHz 1040 nm fiber laser (Spark Lasers) was used to excite the red calcium indicator 
RCaMP1.07.  The multi-area two-photon microscope was configured to perform simultaneous 
imaging at 32.6 Hz frame rate of two imaging planes were separated by ~50 µm in depth.  Average 
power of each beam at the sample was 70-90mW.  For each animal, imaging was performed across 
8-10 behavioral sessions (Fig. S7).  For bilateral whisker deprivation experiments, calcium 
imaging was performed across 16 different fields of view (FOV) per animal for each imaging 
session (Fig. S17).  Each FOV was acquired for 50 trials.    For imaging fosGFP expression, a dual 
channel high resolution 3D stacks of RCamp1.07 and GFP were taken through the calcium-imaged 
area using a Ti:Sapphire laser tuned to 860 nm (Chameleon Ultra Laser; Coherent) and resolved 
using  630/69nm and 520/60nm emission filters (BrightLine), respectively.  Following the 
conclusion of all experiments, animals were anesthetized and a high resolution 3D image volume 
was taken through the imaged area(s) for later registration with ex vivo tissue. 
 
Whisker tracking and analysis.  High-speed videography of whisker movement was acquired at 
500 Hz as previously described(24, 52).  For analysis, whiskers were automatically traced(52).  
The angle, curvature (κ), and location of the whisker tip at each time point was extracted for all 
traced whiskers.  Using the mean whisker angle, a Hilbert transform was applied to determine 
whisking amplitude, phase, setpoint, and the reconstructed whisker angle 
(angleRECONSTRUCTION)(53).  The position of the rotor was automatically tracked in the video using 
custom scripts (MATLAB).  Whisker-rotor touch was scored as events in which the tip of at least 
one whisker came into within <5 pixel radius of the rotor face with ‘touch onset’ defined as the 
first possible whisker contact at the beginning of the sample and test period and ‘touch offset’ 
defined as the last possible whisker contact at the end of the sample and test period.  Time vectors 
of kinematic parameters were down-sampled to the imaging frame rate for further analysis.  
Behavioral sessions with sub-optimal imaging conditions in which whisker tracking failed in 
>20% of trials were excluded from analysis.   
 
In vivo image analysis. All image processing was performed in MATLAB as described(24, 53).  
Two-photon images were first motion corrected using a piece-wise rigid motion correction 
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algorithm(54). For behavior experiments, regions of interest (ROIs) were extracted using 
constrained non-negative matrix factorization and were labeled as active neurons.  A global 
neuropil correction was performed for each active neuron and the resulting fluorescence traces 
were detrended on a per trial basis.  Remaining neurons in the FOV were manually segmented and 
labeled as inactive neurons. For bilateral whisker deprivation experiments, neurons across imaging 
sessions were identified by first registering each session image into a global reference image using 
ImageJ and MATLAB. For each neuron, ROIs were manually segmented in the reference image 
and applied to each session image for extraction of calcium signals.  For analysis of fosGFP 
expression, 3D volume stacks across imaging sessions were aligned by landmark-based 3D affine 
registration using custom software (Neurotator).  Automatically segmented 3D ROIs were 
obtained from registered ex vivo tissue slices corresponding to in vivo imaged areas and were 
overlaid for each imaged neuron. The mean fluorescence intensity for GFP and RCamp1.07 was 
extracted for each ROI.  To control for variability in imaging conditions and background 
fluorescence, relative GFP intensity was expressed as ΔR/R0 = (RROI-Rneuropil)/Rneuropil where RROI 
is the ratio between GFP and RCaMP1.07 fluorescence in the ROI and Rneuropil is the ratio between 
GFP and RCaMP1.07 fluorescence in the surrounding neuropil.  FosGFP neurons with ΔR/R0  > 
0.2 were identified as high expressing. 
 
Calcium event estimation.  Calcium signals were deconvolved using an Online Active Set 
method to Infer Spikes (OASIS), a generalization of the pool adjacent violators algorithm (PAVA) 
for isotonic regression.  First, calcium signals below baseline fluorescence (bottom 10th percentile 
of signal intensity) were thresholded.  For each cell, a convolution kernel with exponential rise and 
decay time constants were determined using an autoregressive model.  For measurement of photon 
shot noise, signal-to-noise (v) was calculated as for each cell: 
 

1) 𝑣 ൌ  ெ௘ௗ௜௔௡೟
|ி೟శభିி೟|

ඥ௙ೝ
 

 
where the median absolute difference between two subsequent time points of the fluorescence 
trace, F, is divided by the square root of the frame rate, fr (55).   The convolution kernel was applied 
to the calcium signals to obtain an initial deconvolved signal that was then normalized by the 
signal-to-noise resulting in a calcium event estimate (ŝ).   These values were thresholded to ŝ = 1, 
producing binary events that represent an estimated spiking-related calcium event (see Text S2). 
 
Trans-monosynaptic rabies tracing. For input mapping experiments, trans-monosynaptic rabies 
tracing was performed on transgenic SST-IRES-Cre or VIP-IRES-Cre mice.  AAV1-hSyn-DIO-
TVA66T-dTom-CVS-N2cG virus (titer = 5.46x1012 vg/mL) was injected into L2/3 of S1 in the 
left hemisphere (1.1 mm posterior to bregma, 3.3 mm lateral, 300 μm deep) via iontophoresis at 
5uA for 5 min. Four weeks later, 500 nL of EnvA-CVS-n2c(dG)-histone-EGFP virus (titer = 5x109  
vg/mL) was injected into S1 using the coordinates above via nanoinject.   Animals were sacrificed 
after 7 days.   
 
Ex vivo tissue preparation.  At the conclusion of in vivo imaging experiments, the cranial window 
was removed.  Several small punctures were made in tissue surround the in vivo imaged area using 
a glass pipette dipped in lipophilic dye (SP-DiIC18(3) (1,1'-Dioctadecyl-6,6'-Di(4-Sulfophenyl)-
3,3,3',3'-Tetramethylindocarbocyanine; Fisher Scientific, cat no. D7777). Punctures were made in 
an asymmetrical pattern such that the orientation of the slice could be determined based on their 
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locations.  A stereoscopic image was taken of the punctures relative to blood vessels. The animal 
was then euthanized and transcardially-perfused using 1X PBS followed by 4% paraformaldehyde 
(PFA; 32% stock (wt/vol); Microscopy Sciences, cat. no. 15710-S).  The brain was removed and 
further fixed in 4% PFA overnight at 40C. The following day, the brain was mounted in 1.5% 
agarose gel (Agarose Molecular Bio Grade (100g); IBI Scientific, cat. no. IB70040) and sliced 
tangentially, parallel to the imaging plane in 150-300 um sections using a vibratome (Leica 
VT1000S Vibratome; Leica Biosystems).  Slices were cleared using PACT-CLARITY procedure 
previously described(14, 19)  For input mapping experiments, three or four 150 𝜇m-thick  coronal 
slices from each animal centered around the injection site were selected for further processing.   
 
Probe set and barcode design.  HCR-FISHv3.0 probe sets consist of a target sequence that binds 
to mRNAs of interest paired with one of three orthogonal HCR hairpin amplifiers (B1, B2, B3) 
conjugated to either AlexaFluor488, AlexaFluor546, AlexaFluor647, AlexaFluor750, 
AlexaFluor790(56) (Molecular Instruments, Inc.).  Target binding sequences for transcripts were 
determined from sequences deposited in NCBI RefSeq (www.ncbi.nlm.nih.gov/refseq/) with the 
exception of RCaMP1.07 obtained from(20).  Order and lot numbers for all probe sets are listed 
(Supplementary Table 1).  Genes selected for cell type identification were determined 
empirically.  From the scRNAseq data, candidate genes with a high degree of selectivity and 
penetrance were selected to provide maximal coverage to positively identify subclasses or cell 
types.  Those with relatively high expression levels were prioritized to increase chances of 
detection with HCR-FISH.  All candidates were then tested using HCR-FISH in tissue sections.  
Only those that could reliably be stained and visualized were ultimately chosen for inclusion.    
 For behavior experiments, a barcode scheme was implemented for gene readout based on 
a Hamming code similar to as previously described(12).  The barcode contained two readout 
channels (B1-647 and B2-488).  Readout of one gene was assigned to only one channel and 
encoded in two out of five rounds of staining.  For error-robust encoding, a Hamming distance of 
2 was used such that at least 2 errors were required to switch from one readout to another.  For 
cellular-resolution readout, genes were assigned to readouts such that no co-expressed genes were 
present within one round and channel of staining.  A sixth round of staining was added to confirm 
the identity of excitatory neurons using Slc17a7 in B2-488 and inhibitory neurons using Gad2 in 
B1-647. For registration and alignment of neurons across in vivo images and multiple round of 
HCR-FISH, probe sets for RCaMP1.07 in B3-546 was used across all staining rounds.   
 For input mapping and bilateral whisker deprivation experiments, fewer genes were read 
out and Fos mRNA was quantified in fosGFP animals.  For these reasons, sequential multiplexed 
HCR-FISH of non-overlapping probes was performed instead of using overlapping probes as in 
the barcode scheme.  Since GFP was expressed in both sets of tissue, readout of gene expression 
was used performed with B2-647 and a mixture of B1-750:B1-790 (1:1).  Genes identifying cell 
types were selected based on results from single cell RNA sequencing of mouse S1 neurons using 
SMART-Seq v4 and 10x Genomics Chromium platform as previously described (portal.brain-
map.org/atlases-and-data/rnaseq).   
 
Multiplexed hybridization chain reaction fluorescent in situ hybridization.  HCR-FISH was 
performed with modifications to the v3.0 protocol(13). Fixed, cleared samples were incubated in 
500 µL of 30% probe hybridization buffer (30% formamide, 5x sodium chloride sodium citrate 
(SSC), 9 mM citric acid,0.1% Tween 20, 50 µg/mL heparin, 1x Denhardt’s solution, and 10% low 
MW dextran sulfate) at 370C for 30 minutes.  Samples were then moved to probe solution 
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overnight, which comprised of 500ul of 30% probe hybridization buffer and 2 µL of initiator 
probes (1 µL of odd probe and 1 µL of even probe, taken from 2 µM probe stock solutions) at 
370C.  The next day, samples were washed four times at 370C for 30 min in 500 µL of the following 
solutions, respectively: 75% probe wash buffer + 25% 5x SSC (Sigma Aldrich), 50% probe was 
buffer + 50% 5x SSC, 25% probe wash buffer + 75% 5x SSC, and 100% 5x SSC. Samples were 
then moved to 500 µL of amplification buffer (5x SSC + 0.1% Tween 20 + 10% low MW dextran 
sulfate) at RT on a shaker for 30 minutes.  10 µL of 3 µM stock hairpin amplifier solution was 
snap cooled by heating to 950C for 90 seconds and then allowed to cool in a dark drawer for 30 
min.  10µL of both snap-cooled odd and even hairpins were added to 500 µL of amplification 
buffer to form the final amplification solution.  Samples were moved to final amplification solution 
and allowed to amplify at RT overnight. The following day, samples were removed from the 
amplification solution and washed in 5x SSC three times at RT: 30 minutes, 30 minutes, and 15 
minutes. Between staining rounds, in situ probes were removed using DNAse (Dnase I 
recombinant; Sigma Aldrich ct. no. 04716728001) as described(15).  Samples were incubated for 
30 min at RT in 500 µL of 1X incubation buffer (40 mM Tris-HCl, 10 mM NaCl, 6 mM MgCl2, 
1 mM CaCl2).  Samples were then moved to 500 µL of 1X incubation buffer with Recombinant 
DNase I (10 U/µL) for 4 hours at RT.  Samples were then washed three times for 30 minutes at 
RT in 500 µL of MT Probe Wash Buffer.  For bilateral whisker deprivation experiments, cell 
nuclei were stained using DAPI during the first round of HCR-FISH staining (DAPI Fluoromount-
G; SouthernBiotech). 
 
Confocal imaging.  Tissue sections were mounted on 75mm x 25 mm glass microscope slides 
(Fisher Scientific) with Fluoromount-G (SouthernBiotech) and 50mm x 22mm cover glass (Fisher 
Scientific).  Images were acquired on one of two confocal systems: 1) a Nikon C2+ Si spectral 
laser scanning microscope (LSM) with Nikon Plan Apo λ 20x/0.8NA, air objective, and 
0.4094x0.4094x1 µm3 XYZ image voxel size, or 2) a Nikon Ti2-E body with Yokogawa Spinning 
Disk and Nikon CFI Apo LWD 40x/ 1.15NA, water immersion objective, and 0.1625x0.1625x0.4 
µm3 XYZ image voxel size. Only one system was used across multiple imaging rounds for a given 
tissue sample.  For LSM-acquired images, a single image volume was sufficient to cover the in 
vivo imaging region.  For spinning-disk-acquired images, multiple image tiles spanning the in vivo 
imaged region were acquired and later assembled using TeraStitcher(57).  For ‘post-cleared’ tissue 
prior to HCR-FISH staining, SP-DiIC18(3) and endogenous RCaMP1.07 expression was 
acquired using 488 and 561 imaging channel, respectively.  For HCR-FISH stained tissues, 488, 
561, 647, or 785 imaging channels were used to visualize readout hairpins.   DAPI staining was 
acquired using the 405 imaging channel. 
 
Ex vivo image analysis.  In order to re-identify neurons imaged in vivo and across multiple rounds 
of HCR-FISH, all acquired images were registered to a common reference image volume. First, 
2D frame-averaged structural images taken from the behavioral session were registered into an in 
vivo two-photon 3D image stack using landmark-based 2D affine transformation (MATLAB).  
Next, one round of HCR-FISH staining was designated as the common reference image volume.  
The in vivo volume including registered behavior sessions, ‘post-cleared’ volume, and all other 
HCR-FISH volumes were then registered to the reference image volume based on endogenous 
protein or HCR-FISH stained mRNA RCaMP1.07 expression. Landmark-based 3D thinplate 
registration was performed to generate a coarse alignment of the image volumes using custom 
software (Neurotator).  This coarse alignment produced a registration accuracy of <5µm. For 
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HCR-FISH stained volumes, thinplate registration was performed on the 561 imaging channel 
containing RCaMP1.07 expression was then applied to the remaining image channels. (Fig. S1).  
For input mapping experiments, HCR-FISH stained volume registration was performed on the 488 
imaging channel containing GFP expression of input neurons.  
 Following coarse alignment, an automatic fine-scale 2D rigid alignment was applied to 
each z-frame of HCR-FISH stained volumes using matrix-multiply discrete Fourier transform(58).  
Registration was performed on the 561 imaging channel for behavior and bilateral whisker 
deprivation experiments or the 488 channel for input mapping experiments and then applied to the 
remaining image channels.  For LSM-acquired images, fine-scale alignment was performed on the 
entire image stack.  For spinning-disk-acquired images, sub-volumes corresponding to regions 
containing individual neurons imaged in vivo were first isolated and then subjected to fine-scale 
alignment in order to reduce CPU processing time.  
 In order to characterize gene expression in identified neurons, 3D cell segmentation was 
performed on image volumes.  For behavior experiments, segmentation was performed using 
RCaMP1.07 expression.  Following fine alignment, image stacks of RCaMP1.07 transcript 
expression across all imaging rounds were merged into a single volume stack.  Segmentation was 
performed on the merged volume stack to obtain a single 3D segmented ex vivo ROI applied to 
each imaging round.  For LSM-acquired images, segmentation was performed on HCR-FISH 
stained somatic RCaMP1.07 using Modular Interactive Nuclear Segmentation(59). For spinning-
disk-acquired images, images stacks were pre-filtered to normalize signal intensity and to label 
nuclei within RCaMP1.07-expressing neurons using 3D Weka Segmentation(60). The resulting 
filtered images were merged with the original images and then segmented using Baxter 
Algorithm(61).  For whisker deprivation experiments, segmentation was performed on DAPI 
stained nuclei.  The resulting ROI was expanded radially by 10 voxels to better encompass the 
somatic region.  RCaMP1.07 fluorescence within each ROI was use determined to determine 
whether identified cells expressed RCaMP1.07.  For input mapping experiments, segmentation 
was performed on nGFP expression.  The resulting ROI was expanded radially by 10 voxels to 
better encompass the somatic region.  All ex vivo segmented neurons were manually validated 
using Neurotator.   
 Segmented in vivo ROIs were matched with segmented ex vivo ROIs by a combination of 
point cloud registration of ROI centroids and pixel overlap.  Candidate matches were identified by 
nearest neighbor sorting (MATLAB).  Overlap was calculated as: 
 

   2) 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ൌ  ට𝑜𝑣𝑒𝑟𝑙𝑎𝑝௜௡௩௜௩௢
ଶ ൅ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝௘௫௩௜௩௢

ଶ 

 
where overlapinvivo is the fraction of in vivo ROI pixels overlapping with the ex vivo ROI and 

overlapexvivo is the fraction of ex vivo ROI pixels overlapping with the in vivo ROI.  Candidate 
matches were rejected if overlap < 0.5. Matching ROIs were manually validated using Neurotator.  
In vivo imaged ROIs determined not be contained within the ex vivo tissue volume were assigned 
to be ‘incomplete’ neurons and excluded from cell type identification. 
 For behavior experiments, binary readout of gene expression in each HCR-FISH imaging 
round was visually scored by three human annotators through consensus using Neurotator.  For 
decoding, barcodes were designed to avoid overlapping gene expression for each round of staining.  
Neurons missing at least one HCR-FISH imaging round were assigned as ‘incomplete’ and 
excluded from cell type identification.  However, cells that co-express genes assigned to the same 
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imaging channel can occasionally produce ambiguity in decoding.  To resolve these situations, a 
combinatorial list of candidate barcodes was listed based on the barcode scheme used in the 
experiment and all possible gene expression patterns.  From this list, non-unique barcodes were 
excluded as well as barcodes in which exhibitory and inhibitory markers were co-expressed.  Co-
expressed genes were identified from this plausible list of barcodes.  Any cells with ambiguous 
barcodes were assigned as ‘undecoded’  neurons and excluded from cell type identification.  While 
the use of a Hamming code enables error correction of the barcode readout, no error correction 
was performed. 
 For input mapping and bilateral whisker deprivation experiment, the Python library 
starFISH was implemented for single mRNA spot detection and quantification(62).  Spots were 
detected using min_sigma = 0.5, max_sigma = 7, and num_sigma = 15.  Spot detection threshold 
was set using Otsu’s method from the scikit-image library.  Spot detection performance was 
verified visually.  The number of spots were quantified within each ROI and expression levels 
were expressed as the number of spots per µm3.  For each round of staining, background spot 
density was quantified from the surrounding neuropil across tissue subvolumes and binary readout 
was determined if the ROI spot density exceeded 2 times the 95th percentile of background spot 
density. 
 Cell types were identified using gene expression patterns.  While inhibitory classes and 
subclasses are identified by largely non-overlapping genes, excitatory cell types were identified 
by combinatorial expression patterns as follows: 
 

3) Adamts2    (Fst  Ngb)    (Penk  Rrad  S100a6  Coch) 
Baz1a   (Penk  Rrad)     (Fst  Ngb  S100a6  Coch) 
Agmat   (S100a6  Coch)    (Penk  Rrad  Fst  Ngb) 
 

where  = “and”,  = “or”, and  = “not.”  Neurons whose genes could not be coded or whose 
gene did not conform to these expression patterns were assigned as ‘undecoded’ neurons and 
excluded from cell type identification (see also Text S1).   
 For input mapping experiments, the density of input neurons along L2/3 was calculated as 
the number of nGFP+ cells within a 100µm sliding window along laminar depth or laterally from 
the injection site divided by the total number of nGFP+ cells within L2/3 for each imaged coronal 
slice.   
 
Analysis of stimulus- and behavior-related activity.  To assess the link between neuronal 
responses and various explanatory variables, a Poisson GLM was fit to each neuron’s deconvolved 
train of calcium events across a recording session(25) (see also Text S3).  The model defines 
probability in terms of a time-varying calcium event rate, λt, given by: 
 

4) 𝜆௧ ൌ exp ሺ∑ 𝑤௜𝑥௜ሺ𝑡ሻሻ௜  
 
where xi(t) represents the time course for the ith explanatory variable, and wi represents the effect 
of this variable on the neuron’s probability of spiking(63).  The regularized log-likelihood of a 
calcium events for an individual trial, assuming a Poisson distribution, is given by: 

5)  log𝑝ሺ𝑟|𝑥, 𝜃௪ሻ ൌ  ∑ 𝑟௧்
௧ୀ଴ log 𝜆௧ െ  ∆∑ 𝜆௧்

௧ୀ଴ ൅ 𝛾‖𝑤‖ ൅ 𝐶 
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where Δ is the time bin size, T is the number of time bins in the trial, rt is the calcium event at time 
t, and γ is the lasso penalty term which encourages sparseness on the weights, w.  All GLMs were 
fit using MATLAB’s lassoglm function with a Poisson link function, 6 penalty values (γ), and 4 
fold cross-validation.   
 To represent the time-course of task variables xi(t), boxcars were constructed which were 
designated as “true/1” during time-periods of interest and “false/0” elsewhere.  Since task timing 
was fixed across trials, each trial could be broken up into six time-periods of fixed start time and 
duration: “pre”, “sample”, “early delay”, “late delay”, “test”, and “report”. Complementary 
covariates were represented as independent boxcars (ie. anterior stimulus and posterior stimulus; 
match and non-match; lick and no lick) to capture any asymmetry in the neuron’s response.  To 
assess if a neuron’s activity could be explained by trial information occurring at multiple points in 
the trial, some task variables were represented in multiple time periods.  For a given trial, the 
sample stimulus direction was represented as three boxcars:  during the sample stimulus 
presentation period, during the early delay period, and during the late period.  Trial category and 
choice were represented as a boxcar during both the test period and the report period. 
  Whisker kinematics and population activity were represented as continuous variables 
across the entire trial.  All whisker kinematic features were z-scored and down-sampled to the 
imaging rate before including as a covariate. Whisker touch onset and offset was represented as a 
boxcar of width 5 bins (150 ms) centered at the touch event.  The coupling covariate was calculated 
for each neuron by excluding the given neuron’s calcium events, then calculating the non-negative 
matrix factorization (NMF) of the matrix of calcium events of all other neurons in the session(26).  
A NMF of rank = 1 used when assessing encoding of task factors.  For assessing coupling across 
varying NMF ranks, each rank was included as a covariate in the model and the coupling factor 
included all covariate ranks.  
 Related covariates were grouped together into ‘task factors.’  For each task factor, a partial 
model was constructed that excluded the covariates associated with this task factor.  Any increase 
in deviance from the full model to the partial model therefore resulted from the exclusion of this 
task factor’s covariates.  Akaike Information Criterion (AIC) was used to compare deviance 
between partial models in which different number of covariates were excluded such that:  
 

6) 𝐴𝐼𝐶 ൌ 2𝑘 െ 2 lnሺ𝐿ሻ ൌ  2𝑘 ൅ 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒 
 
where k is the number of model parameters, deviance = -2ln(L), and L is the model likelihood.  
The difference in AIC (ΔAIC) between the full and partial model was calculated as: 
 

7)  𝛥𝐴𝐼𝐶 ൌ 𝐴𝐼𝐶௣௔௥௧௜௔௟ െ  𝐴𝐼𝐶௙௨௟௟ 
 
 For analysis, three GLMs were constructed.  Model 1 (task GLM) was constructed to assess 
task-related coding of neurons using task variables and task factors shown in Fig. S10.  Model 2 
(free whisking GLM) was constructed to assess neuronal responses to free whisking.  Only whisker 
kinematic covariates included in Model 1 were included in this model.  Task factors were 
calculated for each of these covariates.  The model only included time points consisting of the last 
1.4 s prior to sample period touch onset and the last 1.1s prior to test period touch onset, consistent 
with periods of no whisker-rotor contact preceding stimulus presentation.  
 Model 3 (cell type coupling GLM) was constructed to assess coupling of activity of each 
major cell subclass or type and consisted of all task variables in Model 1 with the exception of the 
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‘coupling” covariate for all simultaneously neurons.  Instead, seven coupling covariates for the six 
main cell populations (Adamts2, Baz1a, Agmat, Pvalb, Sst, Vip) and all other, unlabeled (UNL) 
cells consisting of those assigned to be ‘incomplete’ or ‘undecoded’ were included and consisted 
of the NMF of rank = 1 of the calcium events for simultaneously recorded neurons sorted according 
to each cell subclass or type.  Task factors in this model corresponded to each of the main cell type 
coupling covariates. 
 For bilateral whisker deprivation experiments, the mean event rate to anterior and posterior 
whisker deflections was calculated.  To account for direction selectivity, the maximum activity 
level to either stimulus direction was used as measure of a neuron’s stimulus response (SR). The 
change in stimulus responsiveness during BD was expressed as (SRpost  - SRpre)/(SRpost + SRpre) 
where SRpost is the stimulus response at either day 1 or day 5 and SRpre is the mean stimulus 
response across Day -2,-1, and 0. We calculated a neuron’s response reliability (RR) by first 
separately calculating the fraction of trials in which a neuron produced a calcium event for either 
anterior or posterior whisker deflections and then taking the maximum between two stimuli in 
order to control for direction selectivity. The change in response reliability during BD was 
expressed as (RRpost  - RRpre)/(RRpost + RRpre) where RRpost is the response reliability at either day 
1 or day 5 and RRpre is the mean stimulus response across Day -2,-1, and 0. 
  
Network analysis.  Network analysis was performed to analyze functional connectivity between 
cell types across different task conditions.  Task-specific networks were constructed, composed of 
neurons exhibiting significant ΔAIC (P < 0.01, χ2

 test) to task factors in Model 1 (task GLM).  A 
‘non-coding’ network was composed of neurons that did not exhibit any significant coding for any 
the task variables.  Information contained in each network was derived from results from Model 3 
(cell type coupling GLM).  A network contained six nodes that were each composed of neurons 
belonging to a given major cell population.  An input node was defined as the neuron modeled in 
the cell type coupling GLM.  An output node was defined as the cell types coupling factor 
explaining the activity of the modeled input neuron node.  A directed network edge from the output 
node to the input node was defined as the ΔAIC of a particular cell type coupling factor that 
explains the activity of the input node, averaged across all input node neurons. 
 Network strength was calculated as the mean edge weight for all edge weights in the 
network.  The input node strength was calculated as the sum of weights of inward directed edges 
from output node to the input node divided by the number of inward directed edges.  The output 
node strength was calculated as the sum of weights of outward directed edges from input node to 
the output node divided by the number of outward directed edges.  To test the strength and stability 
of functional connections across task conditions, the overall connection strength was calculated as 
the mean edge weight across all task networks.  The stability of the connection was calculated as 
the coefficient of variation of the edge weight across all task networks.  To test whether network 
strength correlated with spatial clustering of cell types in vivo, the mean centroid distance between 
all pairs of neurons for a given pair of cell types were calculated from in vivo images. 
 
Statistical procedures.  No statistical methods were used to predetermine sample size. The 
experiments performed were not randomized and the investigators were not blinded to allocation 
during experiments and outcome assessment.  Statistical tests used are indicated in figure legends.  
Error bars on plots indicate standard error of the mean (s.e.m.) unless otherwise noted.   
 For statistical tests of task encoding, a χ2 test was performed to assess the significance of 
the positive GLM ΔAIC values.  A Mann-Whitney U test was used to compare the strength of 
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GLM ΔAIC values between cell types.  The Bonferroni-Holm method was used to correct for 
multiple comparisons.  
 For statistical tests of bilateral whisker deprivation, a one-way ANOVA test with post-hoc 
multiple comparison test was used to assess change in stimulus response across the imaging 
sessions.  A Student’s t-test was used to assess differences in stimulus response between fosGFP 
neurons as well as between excitatory cell types.  A χ2

 test was used to compare fraction of stable 
high-expressing fosGFP cells between excitatory cell types.  Standard deviation of the fraction of 
stable high-expressing fosGFP cells for a given cell type was obtained by bootstrapping with 
replacement.  The fraction of stable high-expressing fosGFP cells was determined from subsets 
(60% of total) of cells that were randomly sampled with replacement.  This process was repeated 
1,000 times and the standard deviation was determined from this distribution.   
 For statistical tests of network analysis, to determine whether a given node strength was 
significantly different from nodes within the same network or between networks, bootstrap 
sampling with replacement was performed on the neurons representing the network.  The edge 
strengths and node strengths were recalculated from the resulting bootstrapped data set.  This 
process was repeated 1,000 times to obtain 95% confidence intervals for significance tests.  The 
original node strength was then compared to the bootstrapped node strength of the other nodes in 
the same network or the same node across networks for within- or across-network comparisons, 
respectively.  To determine whether a given connection was stronger and more stable than chance, 
permutation tests were performed by shuffling cell type labels for each input node for each task 
network and recalculating the overall connection strength and stability.  This process was repeated 
1000 times to obtain a shuffled distribution.  Connections that were both stronger and more stable 
than the 95th percentile of the shuffled distribution were considered to be above chance. To 
determine whether cell types imaged in vivo were more spatially clustered than chance, 
permutation tests were performed by shuffling cell type labels and recalculating the pair-wise 
distance between cell bodies.  This process was repeated 1000 times to obtain a shuffled 
distribution.  Distances less than 5th percentile of the shuffled distribution were considered to be 
above chance.  The Bonferroni-Holm method was used to correct for multiple comparisons.  For 
statistical tests of input mapping, a one-sided Student’s t-test was used to assess higher sublaminar 
and cell type differences in input density between Vip and Sst classes. 
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Supplementary Text 
S1. Sampling of Neurons with the CRACK platform 
In principle, the CRACK platform offers an unbiased survey of cell type-specific functional 
responses across a neuronal population.  A few factors should be considered when planning 
experiments, assessing the accuracy of cell type readout, and comparing the proportion of cell 
types across studies.   When comparing barcode readout vs. sequential readout at cellular 
resolution, barcode readout provides higher read depth in fewer labeling rounds but requires that 
genes with non-overlapping expression patterns be selected for cell type identification.   
Depending on the barcode design, cells with co-expression of multiple overlapping genes may not 
be decoded and identified.  In this study, identification of Baz1a neurons required the co-
expression of at least two genes (see Methods).  However, expression of more than two genes that 
fit the cell type criteria were also observed (Fig. S4C).   This suggests that the use of barcode 
readout in the behavior experiments could result in Ba1za neurons with co-expression of multiple 
(4-6) identifying genes to be undecoded (Supplementary Table 2).   Under these circumstances, 
using barcode readout with single molecule mRNA resolution may help to resolve the identities 
of these cells.  Bilateral deprivation and input mapping experiments employed sequential readout 
because fewer cell types (and therefore genes) were assayed and GFP expression restricted the use 
of the 488 imaging channel for labeling mRNA transcripts.  These experiments enabled the ability 
to identify Baz1a neurons with co-expression of multiple identifying genes that could not be 
decoded in the barcode scheme at cellular resolution.       
 In this study, task responses of neuronal cell types were restricted to neurons expressing 
RCaMP1.07 that were observed to be active during the imaging session.  The relative number of 
active RCaMP1.07+ neurons in each subclass or cell type was observed to be disproportionate to 
previously measured cell type distributions in L2/3 S1(7, 10, 36, 42)  (Supplementary Table 2).  
RCaMP1.07 was expressed virally using an AAV with PhP.eB serotype(64).  The tropism of AAV 
serotypes has been shown to preferentially infect certain neuronal cell types(65).  We assessed the 
distribution of RCaMP1.07+ neurons in control tissue across cell types stained with HCR-FISH 
(Fig. S3).  Overall, we observed that AAV.PhP.eB had a higher likelihood of infecting excitatory 
neurons over inhibitory neurons.  For inhibitory neurons, the tropism of the AAV.PhP.eB produced 
an under-representation of Pvalb and Vip class neurons compared to Sst class neurons.  Whether 
this under-representation is stochastic or specific to certain Pvalb or Vip subclasses remains to be 
determined.  In the future, the use of pan-neuronal transgenic lines will alleviate potential biases 
could result from viral tropism.   
 Neurons in the calcium imaging data were automatically segmented using a constrained 
nonnegative factorization (CNMF) approach(54).  This approach identifies neurons that exhibit 
active calcium responses.  The activity levels of these automatically segmented neurons are shown 
(Fig. 2G, Fig. S13A, S15A).  Neurons identified as potentially inactive can be either interpreted 
as non-spiking neurons or those whose calcium signal-to-noise levels were not sufficient to be 
segmented using CNMF. The number of identified active and inactive neurons within the imaging 
field of view were quantified (Supplementary Table 2).  Some cell type differences were 
observed.  For example, Baz1a neurons were more likely to be identified as active than other 
excitatory cell types which is also consistent with the higher event rates of active Baz1a neurons.  
Taken together, the results indicate choice of viral tropism and activity-based segmentation 
algorithms can influence sampling of neurons. 
 In comparing cell type distributions obtained from CRACK with other methods, there are 
two considerations.   First, cell type distributions obtained from FISH are not comparable to 
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distributions obtained from scRNAseq.  Cell type-specific differences in survival during cell 
isolation for scRNAseq can affect the relative proportions(1).  Tissue dissection also provides 
limited spatial resolution to resolve sublaminar differences in cell type distributions and can also 
capture cells from a mixture of layers.  Thus, it is more appropriate to compare cell type 
distributions with other studies using FISH(66).  Second, tissue section orientation should be 
considered when analyzing cell type distribution.  Whereas coronal and sagittal sections facilitate 
the analysis of sublaminar cell type distributions, tangential sectioning to aid in in vivo to ex vivo 
registration can often obscure laminar cytoarchitecture.  Thus, it is important that tissue depth in 
tangential sections be tracked if cell type distributions at specific laminar positions need to be 
measured. 
 
S2. Comparison of Calcium Responses and Event Detection across Cell Types  
In the CRACK platform, two-photon calcium imaging is critical for monitoring functional 
responses of neurons in a manner that is compatible with post-hoc multiplexed FISH.  Since 
calcium transients are a surrogate for spiking activity, calcium transients must be deconvolved 
before use in GLMs to more accurately characterize response patterns at timescales relevant to 
behavior.  Methods to infer spike-related calcium events using deconvolution rely on calibration 
experiments involving simultaneous electrophysiology and calcium imaging as well as an 
understanding of the response properties of the calcium indicator and biophysical properties of 
calcium within neurons.  In this study, calcium responses were deconvolved using an Online 
Active Set method to Infer Spikes (OASIS), a generalization of the pool adjacent violators 
algorithm (PAVA) for isotonic regression(67) (Fig. S8A).  The extent to which the relationship 
between action potential and calcium events varies across cell types and how OASIS 
accommodates this variability is an open question.  Calibration experiments in inhibitory classes 
using the indicator GCamp6f show that calcium responses in Pvalb neurons can underestimate 
spiking activity compared to Sst and Vip neurons(11, 33).  Such calibration experiments are 
facilitated by transgenic labeling so that cell types can be selectively targeted.  Currently, there are 
no transgenic lines that selectively label Agmat, Baz1a, and Adamts2 excitatory cell types. 
 Without the ability to obtain calibration data with RCaMP1.07 for all cell types 
investigated in the study, we focused solely on assessing cell type differences in the fluorescence 
signals (baseline fluorescence, noise levels, rise time, and decay time) that could potentially 
contribute to differences in calcium event inference using OASIS.  Baseline fluorescence intensity 
(bottom 10th percentile of signal intensity) would reflect expression levels RCamp1.07 or resting 
calcium concentration (Fig. S8D).  We found no differences between excitatory cell types.  For 
inhibitory cell classes, Pvalb showed higher relative baseline fluorescence compared to other 
inhibitory classes (P < 0.05, two-tailed Student’s t-test with Bonferroni-Holm post-hoc correction) 
potentially reflecting unique buffering capacities(68).  No differences were observed in shot noise 
levels between cell types (Fig. S8E). 
 In OASIS, calcium event estimates rely on a convolution kernel consisting of exponential 
rise and decay time constants that are self-tuned for each cell using an autoregressive (AR) model. 
Since rise and decay times are modeled from the raw calcium data for each cell, this provides a 
generative method based on the AR model for comparing expected calcium kinetics across cell 
types.  No differences in rise time were observed between cell types (Fig. S8F).  Adamts2 cells 
show faster decay times than other excitatory neurons (P < 1x10-5, two-tailed Student’s t-test with 
Bonferroni-Holm post-hoc correction) while Pvalb cells exhibited faster decay times compared to 
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other inhibitory neurons (P < 0.05, two-tailed Student’s t-test with Bonferroni-Holm post-hoc 
correction; Fig. S8G).  
 To determine whether cell type differences in calcium response properties influenced 
calcium event detection inference, we examined the distribution of calcium events (ŝ) resulting 
from deconvolution.  The magnitude of ŝ relates to the confidence that ŝ is a spiking event, with 
lower ŝ values reflecting poorer estimates.  The distribution of ŝ extracted from a time series can 
be used to determine the performance of the auto-regressive model for a given cell.  For each cell, 
we compared model performance by performing a receiver operating characteristic analysis across 
ŝ values.  In general, we found that lower noise levels and longer decay times were weakly 
correlated with better model performance (Fig. S8C).  However, these relationships did not 
necessarily translate when comparing cell type differences.  For excitatory neurons, model 
performance was better for Agmat neurons (P < 1x10-5, two-tailed Student’s t-test with 
Bonferroni-Holm post-hoc correction) and weaker for Adamts2 neurons (P < 1x10-5, two-tailed 
Student’s t-test with Bonferroni-Holm post-hoc correction; Fig. S8H).  No differences were 
observed for inhibitory neurons.  With the known exception of Pvalb neurons, we conclude that 
calcium response properties between cell types do not systemically differ in a manner that would 
result in differences amongst the other cell types when inferring calcium events using OASIS. 
 While OASIS is intended for spikes inference from calcium signals, since the exact 
calcium-to-spiking relationship is not known for each cell type, we do not interpret the 
deconvolved signals ŝ as individual spikes but as a likelihood measure of a calcium event.  
Subsequently, these signals are thresholded into binary events for two reasons.  First, to eliminate 
unreliable calcium events, any deconvolved signal that does not exceed the measured signal-to-
noise (ŝ < 1) is thresholded to 0.  Any deconvolved signal where ŝ  > 1 is thresholded to 1 so that 
a GLM assuming a Poisson distribution could be used to model neuronal responses.  Since ŝ  > 2 
could be interpreted as calcium events composed on multiple events, thresholding signals in which  
ŝ  > 1 could underestimate calcium events.   Analysis of the distribution of ŝ demonstrates that with 
the sampling rate of imaging and the kinetics of RCamp1.07, occurrences of ŝ  > 2 are rare and are 
thus unlikely to underestimate GLM model performance (Fig. S8B).  
 We asked whether calcium response properties and calcium event detection had any 
relationship to GLM performance.  Across the analyzed neuronal population, we observed no 
correlation between overall GLM fit for the task encoding model and calcium signal noise level 
and only weak correlations when compared to calcium decay time, calcium rise time, and the 
calcium detection performance (Fig. S10A).  This demonstrates that differences in calcium 
responses properties from which deconvolution was performed has minimal influence on GLM 
performance across individual neurons that would explain task-related differences across cell types 
investigated. 
 
S3. Task Encoding Across Neurons 
A GLM was used to assess the encoding of task-related responses in single neurons assuming a 
Poisson distribution of estimated deconvolved calcium events.  Variables representative of trial 
type were represented as boxcars that spanned epochs of the trial period.  Whisker kinematics and 
population activity were represented as continuous variables.  While the use of kernels to form 
basis functions can capture the time-varying relationship between behavior events and the neuron's 
probability of spiking(26, 69), kernels were excluded in the GLM for a few reasons.  Representing 
task variables through multiple kernels, substantially increases the number of covariates included 
in the GLM which increases the chance of model overfitting.  While information about temporal 
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response properties are not captured in the task encoding model, these dynamics are not necessary 
for comparing the relative strength of task-related responses between cell types.  Rather, the 
exclusion of kernel reduces model complexity and eases the interpretation of the model results.   
 The information content of a neuron’s activity for a given task factor was determined by    
comparing the AIC of the full model containing the task factor against the AIC of the partial model 
which excluded covariates representing that task factor.  We chose to use AIC to convey GLM fit 
because it is a principled way to compare fit between models of different complexity (i.e. different 
number of model parameters).  AIC accounts for the trade-off between the goodness of fit (risk of 
overfitting with large number of model parameters) and simplicity (risk of underfitting with too 
few model parameters).  ΔAIC reports the difference in model fit between a full model and partial 
model that is agnostic to model complexity. Statistical significance and ranking of models can be 
assessed using ΔAIC values, which enables information content to be compared both within and 
across different task factors and cell types.  A χ2 test was performed to assess the significance of 
positive ΔAIC values, interpreted as the neuron’s activity encoding a given task factor.    Neurons 
can exhibit ‘mixed selectivity’ in which they significantly encode multiple task factors (Fig. S12). 
 It should be noted that ΔAIC differs from deviance explained, a measure of the goodness 
of model fit by comparing the full model to the null model.  Overall, ‘non-coding’ neurons where 
ΔAIC was not significant to any of the task factors showed poorer model fits compared to neurons 
encoding at least one task factor (Fig. S10B).  We compared deviance explained for the full model 
against the ΔAIC of each task factor for each neuron (Fig. S10C, S14B).  The majority of task 
factors were positively correlated with model fit.  In particular, strong correlations with stimulus 
direction, whisker kinematics, and population coupling suggest that these task factors were key 
drivers of goodness of fit for the GLM used in this study.  However, task factors for category and 
touch offset showed no significant correlation.  This demonstrates that information content of a 
given task factor and goodness of model fit are not necessarily related.  A neuron’s activity can 
encode information about a given task factor while simultaneously having a poor overall model 
fit.  Similarly, a neuron’s event rate can correlate with task encoding (Fig. S10D, S14B) but not in 
a consistent manner across all task factors or cell types.  This dissociation between event rate and 
task factor suggests a potential biological explanation underlying neurons with both high activity 
levels and task encoding rather than merely a statistical relationship captured by the GLM.  
  
S4. Measuring Functional Connectivity using Cell Type Coupling  
In order to assess how a neuron’s activity relates to the surrounding population, the dimensionality 
of the population activity was reduced using non-negative matrix factorization as previously 
described(26).  For analysis of population coupling in the task encoding GLM, the population 
activity was factorized into varying ranks.  Ranks were defined as an individual covariate in the 
model and characterized as the functional response of non-overlapping subpopulations.  The task 
factor for coupling consists of all of these rank covariates.  We measured coupling as increasing 
number of ranks are included in the model (Fig. 5A) and observed that ∆AIC increases with the 
number of ranks.  This means that as more of the variance in the population activity is captured in 
the GLM, neuron’s activity can be better explained by the activity from these different 
subpopulations.  For the cell type coupling GLM, the population activity was subdivided by cell 
type.  Since subdividing by cell type reduces the number of neurons in each subpopulation, a 
factorization rank (r = 1) was used to standardize the population activity of each cell type.   
 Co-fluctuations in activity between neurons while controlling for stimulus and other task 
conditions (‘noise correlations’) are often used as a measure of functional connectivity of 
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neurons(70).  In the cell type coupling GLM, we fit a neuron’s activity to task variables as well as 
the cell type coupling covariates capturing the activity to each of the simultaneously recorded cell 
types.  The covariate weights obtained in the GLM are similar to noise correlations.  For 
illustration, we plot the weights of cell type coupling covariates for neurons that encode stimulus 
direction against the noise correlation across trials with the same stimulus condition (Fig. S10).  
As can be seen, positive or negative covariate weights typically correspond to positive or negative 
noise correlations.   
 Functional connectivity of a cell type is computed as the ΔAIC of the full model against 
the partial model excluding the cell type coupling factor.  This calculation asks whether the co-
fluctuations in activity that are observed can be explained by activity related to task variables or 
that of other neurons recorded in the population.  Thus, a significant, positive ΔAIC identifies 
noise correlations that are specific to that cell type and cannot be explained by other recorded 
neurons.  Positive or negative correlations can both produce a significant, positive ΔAIC.   
 A significant, positive ΔAIC value of a neuron’s cell type coupling factor serves to reject 
the hypothesis that those input sources are not shared by the other recorded neurons since they 
would have been explained away by the other covariates. It can also raise two possible 
interpretations.  The first interpretation is the presence of a direct synaptic interaction between the 
neuron and the cell type.  The second interpretation is that the neuron and the cell type share 
common input from a source that is not captured in the population recording.  This is because the 
ΔAIC can only explain the activity patterns from simultaneously recorded neurons included in the 
full model.  This second interpretation may be applicable to functional connectivity between 
inhibitory cell types in which significant coupling weights are not negative as would be predicted 
from direct inhibition.  For example, strong inhibitory interactions between Sst and Vip neurons  
can be identified when measuring subthreshold responses(40) but exhibit de-correlated, rather 
negatively correlated, trial-by-trial calcium responses under task conditions(11).  Positive weights 
when considering inhibitory-inhibitory and excitatory-inhibitory functional connectivity could 
potentially be explained by excitatory drive from a non-measured source such as bottom-up input 
from L4 or thalamus or top-down input from high-order areas.  
 Functional connectivity analysis provides complementary insight into how cell types 
interact under task conditions.  Our analysis of task networks show that cell types interactions are 
layered upon coding features of individual cells.  Relative networks strengths between task 
networks may reflect differences in how such information is encoded locally versus inherited from 
other areas.  For example, S1 is necessary for coding category information during behavior and 
neurons encoding such information exhibit strong interactions.  In contrast, sampleLATE DELAY 
information is inherited from secondary somatosensory cortex where neurons encoding such 
information in S1 exhibit weak interactions(24).  Labeling connections as strong and stable vs. 
weak and variable provides additional clues as to which connections may be stable, intrinsic motifs 
vs.  transient, dynamic interactions.  While certain cell types can be clustered with other cell types, 
their spatial proximity does not correlate with the strength of these functional connections (Fig. 
S22C). Ultimately, distinguishing between direct and indirect connectivity requires confirmation 
experiments to test synaptic connectivity (Fig. 6).  
 
  



 
 

17 
 

 
Fig. S1.   CRACK platform workflow.  In vivo two-photon calcium imaging of neuronal activity 
was performed during behavior. Two-dimensional regions of interest (ROIs) corresponding to 
active neurons were segmented and registered into an in vivo 3D reference stack.  Following tissue 
extraction and clearing, in vivo area was re-identified and 3D confocal image volumes were 
acquired prior to and following multiple rounds of HCR-FISH staining.  In vivo and ex vivo image 
volumes were coarsely registered to a common reference volume based on RCamp1.07 expression 
(561 channel).  For LSM confocal images, 3D cell segmentation was performed on the entire 
imaging volume.  For spinning disk images, imaging volumes were first cropped into sub-volumes, 
further subjected to fine alignment, and then 3D cell segmentation. Segmented in vivo and ex vivo 
ROIs are matched.  HCR-FISH staining in the complementary channels (488 and 647) are decoded 
to obtain gene expression patterns. 
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Fig. S2.   Example cell registration and HCR-FISH barcode readout.  (A) Example of cell 
registration between in vivo and ex vivo images.  2D cell segmented ROIs obtained in vivo from 
active neurons and overlaid on 3D cell segmented ROIs obtained from HCR-FISH labeling. (B) 
Examples of decoded types and subclasses from the barcode scheme in Fig. 1C.  Individual HCR-
FISH rounds are shown with RCaMP1.07 expression for registration along with B2-488 and B1-
647 readout channels.  Visually scored positive (green) and negative (magenta) readouts are 
denoted for each channel and round in the segmented neuron masks. Scale bar: 20 µm. 
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Fig. S3.  Distribution of L2/3 cell types identified by multiplexed HCR-FISH.   (A) Cell type 
proportions across all L2/3 neurons (RCaMP1.07+ and RCaMP1.07-) identified by multiplexed 
HCR-FISH.  (B) Fraction of viral-mediated RCaMP1.07+ neurons identified by multiplexed HCR-
FISH show preferential labeling of L2/3 cell types by AAV.PhP.eB vectors. Error bars; s.d. from 
bootstrap analysis. n = 11,100 neurons from 3 animals. 
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Fig. S4.   Single cell RNAseq analysis of L2/3 excitatory cell types.  (A) Three major molecularly 
defined excitatory types in L2/3 S1 identified by single cell RNA sequencing.  Expression patterns 
of select genes for individual cells are shown.  Genes used in the CRACK platform are denoted 
(blue).  Baz1a neurons show selective expression of immediate early genes (red).  Additional 
selective expression of non-immediate early genes (black) indicates that Baz1a is a static excitatory 
cell type. (B) Comparison of L2/3 excitatory cell types across S1, V1, and ALM.  Genes with cell 
type specificity, area specificity, and both area and cell type specificity are shown. CPM, counts 
per million. (C) Expression profiles for decoded Baz1a cells from task behavior experiment. 
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Fig. S5 .   Single cell RNAseq analysis of inhibitory subclasses.  Dendrogram (top) depicts the 
hierarchical organization of inhibitory neurons into multiple discrete cell types.  Expression 
profiles for a subset of genes including those selected for CRACK (green) are shown for each 
cluster (middle).  Each gene is normalized to its maximum expression value. Selected subclasses 
and types for CRACK (bottom) correspond to the hierarchical level in the shaded green region of 
the dendrogram. CPM, counts per million. 
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Fig. S6.   DNMS task performance during training and imaging for individual animals.  
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Fig. S7.  Imaging depths for in vivo experiments.  Imaging depths relative to the pial surface for 
task behavior and bilateral whisker deprivation experiments.  Individual field of views (circles) 
along with mean±s.e.m. (lines) are shown. 
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Fig. S8. Calcium kinetics and spike estimation across cell types.  (A) Example of spike estimate 
from calcium signal using OASIS (left).  Raw signals are fit using an auto-regressive model.  The 
predicted trace is then deconvolved into a calcium event estimate (ŝ) which is thresholded into 
binary spikes (left). Receiver operator characteristic (ROC) showing relationship between model 
performance across varying ŝ threshold (right). (B) Distribution of deconvolved signals across 
cells prior to thresholding. (C) Scatter plot showing relationship between spike estimation 
performance from ROC analysis vs. modeled calcium rise time (left), modeled decay time 
(middle), and photon shot noise (right) across individual neurons (Pearson’s correlation). (D) 
Baseline fluorescence intensity across cell types.  (E) Photon shot noise across cell types.  (F) 
Modeled rise times across cell types.  (G) Modeled decay times across cell types.  (H) Spike 
estimation performance across cell types. For (C-F), red line: mean; pink region: 95% confidence 
interval; blue region: s.d. (* P < 0.05; *** P < 1x10-5; two-tailed Student’s t-test with Bonferroni-
Holm post-hoc correction). 
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Fig. S9. Task encoding generalized linear model. (A) Overview of covariate representations and 
their corresponding task factors used in in the task-related GLM for two example neurons over 
four trials. (B) Schematic of full and partial models used to calculate ΔAIC for individual task 
factors. 
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Fig. S10. Analysis of GLM model performance.  (A) Relationship between calcium event 
detection obtained from OASIS vs. full model GLM fit for modeled rise time, modeled decay time, 
photon shot noise, and calcium event detection performance across individual cells (Pearson’s 
correlation).  (B) Comparison of model fit between non-coding neurons and those that encode at 
least one task factor (KS test).  (C) Relationship between encoding strength of task factors vs. full 
model GLM fit across individual cells (Pearson’s correlation).  Significant (P < 0.01; black) and 
non-significant (grey) ∆AIC are shown determined by χ2 test.  (D) Relationship between encoding 
strength of task factors vs. calcium event rate across individual cells (Pearson’s correlation). 
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Fig. S11. Examples of task encoding neurons. For seven example neurons, average event rates 
are shown for stimulus conditions (far left) and animal’s decision (middle left).  Whisker touch 
onset and offset are also shown. Full model GLM weights for each covariate and deviance 
explained are shown (middle right).  Encoding strength for each task factor are shown (far right).  
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Fig. S12. Task encoding across neurons with identified cell types.  For each neuron, encoding 
strength (ΔAIC) values for all task factors are shown.  Neurons often exhibit “mixed selectivity” 
for multiple task factor.  For visualization, ΔAIC ranges are scaled between the 1st and 99th 
percentile for each task factor. Cells are clustered and sorted using a Gaussian Mixture Model.  n 
= 4,152 neurons from 7 animals. 
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Fig. S13. Activity levels and response reliability of excitatory cell types.  (A) Mean event rate 
for each excitatory cell type across the trial period. Shaded regions correspond to s.e.m.  (B) 
Distribution of estimated event rate responses binned across each time period for neurons 
belonging to the three excitatory types.  Whisker box plots are overlaid over violin plots to show 
distribution.  (** P < 0.01, *** P < 0.001, right-tailed Student’s t-test with Bonferroni-Holm post-
hoc correction).  Box centerline indicates median, box limits indicate upper and lower quartiles, 
and whiskers indicate 1.5x interquartile range.  (C,D) Cumulative probability function of response 
reliability during the sample (left) and test (right) period (C) and intra-trial response reliability 
across the sample and test period (D) for the three excitatory types.  Baz1a cells exhibit both greater 
response reliability and intra-trial reliability compared to other excitatory neurons (right-tailed 
Student’s t-test with Bonferroni-Holm post-hoc correction).  n = 1,107 neurons from 7 animals. 
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Fig. S14. Additional task encoding across L2/3 excitatory cell types. (A) Encoding strength to 
remaining task factors shown in Fig. 2 across excitatory cell types (Mann Whitney U Test). Solid 
and dotted lines correspond to significant (P < 0.01) and non-significant encoding strengths 
determined via χ2 test.  n = 1,107 neurons from 7 animals.  (B) Relationship between encoding 
strength of task factors vs. calcium event rate (left) and task factors vs. full model GLM fit (right) 
across excitatory cell types.  Significant (P < 0.05; filled circle) and non-significant (open circle) 
are shown (Pearson’s correlation).  Significant differences in correlations between cell types are 
also shown (*P < 0.05; correlation test, Bonferroni-Holm post-hoc correction). 
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Fig. S15.  Additional task encoding across inhibitory subclasses.  (A) Cumulative probability 
distributions of estimated event rate across three inhibitory subclasses. (B) Encoding strength to 
remaining task factors not shown in Fig. 4 across inhibitory subclasses (Mann Whitney U test). 
Solid and dotted lines correspond to significant (P < 0.01) and non-significant encoding strengths 
determined via χ2 test. n = 272 neurons from 7 animals. 
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Fig. S16. Additional task encoding across inhibitory subclasses. (A) Cumulative probability 
distributions of estimated event rate across inhibitory subclasses. (B) Encoding strength to 
remaining task factors not shown in Fig. 4 across Sst subclasses. (C) Encoding strength to 
remaining task factors not shown in Fig. 4 across Vip subclasses (Mann Whitney U test). In (B-
C), solid and dotted lines correspond to significant (P < 0.01) and non-significant encoding 
strengths, determined via χ2 test.  n = 224 neurons from 7 animals. 
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Fig. S17.  In vivo imaging site selection for bilateral deprivation experiments.  S1 barrel 
column selected for two-photon calcium imaging and whisker stimulation was selected based on 
RCaMP1.07 expression and intrinsic signal imaging. In the middle panel, a functionally mapped 
barrel column (green) is overlaid over a blood vessel map.  Dotted blue outline indicates region of 
interest corresponding to widefield epi-fluorescent images of RCaMP1.07 expression (left panel).   
For each animal, two adjacent areas within selected barrel column were targeted (right).  For each 
imaging session, eight field of views at different laminar depths were monitored. Scale bar: 1 mm. 
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Fig. S18. FosGFP expression across excitatory cell types.  (A) Cumulative probability 
distribution of GFP mRNA density from HCR-FISH in FosGFP mice across L2/3 excitatory cell 
types (Mann Whitney U test).  n = 26,396 cells from 3 animals.  (B) FosGFP fluorescence versus 
event rate across excitatory cell types (Pearson’s correlation).  n = 181 Adamts2, 136 Baz1a, and 
153 Agmat cells from 3 animals. 
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Fig. S19. Tracking experience-dependent FosGFP dynamics.  (A) Chronic in vivo imaging of 
an example field of view before and during bilateral whisker deprivation.   Stable low, dynamic, 
and stable high fosGFP cells are labeled.  Scale bar: 30 µm. (B) FosGFP dynamics across 
excitatory cell types. n = 181 Adamts2, 136 Baz1a, and 153 Agmat cells from 3 animals.  
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Fig. S20. Changes in stimulus response reliability during bilateral deprivation.  (A) Mean 
trial-by-trial stimulus response reliability before and after BD across functionally imaged neurons.  
(B) Change in response reliability before BD versus at 1 day or 5 days BD across neurons with 
stable low, dynamic, and stable high fosGFP expression (two-tailed Student’s t-test, n = 790 cells 
from 3 animals).  (C) Change in response reliability before BD versus at 1 day or 5 days BD across 
excitatory cell types (χ2 test, n = 181 Adamts2, 136 Baz1a, and 153 Agmat cells from 3 animals). 
Error bars = s.e.m. (* P < 0.05, ** P < 0.01). 
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Fig. S21. Analysis of cell type coupling factors.  For each cell type coupling factor, the 
relationship between an independently calculated noise correlation and the covariate weight to the 
cell type population activity from the GLM is shown for each neuron.  The encoding strength for 
each coupling cell type factor is shown in color. Significant encoding strengths (P < 0.01; filled 
circle) and non-significant encoding strengths (open circle) are also shown, determined via χ2 test. 
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Fig. S22.   Comparison of network node strengths and spatial clustering of cell types.  (A) 
Input (top) and output (bottom) node strength for different cell types were compared across task 
networks.  Significantly higher node strengths are noted with red box (P < 0.05, bootstrap test).  
(B) Input and output node strength for different cell types were compared within each task network. 
Significantly higher node strengths are noted with red dotted circle (P < 0.05, bootstrap test). (C) 
Mean distance between neuron pairs of identified cell types from in vivo imaging experiments.  
Cell type pairs showing significant clustering are noted with red box (P < 0.05, bootstrap test). 
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